FedSA: A Semi-Asynchronous Federated Learning Mechanism in Heterogeneous Edge Computing

Federated learning (FL) involves training machine learning models over distributed edge nodes ( i.e. , workers) while facing three critical challenges, edge heterogeneity, Non-IID data and communication resource constraint. In the synchronous FL, the parameter server has to wait for the slowest work...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications Vol. 39; no. 12; pp. 3654 - 3672
Main Authors: Ma, Qianpiao, Xu, Yang, Xu, Hongli, Jiang, Zhida, Huang, Liusheng, Huang, He
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0733-8716, 1558-0008
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Federated learning (FL) involves training machine learning models over distributed edge nodes ( i.e. , workers) while facing three critical challenges, edge heterogeneity, Non-IID data and communication resource constraint. In the synchronous FL, the parameter server has to wait for the slowest workers, leading to significant waiting time due to edge heterogeneity. Though asynchronous FL can well tackle the edge heterogeneity, it requires frequent model transfers, resulting in massive communication resource consumption. Moreover, the different relative frequency of workers participating in asynchronous updating may seriously hurt training accuracy, especially on Non-IID data. In this paper, we propose a semi-asynchronous federated learning mechanism (FedSA), where the parameter server aggregates a certain number of local models by their arrival order in each round. We theoretically analyze the quantitative relationship between the convergence bound of FedSA and different factors, e.g. , the number of participating workers in each round, the degree of data Non-IID and edge heterogeneity. Based on the convergence bound, we present an efficient algorithm to determine the number of participating workers to minimize the training completion time. To further improve the training accuracy on Non-IID data, FedSA deploys adaptive learning rates for workers by their relative participation frequency. We extend our proposed mechanism to the dynamic and multiple learning tasks scenarios. Experimental results on the testbed show that our proposed mechanism and algorithms address the three challenges more effectively than the state-of-the-art solutions.
AbstractList Federated learning (FL) involves training machine learning models over distributed edge nodes ( i.e. , workers) while facing three critical challenges, edge heterogeneity, Non-IID data and communication resource constraint. In the synchronous FL, the parameter server has to wait for the slowest workers, leading to significant waiting time due to edge heterogeneity. Though asynchronous FL can well tackle the edge heterogeneity, it requires frequent model transfers, resulting in massive communication resource consumption. Moreover, the different relative frequency of workers participating in asynchronous updating may seriously hurt training accuracy, especially on Non-IID data. In this paper, we propose a semi-asynchronous federated learning mechanism (FedSA), where the parameter server aggregates a certain number of local models by their arrival order in each round. We theoretically analyze the quantitative relationship between the convergence bound of FedSA and different factors, e.g. , the number of participating workers in each round, the degree of data Non-IID and edge heterogeneity. Based on the convergence bound, we present an efficient algorithm to determine the number of participating workers to minimize the training completion time. To further improve the training accuracy on Non-IID data, FedSA deploys adaptive learning rates for workers by their relative participation frequency. We extend our proposed mechanism to the dynamic and multiple learning tasks scenarios. Experimental results on the testbed show that our proposed mechanism and algorithms address the three challenges more effectively than the state-of-the-art solutions.
Author Xu, Yang
Huang, Liusheng
Xu, Hongli
Huang, He
Ma, Qianpiao
Jiang, Zhida
Author_xml – sequence: 1
  givenname: Qianpiao
  orcidid: 0000-0001-8684-3495
  surname: Ma
  fullname: Ma, Qianpiao
  email: maqiu@mail.ustc.edu.cn
  organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0003-0839-3892
  surname: Xu
  fullname: Xu, Yang
  email: xuyangcs@ustc.edu.cn
  organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 3
  givenname: Hongli
  surname: Xu
  fullname: Xu, Hongli
  email: xuhongli@ustc.edu.cn
  organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 4
  givenname: Zhida
  surname: Jiang
  fullname: Jiang, Zhida
  email: zdjiang@mail.ustc.edu.cn
  organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 5
  givenname: Liusheng
  surname: Huang
  fullname: Huang, Liusheng
  email: lshuang@ustc.edu.cn
  organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 6
  givenname: He
  orcidid: 0000-0003-2768-6607
  surname: Huang
  fullname: Huang, He
  email: huangh@suda.edu.cn
  organization: School of Computer Science and Technology, Soochow University, Suzhou, China
BookMark eNp9kLtOwzAUQC1UJErhAxBLJOYUP_Kw2aKopaAihoIYI9e5aV01drGToX-Po1YMDCy-g8-5VzrXaGSsAYTuCJ4SgsXj66oopxRTMmWE8ISlF2hM0pTHGGM-QmOcMxbznGRX6Nr7HcYkSTgdo6851KviKSqiFbQ6LvzRqK2zxvY-Cl_gZAd1tATpjDab6A3UVhrt20ibaAEdOLsBAwM9qzcQlbY99F0gb9BlI_cebs9zgj7ns49yES_fn1_KYhkrKlgX51LUognvmqk1zxhuFNR5k4gsqyFb5wBNIkkuoeYUM8FVwiFtiBKM5kEENkEPp70HZ7978F21s70z4WRFUyFoiEOTQOUnSjnrvYOmUrqTnbamc1LvK4KroWI1VKyGitW5YjDJH_PgdCvd8V_n_uRoAPjlRZrRlHH2Axdof48
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_JSYST_2022_3206404
crossref_primary_10_1109_TCAD_2024_3446881
crossref_primary_10_1109_JSAC_2023_3242710
crossref_primary_10_1109_TMC_2024_3402080
crossref_primary_10_1109_TMC_2024_3461852
crossref_primary_10_1016_j_future_2023_11_001
crossref_primary_10_1109_TMC_2023_3307610
crossref_primary_10_1016_j_patrec_2025_08_009
crossref_primary_10_1016_j_ins_2024_121458
crossref_primary_10_1109_ACCESS_2025_3573806
crossref_primary_10_1002_spe_3265
crossref_primary_10_1109_TNNLS_2024_3354924
crossref_primary_10_1109_TCE_2025_3534468
crossref_primary_10_1109_TWC_2023_3303492
crossref_primary_10_1109_TPDS_2024_3460185
crossref_primary_10_1145_3639825
crossref_primary_10_1145_3690639
crossref_primary_10_1109_TMC_2024_3487294
crossref_primary_10_1016_j_future_2024_107551
crossref_primary_10_1109_JIOT_2024_3406634
crossref_primary_10_1016_j_future_2022_05_003
crossref_primary_10_1109_TCOMM_2024_3425635
crossref_primary_10_1109_TPDS_2024_3379933
crossref_primary_10_1109_TWC_2022_3210434
crossref_primary_10_1109_TCE_2024_3385440
crossref_primary_10_1109_TMC_2022_3186936
crossref_primary_10_1016_j_comnet_2025_111223
crossref_primary_10_1109_TCOMM_2024_3486979
crossref_primary_10_1109_JIOT_2024_3486121
crossref_primary_10_1109_TNSM_2023_3252818
crossref_primary_10_1016_j_comnet_2025_111346
crossref_primary_10_1109_JIOT_2023_3281909
crossref_primary_10_1109_TNSM_2025_3560657
crossref_primary_10_1016_j_future_2024_107528
crossref_primary_10_1109_ACCESS_2023_3335603
crossref_primary_10_1109_TCAD_2023_3346274
crossref_primary_10_1109_TITS_2024_3357138
crossref_primary_10_1109_TVT_2023_3287355
crossref_primary_10_1016_j_adhoc_2023_103153
crossref_primary_10_1109_TWC_2022_3211998
crossref_primary_10_1016_j_future_2024_07_045
crossref_primary_10_1109_ACCESS_2024_3511430
crossref_primary_10_1145_3659205
crossref_primary_10_1007_s12083_023_01616_4
crossref_primary_10_1109_ACCESS_2023_3284976
crossref_primary_10_1109_JSAC_2022_3213344
crossref_primary_10_1109_TWC_2023_3257132
crossref_primary_10_1016_j_ymssp_2024_111837
crossref_primary_10_1109_TMC_2024_3507286
crossref_primary_10_1109_JIOT_2022_3162322
crossref_primary_10_1109_JSAC_2022_3211564
crossref_primary_10_1109_TNET_2024_3424444
crossref_primary_10_1088_1361_6501_acf7da
crossref_primary_10_1109_TMC_2024_3366947
crossref_primary_10_1109_TPAMI_2023_3332428
crossref_primary_10_1109_TMC_2024_3416216
crossref_primary_10_1109_TNET_2023_3299851
crossref_primary_10_1016_j_future_2024_07_053
crossref_primary_10_1109_TBDATA_2024_3484651
crossref_primary_10_1109_COMST_2023_3329027
crossref_primary_10_1109_TVT_2023_3331344
crossref_primary_10_1109_TKDE_2023_3332770
crossref_primary_10_1007_s13042_024_02238_9
crossref_primary_10_3390_fi17080375
crossref_primary_10_1016_j_dcan_2024_09_005
crossref_primary_10_1109_TWC_2022_3153495
crossref_primary_10_1109_JIOT_2024_3399404
crossref_primary_10_1109_TIFS_2025_3559411
crossref_primary_10_1109_TITS_2024_3523488
crossref_primary_10_1016_j_engappai_2024_107927
crossref_primary_10_1109_TMC_2024_3418613
crossref_primary_10_1016_j_future_2023_09_008
crossref_primary_10_1109_TWC_2024_3366393
crossref_primary_10_1109_TCE_2023_3330501
crossref_primary_10_1109_ACCESS_2023_3234761
crossref_primary_10_1109_JIOT_2024_3354869
crossref_primary_10_1109_JIOT_2025_3572121
crossref_primary_10_1109_TBDATA_2024_3403381
crossref_primary_10_1007_s13042_023_01956_w
crossref_primary_10_1109_TMC_2023_3247798
crossref_primary_10_1109_TMC_2024_3446271
crossref_primary_10_1145_3643560
crossref_primary_10_1109_TWC_2023_3286990
crossref_primary_10_1109_TNET_2023_3329005
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_1109_TCCN_2025_3531464
crossref_primary_10_1109_TMC_2025_3551368
crossref_primary_10_1109_TMC_2023_3311188
crossref_primary_10_1109_TMC_2023_3337016
crossref_primary_10_1016_j_future_2024_107683
crossref_primary_10_1038_s41598_024_78239_z
crossref_primary_10_1145_3652613
crossref_primary_10_1109_ACCESS_2024_3487073
crossref_primary_10_1109_JSAC_2023_3240716
crossref_primary_10_1109_COMST_2024_3399612
crossref_primary_10_1109_JIOT_2023_3290818
crossref_primary_10_1109_TII_2025_3567377
crossref_primary_10_1109_TWC_2023_3337773
crossref_primary_10_3390_s22041672
crossref_primary_10_1109_TMC_2023_3335403
crossref_primary_10_1109_TCCN_2025_3527711
crossref_primary_10_1109_TCCN_2024_3391329
crossref_primary_10_1016_j_jpdc_2024_104950
crossref_primary_10_1109_TCOMM_2023_3261383
crossref_primary_10_1109_TMC_2024_3492140
crossref_primary_10_1109_TWC_2023_3281765
crossref_primary_10_1016_j_asoc_2025_112925
crossref_primary_10_3390_electronics12204214
Cites_doi 10.1109/MCOM.001.1900103
10.1109/COMST.2017.2745201
10.1109/TSC.2017.2753775
10.1145/3065386
10.1109/ACCESS.2017.2685434
10.24963/ijcai.2019/960
10.1109/JSAC.2019.2904348
10.1109/5.726791
10.1109/ICPADS51040.2020.00030
10.1109/IJCNN52387.2021.9533794
10.1145/2640087.2644155
10.1109/TNNLS.2019.2944481
10.1109/ICC.2019.8761315
10.1109/MLSP.2014.6958872
10.1017/CBO9781107298019
10.1109/TII.2019.2942179
10.1109/INFOCOM41043.2020.9155268
10.1109/INFOCOM.2018.8486403
10.1109/ICDM.2016.0012
10.1109/TSMCC.2009.2032660
10.1109/INFOCOM41043.2020.9155494
10.1109/TC.2020.2994391
10.1109/TWC.2020.3008091
10.1002/9781118548387
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2021.3118435
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 3672
ExternalDocumentID 10_1109_JSAC_2021_3118435
9562538
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation of China (NSFC)
  grantid: 62132019; 61936015; 62102391; U1709217
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-7a9d9f7a9b3cb8630fced7f4966de6b7eef4a17aed820398c48e5f1c9327d9fe3
IEDL.DBID RIE
ISICitedReferencesCount 142
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720517900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8716
IngestDate Sat Nov 01 15:08:19 EDT 2025
Sat Nov 29 03:23:04 EST 2025
Tue Nov 18 20:44:37 EST 2025
Wed Aug 27 02:26:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-7a9d9f7a9b3cb8630fced7f4966de6b7eef4a17aed820398c48e5f1c9327d9fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0839-3892
0000-0003-2768-6607
0000-0001-8684-3495
PQID 2599211024
PQPubID 85481
PageCount 19
ParticipantIDs crossref_citationtrail_10_1109_JSAC_2021_3118435
proquest_journals_2599211024
crossref_primary_10_1109_JSAC_2021_3118435
ieee_primary_9562538
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref37
mohri (ref12) 2019
ref36
ref14
ref30
wang (ref23) 2018
ref33
ref11
krizhevsky (ref38) 2009
ref32
chen (ref20) 2019
kone?n? (ref8) 2016
ref1
ref17
mcmahan (ref9) 2017
ref16
hosmer (ref34) 2013; 398
ref18
anguita (ref2) 2013
mcmahan (ref4) 2017
xie (ref19) 2019
zhao (ref10) 2018
li (ref25) 2018
li (ref15) 2014
ref24
ref26
ref22
ref21
ref28
ref29
ref7
nesterov (ref31) 2003; 87
ref3
ref6
ref5
chai (ref27) 2020
References_xml – year: 2019
  ident: ref19
  article-title: Asynchronous federated optimization
  publication-title: arXiv 1903 03934
– ident: ref3
  doi: 10.1109/MCOM.001.1900103
– ident: ref13
  doi: 10.1109/COMST.2017.2745201
– ident: ref16
  doi: 10.1109/TSC.2017.2753775
– ident: ref36
  doi: 10.1145/3065386
– ident: ref14
  doi: 10.1109/ACCESS.2017.2685434
– ident: ref5
  doi: 10.24963/ijcai.2019/960
– ident: ref17
  doi: 10.1109/JSAC.2019.2904348
– ident: ref37
  doi: 10.1109/5.726791
– year: 2017
  ident: ref4
  publication-title: Google
– start-page: 3
  year: 2013
  ident: ref2
  article-title: A public domain dataset for human activity recognition using smartphones
  publication-title: Proc ESANN
– ident: ref29
  doi: 10.1109/ICPADS51040.2020.00030
– volume: 87
  year: 2003
  ident: ref31
  publication-title: Introductory Lectures on Convex Optimization A Basic Course
– ident: ref21
  doi: 10.1109/IJCNN52387.2021.9533794
– year: 2009
  ident: ref38
  publication-title: Learning multiple layers of features from tiny images
– ident: ref7
  doi: 10.1145/2640087.2644155
– year: 2018
  ident: ref25
  article-title: Federated optimization in heterogeneous networks
  publication-title: arXiv 1812 06127
– ident: ref11
  doi: 10.1109/TNNLS.2019.2944481
– ident: ref6
  doi: 10.1109/ICC.2019.8761315
– year: 2018
  ident: ref23
  article-title: Cooperative SGD: A unified framework for the design and analysis of communication-efficient SGD algorithms
  publication-title: arXiv 1808 07576
– ident: ref28
  doi: 10.1109/MLSP.2014.6958872
– ident: ref35
  doi: 10.1017/CBO9781107298019
– year: 2020
  ident: ref27
  article-title: FedAT: A communication-efficient federated learning method with asynchronous tiers under non-IID data
  publication-title: arXiv 2010 05958
– start-page: 1273
  year: 2017
  ident: ref9
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc AISTATS
– ident: ref26
  doi: 10.1109/TII.2019.2942179
– ident: ref33
  doi: 10.1109/INFOCOM41043.2020.9155268
– ident: ref32
  doi: 10.1109/INFOCOM.2018.8486403
– year: 2016
  ident: ref8
  article-title: Federated optimization: Distributed machine learning for on-device intelligence
  publication-title: arXiv 1610 02527
– start-page: 19
  year: 2014
  ident: ref15
  article-title: Communication efficient distributed machine learning with the parameter server
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref30
  doi: 10.1109/ICDM.2016.0012
– ident: ref1
  doi: 10.1109/TSMCC.2009.2032660
– year: 2018
  ident: ref10
  article-title: Federated learning with non-IID data
  publication-title: arXiv 1806 00582
– ident: ref18
  doi: 10.1109/INFOCOM41043.2020.9155494
– start-page: 4615
  year: 2019
  ident: ref12
  article-title: Agnostic federated learning
  publication-title: Proc Int Conf Mach Learn
– year: 2019
  ident: ref20
  article-title: Asynchronous online federated learning for edge devices with non-IID data
  publication-title: arXiv 1911 02134
– ident: ref22
  doi: 10.1109/TC.2020.2994391
– ident: ref24
  doi: 10.1109/TWC.2020.3008091
– volume: 398
  year: 2013
  ident: ref34
  publication-title: Applied Logistic Regression
  doi: 10.1002/9781118548387
SSID ssj0014482
Score 2.6857984
Snippet Federated learning (FL) involves training machine learning models over distributed edge nodes ( i.e. , workers) while facing three critical challenges, edge...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3654
SubjectTerms Accuracy
Adaptive learning
Algorithms
Analytical models
Cognitive tasks
Collaborative work
Completion time
Computational modeling
Convergence
Data models
Edge computing
Federated learning
Heterogeneity
Machine learning
Mathematical models
non-IID
Parameters
semi-asynchronous mechanism
Servers
Staff participation
Training data
Title FedSA: A Semi-Asynchronous Federated Learning Mechanism in Heterogeneous Edge Computing
URI https://ieeexplore.ieee.org/document/9562538
https://www.proquest.com/docview/2599211024
Volume 39
WOSCitedRecordID wos000720517900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SpYfk0EcedNtt0SGnUCe2JVtSbyZkCYWGwqY0NyNLo7CQ9ZbsppB_nxnbWVoaCr0YH2aM0cia-Twz3wAcNRGLJpUqcZiHRCGdg84amWjlSYMCXOVUN2xCX16a62v7bQs-bXphELErPsMTvu1y-WHp7_lX2anlaF2abdjWuux7tTYZA4IZXcZAS5kwCBgymFlqT7_MqjNCgnlGAJXHmxR_-KBuqMpfJ3HnXqav_u_FXsPLIYwUVW_3N7CF7R7s_kYuuA8_phhm1WdRiRku5km1emg9M-ES1BdTppCgKDOIgV_1RnxF7gGerxZi3ooLLpJZ0t5Clj4PNyj68Q8keQDfp-dXZxfJMEYh8eTL14l2NthI10b6xpQyjR6DjoqATsCy0YhRuUw7DBQNSGu8MljEzFNkp0kR5SGM2mWLb0GULmgdi6Z00jNRu3E5FgpzY6LOYpONIX1a2NoPHOM86uK27rBGamu2Rc22qAdbjOF4o_KzJ9j4l_A-L_5GcFj3MUyerFcPn-CqJlxnGd3m6t3zWu9hh5_d16ZMYLS-u8cP8ML_Ws9Xdx-73fUIqvDM1g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEB5qFawPam3Fs1X3oU9ibJLd3O72LZQep7aHcC3tW9jszpYDmyu9q-C_dyZJD0tF8CXkYYaEnc3OfJmZbwD26ohFnUqVOMxDopDOQWeNTLTypEEBrnKqHTahJxNzcWG_r8GnVS8MIrbFZ_iZb9tcfpj7W_5Vtm85WpfmETwulMrTrltrlTMgoNHmDLSUCcOAPoeZpXb_67Q8JCyYZwRRecBJcc8LtWNVHpzFrYMZvfi_V3sJz_tAUpSd5TdhDZtX8OwPesEtOB9hmJYHohRTvJol5eJX45kLl8C-GDGJBMWZQfQMq5fiBLkLeLa4ErNGjLlMZk67C1n6KFyi6AZAkOQ2nI2OTg_HST9IIfHkzZeJdjbYSNda-toMZRo9Bh0VQZ2Aw1ojRuUy7TBQPCCt8cpgETNPsZ0mRZSvYb2ZN_gGxNAFrWNRD530TNVuXI6FwtyYqLNYZwNI7xa28j3LOA-7-FG1aCO1FduiYltUvS0G8HGlct1RbPxLeIsXfyXYr_sAdu-sV_Uf4aIiZGcZ3-bq7d-1PsDT8enJcXX8ZfJtBzb4OV2lyi6sL29u8R088T-Xs8XN-3an_QZ8_dAd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FedSA%3A+A+Semi-Asynchronous+Federated+Learning+Mechanism+in+Heterogeneous+Edge+Computing&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Ma%2C+Qianpiao&rft.au=Xu%2C+Yang&rft.au=Xu%2C+Hongli&rft.au=Jiang%2C+Zhida&rft.date=2021-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=39&rft.issue=12&rft.spage=3654&rft_id=info:doi/10.1109%2FJSAC.2021.3118435&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon