Content-Based Photo Quality Assessment
Automatically assessing photo quality from the perspective of visual aesthetics is of great interest in high-level vision research and has drawn much attention in recent years. In this paper, we propose content-based photo quality assessment using both regional and global features. Under this framew...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on multimedia Jg. 15; H. 8; S. 1930 - 1943 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.12.2013
Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 1520-9210, 1941-0077 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Automatically assessing photo quality from the perspective of visual aesthetics is of great interest in high-level vision research and has drawn much attention in recent years. In this paper, we propose content-based photo quality assessment using both regional and global features. Under this framework, subject areas, which draw the most attentions of human eyes, are first extracted. Then regional features extracted from both subject areas and background regions are combined with global features to assess photo quality. Since professional photographers adopt different photographic techniques and have different aesthetic criteria in mind when taking different types of photos (e.g., landscape versus portrait), we propose to segment subject areas and extract visual features in different ways according to the variety of photo content. We divide the photos into seven categories based on their visual content and develop a set of new subject area extraction methods and new visual features specially designed for different categories. The effectiveness of this framework is supported by extensive experimental comparisons of existing photo quality assessment approaches as well as our new features on different categories of photos. In addition, we propose an approach of online training an adaptive classifier to combine the proposed features according to the visual content of a test photo without knowing its category. Another contribution of this work is to construct a large and diversified benchmark dataset for the research of photo quality assessment. It includes 17,673 photos with manually labeled ground truth. This new benchmark dataset can be down loaded at http://mmlab.ie.cuhk.edu.hk/CUHKPQ/Dataset.htm. |
|---|---|
| AbstractList | Automatically assessing photo quality from the perspective of visual aesthetics is of great interest in high-level vision research and has drawn much attention in recent years. In this paper, we propose content-based photo quality assessment using both regional and global features. Under this framework, subject areas, which draw the most attentions of human eyes, are first extracted. Then regional features extracted from both subject areas and background regions are combined with global features to assess photo quality. Since professional photographers adopt different photographic techniques and have different aesthetic criteria in mind when taking different types of photos (e.g., landscape versus portrait), we propose to segment subject areas and extract visual features in different ways according to the variety of photo content. We divide the photos into seven categories based on their visual content and develop a set of new subject area extraction methods and new visual features specially designed for different categories. The effectiveness of this framework is supported by extensive experimental comparisons of existing photo quality assessment approaches as well as our new features on different categories of photos. In addition, we propose an approach of online training an adaptive classifier to combine the proposed features according to the visual content of a test photo without knowing its category. Another contribution of this work is to construct a large and diversified benchmark dataset for the research of photo quality assessment. It includes 17,673 photos with manually labeled ground truth. This new benchmark dataset can be down loaded at http://mmlab.ie.cuhk.edu.hk/CUHKPQ/Dataset.htm. |
| Author | Luo, Wei Wang, Xiaogang Tang, Xiaoou |
| Author_xml | – sequence: 1 givenname: Xiaoou surname: Tang fullname: Tang, Xiaoou email: xtang@ie.cuhk.edu.hk organization: Department of Information Engineering, Chinese University of Hong Kong, Hong Kong – sequence: 2 givenname: Wei surname: Luo fullname: Luo, Wei email: awesomekeane@gmail.com organization: Department of Information Engineering, Chinese University of Hong Kong – sequence: 3 givenname: Xiaogang surname: Wang fullname: Wang, Xiaogang email: xgwang@ee.cuhk.edu.hk organization: Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28021979$$DView record in Pascal Francis |
| BookMark | eNp9kE1Lw0AQhhepYFu9C1560VvqzO4mmznW4he0qFDPYbs7wUialOx66L83paUHD55mYN5nhnlGYtC0DQtxjTBFBLpfLZdTCaimUmaUE52JIZLGBMCYQd-nEhKSCBdiFMI3AOoUzFDczdsmchOTBxvYT96_2thOPn5sXcXdZBYCh7Dpx5fivLR14KtjHYvPp8fV_CVZvD2_zmeLxElSMTHkLFpOvWFJ2snSQ7amDJi8ZFSl0V6xyVOvCB2m-dqRVdpmvDaMXhs1FreHvVsbnK3LzjauCsW2qza22xUyB4lkqM_BIee6NoSOy1MEodj7KHofxd5HcfTRI9kfxFXRxqr_v7NV_R94cwArZj7dyVKtpQH1C0OBbf0 |
| CODEN | ITMUF8 |
| CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3520616 crossref_primary_10_1371_journal_pone_0331897 crossref_primary_10_1109_TIP_2020_2968285 crossref_primary_10_1007_s11263_015_0801_5 crossref_primary_10_1007_s00138_024_01574_8 crossref_primary_10_1016_j_procs_2024_09_194 crossref_primary_10_1109_TMM_2022_3144890 crossref_primary_10_3390_electronics12112526 crossref_primary_10_1016_j_neucom_2015_05_095 crossref_primary_10_1016_j_sigpro_2015_02_017 crossref_primary_10_3390_jimaging7010003 crossref_primary_10_1109_TCYB_2015_2493558 crossref_primary_10_1016_j_ipm_2023_103368 crossref_primary_10_1109_TCSVT_2023_3303933 crossref_primary_10_1109_ACCESS_2021_3083075 crossref_primary_10_1109_TIM_2022_3154808 crossref_primary_10_1002_int_23017 crossref_primary_10_1109_TMM_2016_2538722 crossref_primary_10_1109_TMM_2024_3521765 crossref_primary_10_1016_j_neucom_2020_10_046 crossref_primary_10_1109_MSP_2017_2696576 crossref_primary_10_3390_jimaging7020029 crossref_primary_10_1109_TMM_2015_2479916 crossref_primary_10_1109_TMM_2017_2687759 crossref_primary_10_1109_ACCESS_2018_2885818 crossref_primary_10_1109_TPAMI_2022_3232328 crossref_primary_10_1631_jzus_C1400102 crossref_primary_10_1109_TCSVT_2016_2555658 crossref_primary_10_1109_TFUZZ_2025_3566145 crossref_primary_10_1145_3716820 crossref_primary_10_1109_ACCESS_2020_3014458 crossref_primary_10_1109_TMM_2017_2780762 crossref_primary_10_1109_TCYB_2020_2984670 crossref_primary_10_1007_s11042_021_10766_7 crossref_primary_10_1016_j_patrec_2022_02_008 crossref_primary_10_1145_3588317 crossref_primary_10_1109_TPAMI_2018_2889948 crossref_primary_10_1016_j_neucom_2018_05_071 crossref_primary_10_1109_TMM_2017_2689923 crossref_primary_10_1109_TMM_2018_2875357 crossref_primary_10_1109_TMM_2021_3130752 crossref_primary_10_1016_j_image_2018_05_006 crossref_primary_10_1109_TMM_2020_2985526 crossref_primary_10_1109_TVCG_2017_2764895 crossref_primary_10_1016_j_neucom_2023_03_058 crossref_primary_10_1016_j_ins_2019_10_011 crossref_primary_10_1016_j_image_2015_04_002 crossref_primary_10_1109_TIP_2018_2845100 crossref_primary_10_1109_TCSVT_2023_3272984 crossref_primary_10_1016_j_image_2015_04_003 crossref_primary_10_1016_j_patcog_2023_110227 crossref_primary_10_1109_TMM_2016_2559942 crossref_primary_10_1007_s11042_021_11557_w crossref_primary_10_1016_j_patrec_2018_05_016 crossref_primary_10_1109_TIE_2014_2336639 crossref_primary_10_1016_j_image_2018_05_010 crossref_primary_10_1109_TCSVT_2023_3249185 crossref_primary_10_1109_TNNLS_2019_2962548 crossref_primary_10_1109_TNNLS_2022_3151787 crossref_primary_10_1109_TMM_2019_2911428 crossref_primary_10_1049_iet_cvi_2019_0361 crossref_primary_10_1109_ACCESS_2020_2983725 crossref_primary_10_1016_j_jvcir_2025_104570 crossref_primary_10_1109_TIP_2023_3308852 crossref_primary_10_1109_TMM_2020_3029882 crossref_primary_10_1109_TMM_2024_3389452 crossref_primary_10_1007_s11432_018_9567_8 crossref_primary_10_1007_s11042_024_18157_4 crossref_primary_10_1109_TMM_2017_2652069 crossref_primary_10_1049_iet_cvi_2018_5249 crossref_primary_10_1109_TMM_2019_2957986 crossref_primary_10_3390_s21041307 crossref_primary_10_3390_electronics11193248 crossref_primary_10_1109_ACCESS_2020_3044573 crossref_primary_10_1016_j_image_2019_05_021 crossref_primary_10_1007_s00521_019_04065_4 crossref_primary_10_1145_3333612 crossref_primary_10_1109_TIM_2024_3365174 crossref_primary_10_3390_inventions4030034 crossref_primary_10_1109_TIP_2019_2897940 crossref_primary_10_1016_j_asoc_2021_107116 crossref_primary_10_1155_2021_8619449 crossref_primary_10_1007_s11042_023_15791_2 crossref_primary_10_1016_j_patcog_2024_110584 crossref_primary_10_3390_e23020153 crossref_primary_10_1016_j_neucom_2014_06_029 crossref_primary_10_1371_journal_pone_0269152 crossref_primary_10_1016_j_eswa_2021_115852 crossref_primary_10_1080_10447318_2025_2518333 crossref_primary_10_1109_TIP_2017_2651399 crossref_primary_10_1109_TMM_2023_3313507 crossref_primary_10_1016_j_neucom_2016_03_035 crossref_primary_10_1016_j_cola_2019_04_005 crossref_primary_10_1155_2019_4659809 crossref_primary_10_1080_23270012_2021_1998801 crossref_primary_10_1109_TMM_2023_3290479 crossref_primary_10_1109_TNNLS_2017_2649101 crossref_primary_10_1016_j_image_2015_07_006 crossref_primary_10_1109_TETCI_2018_2865215 crossref_primary_10_1145_3115433 crossref_primary_10_1016_j_sigpro_2014_12_008 crossref_primary_10_1145_3414843 crossref_primary_10_3390_jimaging8060166 crossref_primary_10_1631_FITEE_1900398 crossref_primary_10_3233_JIFS_210026 crossref_primary_10_3390_jimaging8060173 crossref_primary_10_1134_S1054661820040082 crossref_primary_10_3390_electronics14071425 crossref_primary_10_1016_j_image_2016_05_004 crossref_primary_10_1007_s11042_022_13338_5 crossref_primary_10_1016_j_image_2016_05_009 crossref_primary_10_1016_j_jvcir_2023_104044 crossref_primary_10_1155_2024_8223586 crossref_primary_10_1016_j_patcog_2025_112401 crossref_primary_10_1109_TAFFC_2018_2809752 crossref_primary_10_1109_TMM_2018_2794262 crossref_primary_10_3390_math12071005 crossref_primary_10_1016_j_imavis_2022_104505 crossref_primary_10_1109_TBDATA_2019_2895605 crossref_primary_10_1016_j_neucom_2020_10_065 crossref_primary_10_1080_09540091_2022_2147902 crossref_primary_10_1109_TMM_2021_3123468 crossref_primary_10_1109_TMM_2016_2644866 crossref_primary_10_1145_3588764 crossref_primary_10_1109_ACCESS_2022_3209196 crossref_primary_10_3390_app13179763 crossref_primary_10_1109_TIP_2015_2439035 crossref_primary_10_1109_TCDS_2020_3036690 crossref_primary_10_1109_ACCESS_2020_3039715 |
| Cites_doi | 10.1109/ICCV.2007.4409043 10.1109/CVPR.2005.177 10.1117/12.201231 10.1007/s11263-009-0275-4 10.1109/ICCV.2003.1238308 10.1109/ICCV.2003.1238354 10.1109/34.730558 10.1109/ICIP.2008.4711702 10.1109/CVPR.2011.5995721 10.1109/CVPR.2012.6247795 10.1109/MMMC.2005.52 10.1145/1873951.1873990 10.1109/TIP.2005.854492 10.1109/CVPR.2011.5995399 10.1109/ISIC.2012.6449719 10.1145/1631272.1631351 10.1145/1631272.1631384 10.1109/CVPR.2011.5995467 10.1109/TPAMI.2011.242 10.1145/1873951.1873965 10.1007/s11263-006-0031-y 10.1109/FUZZ.2002.1005020 10.1145/1399504.1360637 10.1109/TCSVT.2012.2186745 10.1109/CVPR.2011.5995539 10.1109/TPAMI.2010.168 10.1145/1459359.1459471 10.4324/9780080556161 10.1002/col.20321 10.1109/83.841940 10.1145/1179352.1141933 10.1109/ICIP.2012.6467496 10.1002/col.20294 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS |
| Copyright_xml | – notice: 2015 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW |
| DOI | 10.1109/TMM.2013.2269899 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1941-0077 |
| EndPage | 1943 |
| ExternalDocumentID | 28021979 10_1109_TMM_2013_2269899 6544270 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION ABTAH IQODW |
| ID | FETCH-LOGICAL-c293t-79ca1ae5d7e294c2fd06b960e9d2e13f74d3e785d391c158bc9a34a6eb7e1d473 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 201 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327393900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-9210 |
| IngestDate | Wed Apr 02 07:24:04 EDT 2025 Sat Nov 29 08:00:49 EST 2025 Tue Nov 18 22:11:20 EST 2025 Wed Aug 27 02:03:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Computer vision Landscape Internet protocol hue composition Very large databases Online algorithm Ground truth scene composition Adaptive method Visual perception content-based dark channel Classification Quality control Content-based retrieval Clarity contrast Aesthetics photo quality assessment Pattern extraction composition geometry Visual control |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-79ca1ae5d7e294c2fd06b960e9d2e13f74d3e785d391c158bc9a34a6eb7e1d473 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TMM_2013_2269899 pascalfrancis_primary_28021979 ieee_primary_6544270 crossref_citationtrail_10_1109_TMM_2013_2269899 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-12-01 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | IEEE transactions on multimedia |
| PublicationTitleAbbrev | TMM |
| PublicationYear | 2013 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref15 ref14 ref53 ref52 ref11 everingham (ref21) 0 ref54 ref10 wong (ref12) 2009 london (ref6) 1998 freeman (ref4) 2006 levin (ref41) 2007 grey (ref19) 2004 ref50 muja (ref51) 2009 ref48 ref42 ref44 ref43 ref49 luo (ref16) 2011 ref40 itti (ref39) 2002; 20 ref35 ref34 ref37 ref36 jin (ref13) 2010 ref30 ref33 ref32 ke (ref7) 2006 ref2 ref1 ref38 freeman (ref47) 1995 daly (ref24) 1993 freeman (ref5) 2007 carucci (ref17) 1995 white (ref18) 1995 datta (ref8) 2006 he (ref45) 2009 luo (ref9) 2008 ref23 ref26 ref25 ref22 he (ref46) 2011; 33 ref28 ref27 ref29 bosch (ref20) 2006 mante (ref3) 1972 tong (ref31) 2004 |
| References_xml | – ident: ref43 doi: 10.1109/ICCV.2007.4409043 – year: 1995 ident: ref17 publication-title: Capturing the Night with Your Camera How to Take Great Photographs After Dark – ident: ref44 doi: 10.1109/CVPR.2005.177 – ident: ref25 doi: 10.1117/12.201231 – year: 2010 ident: ref13 article-title: Learning artistic lighting template from portrait photographs publication-title: Proc Eur Conf Computer Vision – year: 2007 ident: ref41 article-title: Blind motion deblurring using image statistics publication-title: Proc Adv Neur Inf Process Syst – ident: ref23 doi: 10.1007/s11263-009-0275-4 – year: 2004 ident: ref19 publication-title: Master Lighting Guide for Portrait Photographers – ident: ref42 doi: 10.1109/ICCV.2003.1238308 – ident: ref48 doi: 10.1109/ICCV.2003.1238354 – year: 2004 ident: ref31 article-title: Classification of digital photos taken by photographers or home users publication-title: Proc Pacific Rim Conf Multimedia – start-page: 179 year: 1993 ident: ref24 publication-title: Digital Images and Human Vision – year: 1972 ident: ref3 publication-title: Color Design in Photography – volume: 20 start-page: 1254 year: 2002 ident: ref39 article-title: A model of saliency-based visual attention for rapid scene analysis publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.730558 – ident: ref10 doi: 10.1109/ICIP.2008.4711702 – ident: ref53 doi: 10.1109/CVPR.2011.5995721 – ident: ref28 doi: 10.1109/CVPR.2012.6247795 – ident: ref30 doi: 10.1109/MMMC.2005.52 – ident: ref14 doi: 10.1145/1873951.1873990 – ident: ref29 doi: 10.1109/TIP.2005.854492 – ident: ref49 doi: 10.1109/CVPR.2011.5995399 – year: 2009 ident: ref45 article-title: Single image haze removal using dark channel prior publication-title: Proc IEEE Int Conf Comput Vision and Pattern Recognition – ident: ref34 doi: 10.1109/ISIC.2012.6449719 – ident: ref11 doi: 10.1145/1631272.1631351 – ident: ref33 doi: 10.1145/1631272.1631384 – ident: ref15 doi: 10.1109/CVPR.2011.5995467 – ident: ref50 doi: 10.1109/TPAMI.2011.242 – year: 2009 ident: ref51 article-title: Fast approximate nearest neighbors with automatic algorithm configuration publication-title: Proc VISAPP Int Conf Comput Vision Theory and Applicat – ident: ref22 doi: 10.1145/1873951.1873965 – ident: ref40 doi: 10.1007/s11263-006-0031-y – ident: ref37 doi: 10.1109/FUZZ.2002.1005020 – ident: ref54 doi: 10.1145/1399504.1360637 – year: 2006 ident: ref8 article-title: Studying aesthetics in photographic images using a computational approach publication-title: Proc Eur Conf Comput Vision – ident: ref27 doi: 10.1109/TCSVT.2012.2186745 – year: 0 ident: ref21 publication-title: The PASCAL Visual Object Classes Challenge 2011 (VOC2011) Results – year: 2009 ident: ref12 article-title: Saliency-enhanced image aesthetics class prediction publication-title: Proc IEEE Int Conf Image Processing – ident: ref32 doi: 10.1109/CVPR.2011.5995539 – year: 2008 ident: ref9 article-title: Photo and video quality evaluation: Focusing on the subject publication-title: Proc Eur Conf Computer Vision – year: 2006 ident: ref20 article-title: Scene classification via plsa publication-title: Proc Eur Conf Comput Vision – volume: 33 start-page: 2341 year: 2011 ident: ref46 article-title: Single image haze removal using dark channel prior publication-title: IEEE Trans Pattern Analysis Mach Intell doi: 10.1109/TPAMI.2010.168 – ident: ref52 doi: 10.1145/1459359.1459471 – year: 2006 ident: ref4 publication-title: The Complete Guide to Light & Lighting in Digital Photography – year: 2007 ident: ref5 publication-title: The Photographer's Eye Composition and Design for Better Digital Photos doi: 10.4324/9780080556161 – year: 1998 ident: ref6 publication-title: Short Course in Photography – year: 1995 ident: ref47 article-title: Orientation histogram for hand gesture recognition publication-title: Proc Int Workshop Automatic Face and Gesture Recognition – ident: ref2 doi: 10.1002/col.20321 – ident: ref26 doi: 10.1109/83.841940 – year: 2006 ident: ref7 article-title: The design of high-level features for photo quality assessment publication-title: Proc IEEE Int Conf Computer Vision and Pattern Recognition – ident: ref35 doi: 10.1109/CVPR.2011.5995467 – ident: ref38 doi: 10.1145/1179352.1141933 – year: 2011 ident: ref16 article-title: Content-based photo quality assessment publication-title: Proc Int Conf Comput Vision – ident: ref36 doi: 10.1109/ICIP.2012.6467496 – ident: ref1 doi: 10.1002/col.20294 – year: 1995 ident: ref18 publication-title: Infrared Photography Handbook |
| SSID | ssj0014507 |
| Score | 2.5308664 |
| Snippet | Automatically assessing photo quality from the perspective of visual aesthetics is of great interest in high-level vision research and has drawn much attention... |
| SourceID | pascalfrancis crossref ieee |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 1930 |
| SubjectTerms | Applied sciences Benchmark testing Clarity contrast composition geometry Computer science; control theory; systems content-based dark channel Data processing. List processing. Character string processing Exact sciences and technology Feature extraction Geometry hue composition Information systems. Data bases Memory organisation. Data processing photo quality assessment Quality assessment scene composition Software Training Visualization |
| Title | Content-Based Photo Quality Assessment |
| URI | https://ieeexplore.ieee.org/document/6544270 |
| Volume | 15 |
| WOSCitedRecordID | wos000327393900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0077 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014507 issn: 1520-9210 databaseCode: RIE dateStart: 19990101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1q8aAHq61i_Sg5iCCYNvuRbPaoYvHS0kOF3sJmd4OCJNKmgv_e3U0aK4jgLZCdEN5umHmZmTcAV6myuRlDUzFKlU8zgXwRZLEvFc4iqbkikXLDJth0Gi8WfNaC26YXRmvtis_00F66XL4q5Nr-KhtFIaWYGYK-w1hU9Wo1GQMautZo444Cnxses0lJBnw0n0xsDRcZmlCDx07l9dsFuZkqtiJSrAwoWTXNYsvFjDv_e7lDOKhDSe-u2vsjaOm8C53NmAav_mq7sL-lOdiDa6dHlZf-vfFfypu9FGXhVUoan95do9N5DM_jx_nDk18PS_Cl8dilz7gUSOhQMY05lThTQZQaemLgxhqRjFFFNItDRTiSKIxTyQWhItIp00hRRk6gnRe5PgUPR7EINOKKEUmFxEJmIrTUydjEAcn6MNrgl8haSdwOtHhLHKMIeGIQTyziSY14H24ai_dKReOPtT0LbrOuxrUPgx9b1NzHsQlTOONnv9udw559elWBcgHtcrnWl7ArP8rX1XLgztAXlHLDig |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7GFNQHp5vi_DH7IIJgtzZJm-ZximPiNvYwYW8lTVIUZJOtE_zvTdKuThDBt0JztHxJubve3fcBXCXS1GZ0mor8RLok5b7LvTRyhURpKBSTOJRWbIKORtF0ysYVuC1nYZRStvlMtc2lreXLuViZX2WdMCAEUZ2gbxnlrGJaq6wZkMAOR2uH5LlMZzLroqTHOpPh0HRx4bYONlhkeV6_nZBVVTE9kXypYUlzPYsNJ9Or_e_1DmC_CCadbr77h1BRszrU1kINTvHd1mFvg3WwAdeWkWqWuXfag0ln_DLP5k7OpfHpdEumziN47j1M7vtuIZfgCu2zM5cywX2uAkkVYkSgVHphohMUDThSPk4pkVjRKJCY-cIPokQwjgkPVUKVLwnFx1CdzWfqBBwURtxTPpMUC8IF4iLlgUmetE3k4bQJnTV-sSi4xI2kxVtscwqPxRrx2CAeF4g34aa0eM95NP5Y2zDglusKXJvQ-rFF5X0U6UCFUXb6u90l7PQnw0E8eBw9ncGueVLej3IO1WyxUhewLT6y1-WiZc_TF_JDxtM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content-Based+Photo+Quality+Assessment&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Tang%2C+Xiaoou&rft.au=Luo%2C+Wei&rft.au=Wang%2C+Xiaogang&rft.date=2013-12-01&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=15&rft.issue=8&rft.spage=1930&rft.epage=1943&rft_id=info:doi/10.1109%2FTMM.2013.2269899&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2013_2269899 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |