Content-Based Photo Quality Assessment

Automatically assessing photo quality from the perspective of visual aesthetics is of great interest in high-level vision research and has drawn much attention in recent years. In this paper, we propose content-based photo quality assessment using both regional and global features. Under this framew...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia Jg. 15; H. 8; S. 1930 - 1943
Hauptverfasser: Tang, Xiaoou, Luo, Wei, Wang, Xiaogang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.12.2013
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:1520-9210, 1941-0077
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Automatically assessing photo quality from the perspective of visual aesthetics is of great interest in high-level vision research and has drawn much attention in recent years. In this paper, we propose content-based photo quality assessment using both regional and global features. Under this framework, subject areas, which draw the most attentions of human eyes, are first extracted. Then regional features extracted from both subject areas and background regions are combined with global features to assess photo quality. Since professional photographers adopt different photographic techniques and have different aesthetic criteria in mind when taking different types of photos (e.g., landscape versus portrait), we propose to segment subject areas and extract visual features in different ways according to the variety of photo content. We divide the photos into seven categories based on their visual content and develop a set of new subject area extraction methods and new visual features specially designed for different categories. The effectiveness of this framework is supported by extensive experimental comparisons of existing photo quality assessment approaches as well as our new features on different categories of photos. In addition, we propose an approach of online training an adaptive classifier to combine the proposed features according to the visual content of a test photo without knowing its category. Another contribution of this work is to construct a large and diversified benchmark dataset for the research of photo quality assessment. It includes 17,673 photos with manually labeled ground truth. This new benchmark dataset can be down loaded at http://mmlab.ie.cuhk.edu.hk/CUHKPQ/Dataset.htm.
AbstractList Automatically assessing photo quality from the perspective of visual aesthetics is of great interest in high-level vision research and has drawn much attention in recent years. In this paper, we propose content-based photo quality assessment using both regional and global features. Under this framework, subject areas, which draw the most attentions of human eyes, are first extracted. Then regional features extracted from both subject areas and background regions are combined with global features to assess photo quality. Since professional photographers adopt different photographic techniques and have different aesthetic criteria in mind when taking different types of photos (e.g., landscape versus portrait), we propose to segment subject areas and extract visual features in different ways according to the variety of photo content. We divide the photos into seven categories based on their visual content and develop a set of new subject area extraction methods and new visual features specially designed for different categories. The effectiveness of this framework is supported by extensive experimental comparisons of existing photo quality assessment approaches as well as our new features on different categories of photos. In addition, we propose an approach of online training an adaptive classifier to combine the proposed features according to the visual content of a test photo without knowing its category. Another contribution of this work is to construct a large and diversified benchmark dataset for the research of photo quality assessment. It includes 17,673 photos with manually labeled ground truth. This new benchmark dataset can be down loaded at http://mmlab.ie.cuhk.edu.hk/CUHKPQ/Dataset.htm.
Author Luo, Wei
Wang, Xiaogang
Tang, Xiaoou
Author_xml – sequence: 1
  givenname: Xiaoou
  surname: Tang
  fullname: Tang, Xiaoou
  email: xtang@ie.cuhk.edu.hk
  organization: Department of Information Engineering, Chinese University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Wei
  surname: Luo
  fullname: Luo, Wei
  email: awesomekeane@gmail.com
  organization: Department of Information Engineering, Chinese University of Hong Kong
– sequence: 3
  givenname: Xiaogang
  surname: Wang
  fullname: Wang, Xiaogang
  email: xgwang@ee.cuhk.edu.hk
  organization: Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28021979$$DView record in Pascal Francis
BookMark eNp9kE1Lw0AQhhepYFu9C1560VvqzO4mmznW4he0qFDPYbs7wUialOx66L83paUHD55mYN5nhnlGYtC0DQtxjTBFBLpfLZdTCaimUmaUE52JIZLGBMCYQd-nEhKSCBdiFMI3AOoUzFDczdsmchOTBxvYT96_2thOPn5sXcXdZBYCh7Dpx5fivLR14KtjHYvPp8fV_CVZvD2_zmeLxElSMTHkLFpOvWFJ2snSQ7amDJi8ZFSl0V6xyVOvCB2m-dqRVdpmvDaMXhs1FreHvVsbnK3LzjauCsW2qza22xUyB4lkqM_BIee6NoSOy1MEodj7KHofxd5HcfTRI9kfxFXRxqr_v7NV_R94cwArZj7dyVKtpQH1C0OBbf0
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3520616
crossref_primary_10_1371_journal_pone_0331897
crossref_primary_10_1109_TIP_2020_2968285
crossref_primary_10_1007_s11263_015_0801_5
crossref_primary_10_1007_s00138_024_01574_8
crossref_primary_10_1016_j_procs_2024_09_194
crossref_primary_10_1109_TMM_2022_3144890
crossref_primary_10_3390_electronics12112526
crossref_primary_10_1016_j_neucom_2015_05_095
crossref_primary_10_1016_j_sigpro_2015_02_017
crossref_primary_10_3390_jimaging7010003
crossref_primary_10_1109_TCYB_2015_2493558
crossref_primary_10_1016_j_ipm_2023_103368
crossref_primary_10_1109_TCSVT_2023_3303933
crossref_primary_10_1109_ACCESS_2021_3083075
crossref_primary_10_1109_TIM_2022_3154808
crossref_primary_10_1002_int_23017
crossref_primary_10_1109_TMM_2016_2538722
crossref_primary_10_1109_TMM_2024_3521765
crossref_primary_10_1016_j_neucom_2020_10_046
crossref_primary_10_1109_MSP_2017_2696576
crossref_primary_10_3390_jimaging7020029
crossref_primary_10_1109_TMM_2015_2479916
crossref_primary_10_1109_TMM_2017_2687759
crossref_primary_10_1109_ACCESS_2018_2885818
crossref_primary_10_1109_TPAMI_2022_3232328
crossref_primary_10_1631_jzus_C1400102
crossref_primary_10_1109_TCSVT_2016_2555658
crossref_primary_10_1109_TFUZZ_2025_3566145
crossref_primary_10_1145_3716820
crossref_primary_10_1109_ACCESS_2020_3014458
crossref_primary_10_1109_TMM_2017_2780762
crossref_primary_10_1109_TCYB_2020_2984670
crossref_primary_10_1007_s11042_021_10766_7
crossref_primary_10_1016_j_patrec_2022_02_008
crossref_primary_10_1145_3588317
crossref_primary_10_1109_TPAMI_2018_2889948
crossref_primary_10_1016_j_neucom_2018_05_071
crossref_primary_10_1109_TMM_2017_2689923
crossref_primary_10_1109_TMM_2018_2875357
crossref_primary_10_1109_TMM_2021_3130752
crossref_primary_10_1016_j_image_2018_05_006
crossref_primary_10_1109_TMM_2020_2985526
crossref_primary_10_1109_TVCG_2017_2764895
crossref_primary_10_1016_j_neucom_2023_03_058
crossref_primary_10_1016_j_ins_2019_10_011
crossref_primary_10_1016_j_image_2015_04_002
crossref_primary_10_1109_TIP_2018_2845100
crossref_primary_10_1109_TCSVT_2023_3272984
crossref_primary_10_1016_j_image_2015_04_003
crossref_primary_10_1016_j_patcog_2023_110227
crossref_primary_10_1109_TMM_2016_2559942
crossref_primary_10_1007_s11042_021_11557_w
crossref_primary_10_1016_j_patrec_2018_05_016
crossref_primary_10_1109_TIE_2014_2336639
crossref_primary_10_1016_j_image_2018_05_010
crossref_primary_10_1109_TCSVT_2023_3249185
crossref_primary_10_1109_TNNLS_2019_2962548
crossref_primary_10_1109_TNNLS_2022_3151787
crossref_primary_10_1109_TMM_2019_2911428
crossref_primary_10_1049_iet_cvi_2019_0361
crossref_primary_10_1109_ACCESS_2020_2983725
crossref_primary_10_1016_j_jvcir_2025_104570
crossref_primary_10_1109_TIP_2023_3308852
crossref_primary_10_1109_TMM_2020_3029882
crossref_primary_10_1109_TMM_2024_3389452
crossref_primary_10_1007_s11432_018_9567_8
crossref_primary_10_1007_s11042_024_18157_4
crossref_primary_10_1109_TMM_2017_2652069
crossref_primary_10_1049_iet_cvi_2018_5249
crossref_primary_10_1109_TMM_2019_2957986
crossref_primary_10_3390_s21041307
crossref_primary_10_3390_electronics11193248
crossref_primary_10_1109_ACCESS_2020_3044573
crossref_primary_10_1016_j_image_2019_05_021
crossref_primary_10_1007_s00521_019_04065_4
crossref_primary_10_1145_3333612
crossref_primary_10_1109_TIM_2024_3365174
crossref_primary_10_3390_inventions4030034
crossref_primary_10_1109_TIP_2019_2897940
crossref_primary_10_1016_j_asoc_2021_107116
crossref_primary_10_1155_2021_8619449
crossref_primary_10_1007_s11042_023_15791_2
crossref_primary_10_1016_j_patcog_2024_110584
crossref_primary_10_3390_e23020153
crossref_primary_10_1016_j_neucom_2014_06_029
crossref_primary_10_1371_journal_pone_0269152
crossref_primary_10_1016_j_eswa_2021_115852
crossref_primary_10_1080_10447318_2025_2518333
crossref_primary_10_1109_TIP_2017_2651399
crossref_primary_10_1109_TMM_2023_3313507
crossref_primary_10_1016_j_neucom_2016_03_035
crossref_primary_10_1016_j_cola_2019_04_005
crossref_primary_10_1155_2019_4659809
crossref_primary_10_1080_23270012_2021_1998801
crossref_primary_10_1109_TMM_2023_3290479
crossref_primary_10_1109_TNNLS_2017_2649101
crossref_primary_10_1016_j_image_2015_07_006
crossref_primary_10_1109_TETCI_2018_2865215
crossref_primary_10_1145_3115433
crossref_primary_10_1016_j_sigpro_2014_12_008
crossref_primary_10_1145_3414843
crossref_primary_10_3390_jimaging8060166
crossref_primary_10_1631_FITEE_1900398
crossref_primary_10_3233_JIFS_210026
crossref_primary_10_3390_jimaging8060173
crossref_primary_10_1134_S1054661820040082
crossref_primary_10_3390_electronics14071425
crossref_primary_10_1016_j_image_2016_05_004
crossref_primary_10_1007_s11042_022_13338_5
crossref_primary_10_1016_j_image_2016_05_009
crossref_primary_10_1016_j_jvcir_2023_104044
crossref_primary_10_1155_2024_8223586
crossref_primary_10_1016_j_patcog_2025_112401
crossref_primary_10_1109_TAFFC_2018_2809752
crossref_primary_10_1109_TMM_2018_2794262
crossref_primary_10_3390_math12071005
crossref_primary_10_1016_j_imavis_2022_104505
crossref_primary_10_1109_TBDATA_2019_2895605
crossref_primary_10_1016_j_neucom_2020_10_065
crossref_primary_10_1080_09540091_2022_2147902
crossref_primary_10_1109_TMM_2021_3123468
crossref_primary_10_1109_TMM_2016_2644866
crossref_primary_10_1145_3588764
crossref_primary_10_1109_ACCESS_2022_3209196
crossref_primary_10_3390_app13179763
crossref_primary_10_1109_TIP_2015_2439035
crossref_primary_10_1109_TCDS_2020_3036690
crossref_primary_10_1109_ACCESS_2020_3039715
Cites_doi 10.1109/ICCV.2007.4409043
10.1109/CVPR.2005.177
10.1117/12.201231
10.1007/s11263-009-0275-4
10.1109/ICCV.2003.1238308
10.1109/ICCV.2003.1238354
10.1109/34.730558
10.1109/ICIP.2008.4711702
10.1109/CVPR.2011.5995721
10.1109/CVPR.2012.6247795
10.1109/MMMC.2005.52
10.1145/1873951.1873990
10.1109/TIP.2005.854492
10.1109/CVPR.2011.5995399
10.1109/ISIC.2012.6449719
10.1145/1631272.1631351
10.1145/1631272.1631384
10.1109/CVPR.2011.5995467
10.1109/TPAMI.2011.242
10.1145/1873951.1873965
10.1007/s11263-006-0031-y
10.1109/FUZZ.2002.1005020
10.1145/1399504.1360637
10.1109/TCSVT.2012.2186745
10.1109/CVPR.2011.5995539
10.1109/TPAMI.2010.168
10.1145/1459359.1459471
10.4324/9780080556161
10.1002/col.20321
10.1109/83.841940
10.1145/1179352.1141933
10.1109/ICIP.2012.6467496
10.1002/col.20294
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
DOI 10.1109/TMM.2013.2269899
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0077
EndPage 1943
ExternalDocumentID 28021979
10_1109_TMM_2013_2269899
6544270
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
ABTAH
IQODW
ID FETCH-LOGICAL-c293t-79ca1ae5d7e294c2fd06b960e9d2e13f74d3e785d391c158bc9a34a6eb7e1d473
IEDL.DBID RIE
ISICitedReferencesCount 201
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327393900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-9210
IngestDate Wed Apr 02 07:24:04 EDT 2025
Sat Nov 29 08:00:49 EST 2025
Tue Nov 18 22:11:20 EST 2025
Wed Aug 27 02:03:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Computer vision
Landscape
Internet protocol
hue composition
Very large databases
Online algorithm
Ground truth
scene composition
Adaptive method
Visual perception
content-based
dark channel
Classification
Quality control
Content-based retrieval
Clarity contrast
Aesthetics
photo quality assessment
Pattern extraction
composition geometry
Visual control
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-79ca1ae5d7e294c2fd06b960e9d2e13f74d3e785d391c158bc9a34a6eb7e1d473
PageCount 14
ParticipantIDs crossref_primary_10_1109_TMM_2013_2269899
pascalfrancis_primary_28021979
ieee_primary_6544270
crossref_citationtrail_10_1109_TMM_2013_2269899
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref15
ref14
ref53
ref52
ref11
everingham (ref21) 0
ref54
ref10
wong (ref12) 2009
london (ref6) 1998
freeman (ref4) 2006
levin (ref41) 2007
grey (ref19) 2004
ref50
muja (ref51) 2009
ref48
ref42
ref44
ref43
ref49
luo (ref16) 2011
ref40
itti (ref39) 2002; 20
ref35
ref34
ref37
ref36
jin (ref13) 2010
ref30
ref33
ref32
ke (ref7) 2006
ref2
ref1
ref38
freeman (ref47) 1995
daly (ref24) 1993
freeman (ref5) 2007
carucci (ref17) 1995
white (ref18) 1995
datta (ref8) 2006
he (ref45) 2009
luo (ref9) 2008
ref23
ref26
ref25
ref22
he (ref46) 2011; 33
ref28
ref27
ref29
bosch (ref20) 2006
mante (ref3) 1972
tong (ref31) 2004
References_xml – ident: ref43
  doi: 10.1109/ICCV.2007.4409043
– year: 1995
  ident: ref17
  publication-title: Capturing the Night with Your Camera How to Take Great Photographs After Dark
– ident: ref44
  doi: 10.1109/CVPR.2005.177
– ident: ref25
  doi: 10.1117/12.201231
– year: 2010
  ident: ref13
  article-title: Learning artistic lighting template from portrait photographs
  publication-title: Proc Eur Conf Computer Vision
– year: 2007
  ident: ref41
  article-title: Blind motion deblurring using image statistics
  publication-title: Proc Adv Neur Inf Process Syst
– ident: ref23
  doi: 10.1007/s11263-009-0275-4
– year: 2004
  ident: ref19
  publication-title: Master Lighting Guide for Portrait Photographers
– ident: ref42
  doi: 10.1109/ICCV.2003.1238308
– ident: ref48
  doi: 10.1109/ICCV.2003.1238354
– year: 2004
  ident: ref31
  article-title: Classification of digital photos taken by photographers or home users
  publication-title: Proc Pacific Rim Conf Multimedia
– start-page: 179
  year: 1993
  ident: ref24
  publication-title: Digital Images and Human Vision
– year: 1972
  ident: ref3
  publication-title: Color Design in Photography
– volume: 20
  start-page: 1254
  year: 2002
  ident: ref39
  article-title: A model of saliency-based visual attention for rapid scene analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.730558
– ident: ref10
  doi: 10.1109/ICIP.2008.4711702
– ident: ref53
  doi: 10.1109/CVPR.2011.5995721
– ident: ref28
  doi: 10.1109/CVPR.2012.6247795
– ident: ref30
  doi: 10.1109/MMMC.2005.52
– ident: ref14
  doi: 10.1145/1873951.1873990
– ident: ref29
  doi: 10.1109/TIP.2005.854492
– ident: ref49
  doi: 10.1109/CVPR.2011.5995399
– year: 2009
  ident: ref45
  article-title: Single image haze removal using dark channel prior
  publication-title: Proc IEEE Int Conf Comput Vision and Pattern Recognition
– ident: ref34
  doi: 10.1109/ISIC.2012.6449719
– ident: ref11
  doi: 10.1145/1631272.1631351
– ident: ref33
  doi: 10.1145/1631272.1631384
– ident: ref15
  doi: 10.1109/CVPR.2011.5995467
– ident: ref50
  doi: 10.1109/TPAMI.2011.242
– year: 2009
  ident: ref51
  article-title: Fast approximate nearest neighbors with automatic algorithm configuration
  publication-title: Proc VISAPP Int Conf Comput Vision Theory and Applicat
– ident: ref22
  doi: 10.1145/1873951.1873965
– ident: ref40
  doi: 10.1007/s11263-006-0031-y
– ident: ref37
  doi: 10.1109/FUZZ.2002.1005020
– ident: ref54
  doi: 10.1145/1399504.1360637
– year: 2006
  ident: ref8
  article-title: Studying aesthetics in photographic images using a computational approach
  publication-title: Proc Eur Conf Comput Vision
– ident: ref27
  doi: 10.1109/TCSVT.2012.2186745
– year: 0
  ident: ref21
  publication-title: The PASCAL Visual Object Classes Challenge 2011 (VOC2011) Results
– year: 2009
  ident: ref12
  article-title: Saliency-enhanced image aesthetics class prediction
  publication-title: Proc IEEE Int Conf Image Processing
– ident: ref32
  doi: 10.1109/CVPR.2011.5995539
– year: 2008
  ident: ref9
  article-title: Photo and video quality evaluation: Focusing on the subject
  publication-title: Proc Eur Conf Computer Vision
– year: 2006
  ident: ref20
  article-title: Scene classification via plsa
  publication-title: Proc Eur Conf Comput Vision
– volume: 33
  start-page: 2341
  year: 2011
  ident: ref46
  article-title: Single image haze removal using dark channel prior
  publication-title: IEEE Trans Pattern Analysis Mach Intell
  doi: 10.1109/TPAMI.2010.168
– ident: ref52
  doi: 10.1145/1459359.1459471
– year: 2006
  ident: ref4
  publication-title: The Complete Guide to Light & Lighting in Digital Photography
– year: 2007
  ident: ref5
  publication-title: The Photographer's Eye Composition and Design for Better Digital Photos
  doi: 10.4324/9780080556161
– year: 1998
  ident: ref6
  publication-title: Short Course in Photography
– year: 1995
  ident: ref47
  article-title: Orientation histogram for hand gesture recognition
  publication-title: Proc Int Workshop Automatic Face and Gesture Recognition
– ident: ref2
  doi: 10.1002/col.20321
– ident: ref26
  doi: 10.1109/83.841940
– year: 2006
  ident: ref7
  article-title: The design of high-level features for photo quality assessment
  publication-title: Proc IEEE Int Conf Computer Vision and Pattern Recognition
– ident: ref35
  doi: 10.1109/CVPR.2011.5995467
– ident: ref38
  doi: 10.1145/1179352.1141933
– year: 2011
  ident: ref16
  article-title: Content-based photo quality assessment
  publication-title: Proc Int Conf Comput Vision
– ident: ref36
  doi: 10.1109/ICIP.2012.6467496
– ident: ref1
  doi: 10.1002/col.20294
– year: 1995
  ident: ref18
  publication-title: Infrared Photography Handbook
SSID ssj0014507
Score 2.5308664
Snippet Automatically assessing photo quality from the perspective of visual aesthetics is of great interest in high-level vision research and has drawn much attention...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 1930
SubjectTerms Applied sciences
Benchmark testing
Clarity contrast
composition geometry
Computer science; control theory; systems
content-based
dark channel
Data processing. List processing. Character string processing
Exact sciences and technology
Feature extraction
Geometry
hue composition
Information systems. Data bases
Memory organisation. Data processing
photo quality assessment
Quality assessment
scene composition
Software
Training
Visualization
Title Content-Based Photo Quality Assessment
URI https://ieeexplore.ieee.org/document/6544270
Volume 15
WOSCitedRecordID wos000327393900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014507
  issn: 1520-9210
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1q8aAHq61i_Sg5iCCYNvuRbPaoYvHS0kOF3sJmd4OCJNKmgv_e3U0aK4jgLZCdEN5umHmZmTcAV6myuRlDUzFKlU8zgXwRZLEvFc4iqbkikXLDJth0Gi8WfNaC26YXRmvtis_00F66XL4q5Nr-KhtFIaWYGYK-w1hU9Wo1GQMautZo444Cnxses0lJBnw0n0xsDRcZmlCDx07l9dsFuZkqtiJSrAwoWTXNYsvFjDv_e7lDOKhDSe-u2vsjaOm8C53NmAav_mq7sL-lOdiDa6dHlZf-vfFfypu9FGXhVUoan95do9N5DM_jx_nDk18PS_Cl8dilz7gUSOhQMY05lThTQZQaemLgxhqRjFFFNItDRTiSKIxTyQWhItIp00hRRk6gnRe5PgUPR7EINOKKEUmFxEJmIrTUydjEAcn6MNrgl8haSdwOtHhLHKMIeGIQTyziSY14H24ai_dKReOPtT0LbrOuxrUPgx9b1NzHsQlTOONnv9udw559elWBcgHtcrnWl7ArP8rX1XLgztAXlHLDig
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7GFNQHp5vi_DH7IIJgtzZJm-ZximPiNvYwYW8lTVIUZJOtE_zvTdKuThDBt0JztHxJubve3fcBXCXS1GZ0mor8RLok5b7LvTRyhURpKBSTOJRWbIKORtF0ysYVuC1nYZRStvlMtc2lreXLuViZX2WdMCAEUZ2gbxnlrGJaq6wZkMAOR2uH5LlMZzLroqTHOpPh0HRx4bYONlhkeV6_nZBVVTE9kXypYUlzPYsNJ9Or_e_1DmC_CCadbr77h1BRszrU1kINTvHd1mFvg3WwAdeWkWqWuXfag0ln_DLP5k7OpfHpdEumziN47j1M7vtuIZfgCu2zM5cywX2uAkkVYkSgVHphohMUDThSPk4pkVjRKJCY-cIPokQwjgkPVUKVLwnFx1CdzWfqBBwURtxTPpMUC8IF4iLlgUmetE3k4bQJnTV-sSi4xI2kxVtscwqPxRrx2CAeF4g34aa0eM95NP5Y2zDglusKXJvQ-rFF5X0U6UCFUXb6u90l7PQnw0E8eBw9ncGueVLej3IO1WyxUhewLT6y1-WiZc_TF_JDxtM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content-Based+Photo+Quality+Assessment&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Tang%2C+Xiaoou&rft.au=Luo%2C+Wei&rft.au=Wang%2C+Xiaogang&rft.date=2013-12-01&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=15&rft.issue=8&rft.spage=1930&rft.epage=1943&rft_id=info:doi/10.1109%2FTMM.2013.2269899&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2013_2269899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon