RNN-DBSCAN: A Density-Based Clustering Algorithm Using Reverse Nearest Neighbor Density Estimates
A new density-based clustering algorithm, RNN-DBSCAN, is presented which uses reverse nearest neighbor counts as an estimate of observation density. Clustering is performed using a DBSCAN-like approach based on k nearest neighbor graph traversals through dense observations. RNN-DBSCAN is preferable...
Uloženo v:
| Vydáno v: | IEEE transactions on knowledge and data engineering Ročník 30; číslo 6; s. 1109 - 1121 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A new density-based clustering algorithm, RNN-DBSCAN, is presented which uses reverse nearest neighbor counts as an estimate of observation density. Clustering is performed using a DBSCAN-like approach based on k nearest neighbor graph traversals through dense observations. RNN-DBSCAN is preferable to the popular density-based clustering algorithm DBSCAN in two aspects. First, problem complexity is reduced to the use of a single parameter (choice of k nearest neighbors), and second, an improved ability for handling large variations in cluster density (heterogeneous density). The superiority of RNN-DBSCAN is demonstrated on several artificial and real-world datasets with respect to prior work on reverse nearest neighbor based clustering approaches (RECORD, IS-DBSCAN, and ISB-DBSCAN) along with DBSCAN and OPTICS. Each of these clustering approaches is described by a common graph-based interpretation wherein clusters of dense observations are defined as connected components, along with a discussion on their computational complexity. Heuristics for RNN-DBSCAN parameter selection are presented, and the effects of k on RNN-DBSCAN clusterings discussed. Additionally, with respect to scalability, an approximate version of RNN-DBSCAN is presented leveraging an existing approximate k nearest neighbor technique. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1041-4347 1558-2191 |
| DOI: | 10.1109/TKDE.2017.2787640 |