RNN-DBSCAN: A Density-Based Clustering Algorithm Using Reverse Nearest Neighbor Density Estimates
A new density-based clustering algorithm, RNN-DBSCAN, is presented which uses reverse nearest neighbor counts as an estimate of observation density. Clustering is performed using a DBSCAN-like approach based on k nearest neighbor graph traversals through dense observations. RNN-DBSCAN is preferable...
Saved in:
| Published in: | IEEE transactions on knowledge and data engineering Vol. 30; no. 6; pp. 1109 - 1121 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A new density-based clustering algorithm, RNN-DBSCAN, is presented which uses reverse nearest neighbor counts as an estimate of observation density. Clustering is performed using a DBSCAN-like approach based on k nearest neighbor graph traversals through dense observations. RNN-DBSCAN is preferable to the popular density-based clustering algorithm DBSCAN in two aspects. First, problem complexity is reduced to the use of a single parameter (choice of k nearest neighbors), and second, an improved ability for handling large variations in cluster density (heterogeneous density). The superiority of RNN-DBSCAN is demonstrated on several artificial and real-world datasets with respect to prior work on reverse nearest neighbor based clustering approaches (RECORD, IS-DBSCAN, and ISB-DBSCAN) along with DBSCAN and OPTICS. Each of these clustering approaches is described by a common graph-based interpretation wherein clusters of dense observations are defined as connected components, along with a discussion on their computational complexity. Heuristics for RNN-DBSCAN parameter selection are presented, and the effects of k on RNN-DBSCAN clusterings discussed. Additionally, with respect to scalability, an approximate version of RNN-DBSCAN is presented leveraging an existing approximate k nearest neighbor technique. |
|---|---|
| AbstractList | A new density-based clustering algorithm, RNN-DBSCAN, is presented which uses reverse nearest neighbor counts as an estimate of observation density. Clustering is performed using a DBSCAN-like approach based on k nearest neighbor graph traversals through dense observations. RNN-DBSCAN is preferable to the popular density-based clustering algorithm DBSCAN in two aspects. First, problem complexity is reduced to the use of a single parameter (choice of k nearest neighbors), and second, an improved ability for handling large variations in cluster density (heterogeneous density). The superiority of RNN-DBSCAN is demonstrated on several artificial and real-world datasets with respect to prior work on reverse nearest neighbor based clustering approaches (RECORD, IS-DBSCAN, and ISB-DBSCAN) along with DBSCAN and OPTICS. Each of these clustering approaches is described by a common graph-based interpretation wherein clusters of dense observations are defined as connected components, along with a discussion on their computational complexity. Heuristics for RNN-DBSCAN parameter selection are presented, and the effects of k on RNN-DBSCAN clusterings discussed. Additionally, with respect to scalability, an approximate version of RNN-DBSCAN is presented leveraging an existing approximate k nearest neighbor technique. |
| Author | Cios, Krzysztof Bryant, Avory |
| Author_xml | – sequence: 1 givenname: Avory orcidid: 0000-0001-9653-6704 surname: Bryant fullname: Bryant, Avory email: bryantac@vcu.edu organization: Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284 – sequence: 2 givenname: Krzysztof surname: Cios fullname: Cios, Krzysztof email: kcios@vcu.edu organization: Virginia Commonwealth University, Richmond, VA23284 |
| BookMark | eNp9UE1PwjAYbgwmAvoDjJclnodt162bt_HhRyQzQTgv3foOSsaGbTHh39sF9ODB0_O-yfOVZ4B6TdsAQrcEjwjBycPybTobUUz4iPKYRwxfoD4Jw9inJCE9d2NGfBYwfoUGxmwxxjGPSR-JRZb50_HHJM0evdSbQmOUPfpjYUB6k_pgLGjVrL20Xrda2c3OW5nuX8AXaANeBkKDsQ7VelO0-sfBmxmrdsKCuUaXlagN3JxxiFZPs-XkxZ-_P79O0rlf0iSwPk8YpaHkACHnshBRQgQuhAhoQXFS0aIMHU9CxEgspeRBTEOOAyxlGVcScDBE9yffvW4_D65Tvm0PunGROSWchQGLKHEscmKVujVGQ5XvteupjznBebdk3i2Zd0vm5yWdhv_RlMoKq9rGaqHqf5V3J6UCgN-kmDIccRZ8AywugdM |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_3390_sym12050747 crossref_primary_10_1016_j_ins_2023_119004 crossref_primary_10_1016_j_patcog_2019_107063 crossref_primary_10_1016_j_patcog_2021_108177 crossref_primary_10_1007_s12652_020_01741_5 crossref_primary_10_3390_math12213367 crossref_primary_10_1016_j_eswa_2019_04_011 crossref_primary_10_1016_j_neucom_2024_127329 crossref_primary_10_1016_j_patcog_2024_110932 crossref_primary_10_1007_s11042_020_09718_4 crossref_primary_10_1016_j_apor_2023_103644 crossref_primary_10_1016_j_knosys_2025_113498 crossref_primary_10_1109_TNNLS_2023_3248064 crossref_primary_10_1016_j_eswa_2025_127252 crossref_primary_10_1016_j_knosys_2025_113250 crossref_primary_10_1109_ACCESS_2022_3164192 crossref_primary_10_1007_s10115_024_02272_7 crossref_primary_10_1016_j_knosys_2021_107256 crossref_primary_10_1109_ACCESS_2024_3377656 crossref_primary_10_1109_ACCESS_2019_2963471 crossref_primary_10_1111_exsy_12615 crossref_primary_10_3390_app15073612 crossref_primary_10_1080_13658816_2024_2399144 crossref_primary_10_1109_TKDE_2023_3312760 crossref_primary_10_1016_j_knosys_2022_108288 crossref_primary_10_1007_s13042_024_02104_8 crossref_primary_10_1016_j_is_2021_101871 crossref_primary_10_1109_ACCESS_2022_3198992 crossref_primary_10_1007_s13131_020_1638_5 crossref_primary_10_1016_j_eswa_2021_116410 crossref_primary_10_1016_j_neucom_2020_02_058 crossref_primary_10_1016_j_neucom_2023_126633 crossref_primary_10_1109_TNNLS_2022_3146136 crossref_primary_10_3390_ijgi9050311 crossref_primary_10_1016_j_eswa_2023_120633 crossref_primary_10_1109_TAES_2023_3286830 crossref_primary_10_1016_j_ins_2025_122414 crossref_primary_10_1016_j_patcog_2018_10_007 crossref_primary_10_1016_j_compbiomed_2022_106184 crossref_primary_10_1016_j_geits_2022_100009 crossref_primary_10_1016_j_eswa_2025_128197 crossref_primary_10_1016_j_eswa_2023_120195 crossref_primary_10_1016_j_engappai_2024_109193 crossref_primary_10_1007_s00500_025_10405_5 crossref_primary_10_1007_s11227_022_04634_w crossref_primary_10_1016_j_eswa_2024_125934 crossref_primary_10_1109_ACCESS_2018_2890339 crossref_primary_10_3390_math13142272 crossref_primary_10_1177_18761364251359900 crossref_primary_10_3390_pr7090550 crossref_primary_10_1016_j_neucom_2020_03_125 crossref_primary_10_1007_s11063_022_10763_3 crossref_primary_10_1016_j_eswa_2021_115763 crossref_primary_10_1016_j_ins_2020_05_073 crossref_primary_10_1016_j_patcog_2024_110635 crossref_primary_10_1002_adfm_202309108 crossref_primary_10_1109_JSTARS_2021_3078452 crossref_primary_10_1016_j_patcog_2020_107624 crossref_primary_10_1007_s10766_024_00779_8 crossref_primary_10_1109_TFUZZ_2020_3041191 crossref_primary_10_1016_j_ins_2025_122445 crossref_primary_10_3390_a18050273 crossref_primary_10_3390_sym11121482 crossref_primary_10_1088_1742_6596_1570_1_012004 crossref_primary_10_1080_00949655_2022_2098298 crossref_primary_10_1016_j_ins_2023_119479 crossref_primary_10_1007_s11042_021_11171_w crossref_primary_10_1109_TCYB_2021_3081988 crossref_primary_10_1016_j_is_2022_102124 crossref_primary_10_1016_j_ifacol_2023_10_562 crossref_primary_10_1109_TCSS_2020_3003538 crossref_primary_10_1016_j_patrec_2019_09_013 crossref_primary_10_1007_s41019_024_00280_9 crossref_primary_10_1109_ACCESS_2020_2969440 crossref_primary_10_1177_16878132241254181 crossref_primary_10_1016_j_neucom_2021_07_074 crossref_primary_10_3390_ijerph20115943 crossref_primary_10_1007_s11063_023_11260_x crossref_primary_10_3233_IDA_216541 crossref_primary_10_1016_j_asoc_2023_110903 crossref_primary_10_1371_journal_pone_0331555 crossref_primary_10_3390_pr11082461 crossref_primary_10_1109_JIOT_2024_3506552 crossref_primary_10_1109_TAI_2023_3237648 crossref_primary_10_1016_j_ipm_2022_103059 crossref_primary_10_1016_j_eswa_2024_125714 crossref_primary_10_1016_j_jobe_2023_106112 crossref_primary_10_1007_s10489_022_03830_8 crossref_primary_10_1016_j_ijar_2023_109075 crossref_primary_10_1007_s11042_019_08009_x crossref_primary_10_1109_JSEN_2024_3403232 crossref_primary_10_1016_j_inffus_2024_102273 crossref_primary_10_1016_j_asoc_2024_111685 crossref_primary_10_1016_j_patcog_2020_107206 crossref_primary_10_1016_j_neunet_2022_07_025 crossref_primary_10_1007_s11042_021_11275_3 crossref_primary_10_3390_fi11090198 crossref_primary_10_1109_TSMC_2019_2956527 crossref_primary_10_3390_ijgi12080302 crossref_primary_10_3390_e25050782 crossref_primary_10_1016_j_ins_2025_121916 crossref_primary_10_1016_j_patcog_2025_111775 crossref_primary_10_1007_s10489_023_04543_2 crossref_primary_10_3390_s25082613 crossref_primary_10_3724_SP_J_1089_2022_18902 crossref_primary_10_1109_TWC_2025_3546457 crossref_primary_10_1002_int_22521 crossref_primary_10_1016_j_knosys_2021_107295 crossref_primary_10_1007_s11831_024_10173_9 crossref_primary_10_1016_j_vehcom_2020_100251 crossref_primary_10_1007_s00500_019_04448_8 crossref_primary_10_1109_ACCESS_2020_2987345 crossref_primary_10_1109_TKDE_2019_2903410 crossref_primary_10_1016_j_datak_2024_102345 crossref_primary_10_3233_IDA_192829 crossref_primary_10_1038_s41598_022_27074_1 crossref_primary_10_1109_ACCESS_2018_2883433 crossref_primary_10_1007_s13198_020_01009_3 crossref_primary_10_1016_j_ins_2024_120731 crossref_primary_10_1016_j_neucom_2023_02_035 crossref_primary_10_1109_ACCESS_2022_3228238 crossref_primary_10_1007_s10115_023_01960_0 crossref_primary_10_1109_ACCESS_2024_3457587 crossref_primary_10_1109_TIM_2022_3164167 crossref_primary_10_1109_JSEN_2024_3486550 crossref_primary_10_1109_TIM_2019_2919375 crossref_primary_10_3390_electronics12153213 crossref_primary_10_1016_j_ces_2020_115796 crossref_primary_10_1109_TKDE_2021_3138962 crossref_primary_10_3390_electronics8101094 crossref_primary_10_1049_ipr2_12390 crossref_primary_10_3389_frsen_2025_1553026 crossref_primary_10_1155_2021_5536579 crossref_primary_10_3390_s21051892 crossref_primary_10_1016_j_is_2022_102159 crossref_primary_10_3233_ICA_220682 crossref_primary_10_1108_IJESM_11_2019_0016 crossref_primary_10_1038_s44260_025_00030_6 crossref_primary_10_1016_j_comcom_2020_12_019 crossref_primary_10_1016_j_patrec_2019_08_009 crossref_primary_10_2478_amns_2025_0056 crossref_primary_10_1109_TCYB_2020_3035800 crossref_primary_10_1016_j_eswa_2024_125967 crossref_primary_10_1016_j_isprsjprs_2019_06_009 crossref_primary_10_1016_j_eswa_2022_119484 crossref_primary_10_1016_j_engappai_2024_108635 crossref_primary_10_1007_s44336_024_00008_3 crossref_primary_10_3934_aci_2024010 crossref_primary_10_1109_ACCESS_2024_3518497 crossref_primary_10_1145_3633783 crossref_primary_10_3233_JIFS_211922 crossref_primary_10_1007_s10586_022_03917_4 crossref_primary_10_1016_j_eswa_2022_118316 crossref_primary_10_1016_j_ins_2025_122471 crossref_primary_10_1007_s10844_021_00668_3 crossref_primary_10_1016_j_asoc_2024_111779 crossref_primary_10_1016_j_iswa_2022_200117 crossref_primary_10_1016_j_eswa_2023_120250 crossref_primary_10_3390_ijgi9110686 |
| Cites_doi | 10.1016/j.patrec.2011.02.001 10.1016/j.is.2012.09.001 10.1145/1281192.1281280 10.1109/ICDM.2006.9 10.1007/BF01908075 10.1145/361002.361007 10.1007/3-540-49257-7_15 10.1137/1.9781611972764.29 10.1145/3083897 10.1093/mnras/stw656 10.1145/93605.98741 10.1137/1.9781611973440.96 10.1145/304181.304187 10.1002/0471200611 10.1016/j.neucom.2015.05.109 10.1023/A:1009884809343 10.1145/1143844.1143857 10.1109/CVPR.2003.1211534 10.1109/ICPADS.2011.83 10.1145/2723372.2737792 10.1145/2503210.2503262 10.1145/276698.276876 10.14778/3021924.3021932 10.1145/1963405.1963487 10.1007/s10115-003-0086-9 10.1016/j.is.2006.10.006 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2017.2787640 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 1121 |
| ExternalDocumentID | 10_1109_TKDE_2017_2787640 8240674 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Naval Surface Warfare Center Dahlgren Division's In-house Laboratory Independent Research Program |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-794225d7ee577dba691a0baa32b209f2bc5293de6418ddd738257030ddc8fde03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 190 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431441200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Wed Nov 26 05:39:00 EST 2025 Sat Nov 29 04:46:43 EST 2025 Tue Nov 18 22:33:41 EST 2025 Wed Aug 27 02:25:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/USG.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-794225d7ee577dba691a0baa32b209f2bc5293de6418ddd738257030ddc8fde03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9653-6704 |
| PQID | 2174534621 |
| PQPubID | 85438 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TKDE_2017_2787640 crossref_citationtrail_10_1109_TKDE_2017_2787640 ieee_primary_8240674 proquest_journals_2174534621 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | goil (ref31) 1999 ref34 ref12 ref37 ertoz (ref35) 2002 ref14 ref30 ref11 ref32 ref10 lichman (ref17) 2013 ref2 campello (ref36) 2013 ref19 cassisi (ref13) 2011 ester (ref1) 1996 strehl (ref23) 2003; 3 ref24 gan (ref18) 1999 ref26 pedregosa (ref16) 2011; 12 ref25 ref20 (ref15) 2017 ref22 guidotti (ref33) 2015 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref27 doi: 10.1016/j.patrec.2011.02.001 – ident: ref3 doi: 10.1016/j.is.2012.09.001 – ident: ref37 doi: 10.1145/1281192.1281280 – ident: ref2 doi: 10.1109/ICDM.2006.9 – volume: 3 start-page: 583 year: 2003 ident: ref23 article-title: Cluster ensembles - a knowledge reuse framework for combining multiple partitions publication-title: J Mach Learn Res – start-page: 38:1 year: 2015 ident: ref33 article-title: Tosca: Two-steps clustering algorithm for personal locations detection publication-title: Proc SIGSPATIAL Int Conf Adv Geograph Inform Syst – start-page: 160 year: 2013 ident: ref36 publication-title: Density-Based Clustering Based on Hierarchical Density Estimates – ident: ref22 doi: 10.1007/BF01908075 – volume: 12 start-page: 2825 year: 2011 ident: ref16 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learning Res – ident: ref6 doi: 10.1145/361002.361007 – year: 1999 ident: ref18 – year: 2013 ident: ref17 article-title: UCI machine learning repository – ident: ref25 doi: 10.1007/3-540-49257-7_15 – ident: ref32 doi: 10.1137/1.9781611972764.29 – ident: ref8 doi: 10.1145/3083897 – ident: ref19 doi: 10.1093/mnras/stw656 – ident: ref5 doi: 10.1145/93605.98741 – year: 2011 ident: ref13 article-title: Dbstrata: A system for density-based and outlier detection based on stratification – start-page: 226 year: 1996 ident: ref1 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proc of 2nd International Conference on Knowledge Discovery and – ident: ref14 doi: 10.1137/1.9781611973440.96 – ident: ref21 doi: 10.1145/304181.304187 – ident: ref24 doi: 10.1002/0471200611 – ident: ref4 doi: 10.1016/j.neucom.2015.05.109 – ident: ref28 doi: 10.1023/A:1009884809343 – ident: ref9 doi: 10.1145/1143844.1143857 – ident: ref20 doi: 10.1109/CVPR.2003.1211534 – start-page: 105 year: 2002 ident: ref35 article-title: A new shared nearest neighbor clustering algorithm and its applications publication-title: Proc Workshop Clustering High Dimensional Data Appl 2nd SIAM Int Conf Data Mining – ident: ref29 doi: 10.1109/ICPADS.2011.83 – ident: ref7 doi: 10.1145/2723372.2737792 – year: 1999 ident: ref31 article-title: Mafia: Efficient and scalable subspace clustering for very large data sets – ident: ref30 doi: 10.1145/2503210.2503262 – ident: ref10 doi: 10.1145/276698.276876 – year: 2017 ident: ref15 – ident: ref12 doi: 10.14778/3021924.3021932 – ident: ref11 doi: 10.1145/1963405.1963487 – ident: ref34 doi: 10.1007/s10115-003-0086-9 – ident: ref26 doi: 10.1016/j.is.2006.10.006 |
| SSID | ssj0008781 |
| Score | 2.6397183 |
| Snippet | A new density-based clustering algorithm, RNN-DBSCAN, is presented which uses reverse nearest neighbor counts as an estimate of observation density. Clustering... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1109 |
| SubjectTerms | Algorithm design and analysis Algorithms Approximation algorithms Clustering Clustering algorithms Complexity Complexity theory Density density estimation robust algorithm Indexes Measurement nearest neighbor searches Parameters pattern analysis pattern clustering Unsupervised learning |
| Title | RNN-DBSCAN: A Density-Based Clustering Algorithm Using Reverse Nearest Neighbor Density Estimates |
| URI | https://ieeexplore.ieee.org/document/8240674 https://www.proquest.com/docview/2174534621 |
| Volume | 30 |
| WOSCitedRecordID | wos000431441200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60eNCD9YnVKnvwJEbz3sRbXyIoQWoFbyGbnWqhD2lTwX_vzDYtgiJ4Sg6zS8i389qd_QbgnJSA7wb0Le0yqbaSSHZQ-xbFHkplQeDFaNj1H2SSRC8v8eMaXK7uwiCiKT7DK341Z_l6ks95q-w6Yvcj_XVYlzJc3NVaWd1ImoaklF1QTuT5sjzBdOz4unff7nARl7xyaXmGvM_xzQeZpio_LLFxL7fV_33YDmyXYaRoLHDfhTUc70F12aJBlBq7B1vf-Ab3IesmidVuPrUayY1oiDYXrxefVpM8mRat4ZxJE0hQNIavk-mgeBsJU1EgusjFGygSJrydFfSklJ4Wz3IG0SFDMeKo9QCebzu91p1V9liwcnL0hUXqSBqtJWIgpVZZGDuZrbLMc5Vrx31X5QHJaQx9J9JaSy_itneerXUe9TXa3iFUxpMxHoEI0FW-pvTEV0w6RyjniuJRJ0JKdskV18Be_vU0LwnIuQ_GMDWJiB2nDFTKQKUlUDW4WA15X7Bv_CW8z8isBEtQalBfQpuW-jlLORELPD90nePfR53AJs0dLYrC6lAppnM8hY38oxjMpmdm6X0BoIPURA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RtFLhQFoeIoW2e-gJ1cSPddbmlqdSkVoopBI3y-udAFJIUOIg8e87s3EiJBASJ_swa1v-dl67s98A_CIl4LMBY8f4TKqtFZIdNNKh2EPrLAyDGC27_kAlSXR9HV9uwe_NWRhEtMVneMa3di_fzPIlL5XVI3Y_Sn6Aj6GUvrs6rbWxu5GyLUkpv6CsKJCq3MP03Lg-uuh0uYxLnfk0QRu80vHMC9m2Ki9ssXUwver7Pu0L7JaBpGiukP8KWzjdg-q6SYModXYPdp4xDu5DNkwSp9O6ajeTc9EUHS5fL56cFvkyI9qTJdMmkKBoTm5m87vi9l7YmgIxRC7fQJEw5e2ioCsl9TR91k8QXTIV9xy3HsC_XnfU7jtllwUnJ1dfOKSQpNNGIYZKGZ01Yi9zdZYFvvbdeOzrPCQ5gw3pRcYYFUTc-C5wjcmjsUE3OITKdDbFIxAh-loaSlCkZto5wjnXFJF6EVK6S864Bu76r6d5SUHOnTAmqU1F3DhloFIGKi2BqsHpZsjDin_jLeF9RmYjWIJSg5M1tGmpoYuUU7EwkA3f-_b6qJ_wuT_6O0gHf5KLY9im90SrErETqBTzJX6HT_ljcbeY_7DT8D_UA9eL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNN-DBSCAN%3A+A+Density-Based+Clustering+Algorithm+Using+Reverse+Nearest+Neighbor+Density+Estimates&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Bryant%2C+Avory&rft.au=Cios%2C+Krzysztof&rft.date=2018-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=30&rft.issue=6&rft.spage=1109&rft_id=info:doi/10.1109%2FTKDE.2017.2787640&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |