RNN-DBSCAN: A Density-Based Clustering Algorithm Using Reverse Nearest Neighbor Density Estimates

A new density-based clustering algorithm, RNN-DBSCAN, is presented which uses reverse nearest neighbor counts as an estimate of observation density. Clustering is performed using a DBSCAN-like approach based on k nearest neighbor graph traversals through dense observations. RNN-DBSCAN is preferable...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on knowledge and data engineering Ročník 30; číslo 6; s. 1109 - 1121
Hlavní autoři: Bryant, Avory, Cios, Krzysztof
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1041-4347, 1558-2191
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A new density-based clustering algorithm, RNN-DBSCAN, is presented which uses reverse nearest neighbor counts as an estimate of observation density. Clustering is performed using a DBSCAN-like approach based on k nearest neighbor graph traversals through dense observations. RNN-DBSCAN is preferable to the popular density-based clustering algorithm DBSCAN in two aspects. First, problem complexity is reduced to the use of a single parameter (choice of k nearest neighbors), and second, an improved ability for handling large variations in cluster density (heterogeneous density). The superiority of RNN-DBSCAN is demonstrated on several artificial and real-world datasets with respect to prior work on reverse nearest neighbor based clustering approaches (RECORD, IS-DBSCAN, and ISB-DBSCAN) along with DBSCAN and OPTICS. Each of these clustering approaches is described by a common graph-based interpretation wherein clusters of dense observations are defined as connected components, along with a discussion on their computational complexity. Heuristics for RNN-DBSCAN parameter selection are presented, and the effects of k on RNN-DBSCAN clusterings discussed. Additionally, with respect to scalability, an approximate version of RNN-DBSCAN is presented leveraging an existing approximate k nearest neighbor technique.
AbstractList A new density-based clustering algorithm, RNN-DBSCAN, is presented which uses reverse nearest neighbor counts as an estimate of observation density. Clustering is performed using a DBSCAN-like approach based on k nearest neighbor graph traversals through dense observations. RNN-DBSCAN is preferable to the popular density-based clustering algorithm DBSCAN in two aspects. First, problem complexity is reduced to the use of a single parameter (choice of k nearest neighbors), and second, an improved ability for handling large variations in cluster density (heterogeneous density). The superiority of RNN-DBSCAN is demonstrated on several artificial and real-world datasets with respect to prior work on reverse nearest neighbor based clustering approaches (RECORD, IS-DBSCAN, and ISB-DBSCAN) along with DBSCAN and OPTICS. Each of these clustering approaches is described by a common graph-based interpretation wherein clusters of dense observations are defined as connected components, along with a discussion on their computational complexity. Heuristics for RNN-DBSCAN parameter selection are presented, and the effects of k on RNN-DBSCAN clusterings discussed. Additionally, with respect to scalability, an approximate version of RNN-DBSCAN is presented leveraging an existing approximate k nearest neighbor technique.
Author Cios, Krzysztof
Bryant, Avory
Author_xml – sequence: 1
  givenname: Avory
  orcidid: 0000-0001-9653-6704
  surname: Bryant
  fullname: Bryant, Avory
  email: bryantac@vcu.edu
  organization: Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284
– sequence: 2
  givenname: Krzysztof
  surname: Cios
  fullname: Cios, Krzysztof
  email: kcios@vcu.edu
  organization: Virginia Commonwealth University, Richmond, VA23284
BookMark eNp9UE1PwjAYbgwmAvoDjJclnodt162bt_HhRyQzQTgv3foOSsaGbTHh39sF9ODB0_O-yfOVZ4B6TdsAQrcEjwjBycPybTobUUz4iPKYRwxfoD4Jw9inJCE9d2NGfBYwfoUGxmwxxjGPSR-JRZb50_HHJM0evdSbQmOUPfpjYUB6k_pgLGjVrL20Xrda2c3OW5nuX8AXaANeBkKDsQ7VelO0-sfBmxmrdsKCuUaXlagN3JxxiFZPs-XkxZ-_P79O0rlf0iSwPk8YpaHkACHnshBRQgQuhAhoQXFS0aIMHU9CxEgspeRBTEOOAyxlGVcScDBE9yffvW4_D65Tvm0PunGROSWchQGLKHEscmKVujVGQ5XvteupjznBebdk3i2Zd0vm5yWdhv_RlMoKq9rGaqHqf5V3J6UCgN-kmDIccRZ8AywugdM
CODEN ITKEEH
CitedBy_id crossref_primary_10_3390_sym12050747
crossref_primary_10_1016_j_ins_2023_119004
crossref_primary_10_1016_j_patcog_2019_107063
crossref_primary_10_1016_j_patcog_2021_108177
crossref_primary_10_1007_s12652_020_01741_5
crossref_primary_10_3390_math12213367
crossref_primary_10_1016_j_eswa_2019_04_011
crossref_primary_10_1016_j_neucom_2024_127329
crossref_primary_10_1016_j_patcog_2024_110932
crossref_primary_10_1007_s11042_020_09718_4
crossref_primary_10_1016_j_apor_2023_103644
crossref_primary_10_1016_j_knosys_2025_113498
crossref_primary_10_1109_TNNLS_2023_3248064
crossref_primary_10_1016_j_eswa_2025_127252
crossref_primary_10_1016_j_knosys_2025_113250
crossref_primary_10_1109_ACCESS_2022_3164192
crossref_primary_10_1007_s10115_024_02272_7
crossref_primary_10_1016_j_knosys_2021_107256
crossref_primary_10_1109_ACCESS_2024_3377656
crossref_primary_10_1109_ACCESS_2019_2963471
crossref_primary_10_1111_exsy_12615
crossref_primary_10_3390_app15073612
crossref_primary_10_1080_13658816_2024_2399144
crossref_primary_10_1109_TKDE_2023_3312760
crossref_primary_10_1016_j_knosys_2022_108288
crossref_primary_10_1007_s13042_024_02104_8
crossref_primary_10_1016_j_is_2021_101871
crossref_primary_10_1109_ACCESS_2022_3198992
crossref_primary_10_1007_s13131_020_1638_5
crossref_primary_10_1016_j_eswa_2021_116410
crossref_primary_10_1016_j_neucom_2020_02_058
crossref_primary_10_1016_j_neucom_2023_126633
crossref_primary_10_1109_TNNLS_2022_3146136
crossref_primary_10_3390_ijgi9050311
crossref_primary_10_1016_j_eswa_2023_120633
crossref_primary_10_1109_TAES_2023_3286830
crossref_primary_10_1016_j_ins_2025_122414
crossref_primary_10_1016_j_patcog_2018_10_007
crossref_primary_10_1016_j_compbiomed_2022_106184
crossref_primary_10_1016_j_geits_2022_100009
crossref_primary_10_1016_j_eswa_2025_128197
crossref_primary_10_1016_j_eswa_2023_120195
crossref_primary_10_1016_j_engappai_2024_109193
crossref_primary_10_1007_s00500_025_10405_5
crossref_primary_10_1007_s11227_022_04634_w
crossref_primary_10_1016_j_eswa_2024_125934
crossref_primary_10_1109_ACCESS_2018_2890339
crossref_primary_10_3390_math13142272
crossref_primary_10_1177_18761364251359900
crossref_primary_10_3390_pr7090550
crossref_primary_10_1016_j_neucom_2020_03_125
crossref_primary_10_1007_s11063_022_10763_3
crossref_primary_10_1016_j_eswa_2021_115763
crossref_primary_10_1016_j_ins_2020_05_073
crossref_primary_10_1016_j_patcog_2024_110635
crossref_primary_10_1002_adfm_202309108
crossref_primary_10_1109_JSTARS_2021_3078452
crossref_primary_10_1016_j_patcog_2020_107624
crossref_primary_10_1007_s10766_024_00779_8
crossref_primary_10_1109_TFUZZ_2020_3041191
crossref_primary_10_1016_j_ins_2025_122445
crossref_primary_10_3390_a18050273
crossref_primary_10_3390_sym11121482
crossref_primary_10_1088_1742_6596_1570_1_012004
crossref_primary_10_1080_00949655_2022_2098298
crossref_primary_10_1016_j_ins_2023_119479
crossref_primary_10_1007_s11042_021_11171_w
crossref_primary_10_1109_TCYB_2021_3081988
crossref_primary_10_1016_j_is_2022_102124
crossref_primary_10_1016_j_ifacol_2023_10_562
crossref_primary_10_1109_TCSS_2020_3003538
crossref_primary_10_1016_j_patrec_2019_09_013
crossref_primary_10_1007_s41019_024_00280_9
crossref_primary_10_1109_ACCESS_2020_2969440
crossref_primary_10_1177_16878132241254181
crossref_primary_10_1016_j_neucom_2021_07_074
crossref_primary_10_3390_ijerph20115943
crossref_primary_10_1007_s11063_023_11260_x
crossref_primary_10_3233_IDA_216541
crossref_primary_10_1016_j_asoc_2023_110903
crossref_primary_10_1371_journal_pone_0331555
crossref_primary_10_3390_pr11082461
crossref_primary_10_1109_JIOT_2024_3506552
crossref_primary_10_1109_TAI_2023_3237648
crossref_primary_10_1016_j_ipm_2022_103059
crossref_primary_10_1016_j_eswa_2024_125714
crossref_primary_10_1016_j_jobe_2023_106112
crossref_primary_10_1007_s10489_022_03830_8
crossref_primary_10_1016_j_ijar_2023_109075
crossref_primary_10_1007_s11042_019_08009_x
crossref_primary_10_1109_JSEN_2024_3403232
crossref_primary_10_1016_j_inffus_2024_102273
crossref_primary_10_1016_j_asoc_2024_111685
crossref_primary_10_1016_j_patcog_2020_107206
crossref_primary_10_1016_j_neunet_2022_07_025
crossref_primary_10_1007_s11042_021_11275_3
crossref_primary_10_3390_fi11090198
crossref_primary_10_1109_TSMC_2019_2956527
crossref_primary_10_3390_ijgi12080302
crossref_primary_10_3390_e25050782
crossref_primary_10_1016_j_ins_2025_121916
crossref_primary_10_1016_j_patcog_2025_111775
crossref_primary_10_1007_s10489_023_04543_2
crossref_primary_10_3390_s25082613
crossref_primary_10_3724_SP_J_1089_2022_18902
crossref_primary_10_1109_TWC_2025_3546457
crossref_primary_10_1002_int_22521
crossref_primary_10_1016_j_knosys_2021_107295
crossref_primary_10_1007_s11831_024_10173_9
crossref_primary_10_1016_j_vehcom_2020_100251
crossref_primary_10_1007_s00500_019_04448_8
crossref_primary_10_1109_ACCESS_2020_2987345
crossref_primary_10_1109_TKDE_2019_2903410
crossref_primary_10_1016_j_datak_2024_102345
crossref_primary_10_3233_IDA_192829
crossref_primary_10_1038_s41598_022_27074_1
crossref_primary_10_1109_ACCESS_2018_2883433
crossref_primary_10_1007_s13198_020_01009_3
crossref_primary_10_1016_j_ins_2024_120731
crossref_primary_10_1016_j_neucom_2023_02_035
crossref_primary_10_1109_ACCESS_2022_3228238
crossref_primary_10_1007_s10115_023_01960_0
crossref_primary_10_1109_ACCESS_2024_3457587
crossref_primary_10_1109_TIM_2022_3164167
crossref_primary_10_1109_JSEN_2024_3486550
crossref_primary_10_1109_TIM_2019_2919375
crossref_primary_10_3390_electronics12153213
crossref_primary_10_1016_j_ces_2020_115796
crossref_primary_10_1109_TKDE_2021_3138962
crossref_primary_10_3390_electronics8101094
crossref_primary_10_1049_ipr2_12390
crossref_primary_10_3389_frsen_2025_1553026
crossref_primary_10_1155_2021_5536579
crossref_primary_10_3390_s21051892
crossref_primary_10_1016_j_is_2022_102159
crossref_primary_10_3233_ICA_220682
crossref_primary_10_1108_IJESM_11_2019_0016
crossref_primary_10_1038_s44260_025_00030_6
crossref_primary_10_1016_j_comcom_2020_12_019
crossref_primary_10_1016_j_patrec_2019_08_009
crossref_primary_10_2478_amns_2025_0056
crossref_primary_10_1109_TCYB_2020_3035800
crossref_primary_10_1016_j_eswa_2024_125967
crossref_primary_10_1016_j_isprsjprs_2019_06_009
crossref_primary_10_1016_j_eswa_2022_119484
crossref_primary_10_1016_j_engappai_2024_108635
crossref_primary_10_1007_s44336_024_00008_3
crossref_primary_10_3934_aci_2024010
crossref_primary_10_1109_ACCESS_2024_3518497
crossref_primary_10_1145_3633783
crossref_primary_10_3233_JIFS_211922
crossref_primary_10_1007_s10586_022_03917_4
crossref_primary_10_1016_j_eswa_2022_118316
crossref_primary_10_1016_j_ins_2025_122471
crossref_primary_10_1007_s10844_021_00668_3
crossref_primary_10_1016_j_asoc_2024_111779
crossref_primary_10_1016_j_iswa_2022_200117
crossref_primary_10_1016_j_eswa_2023_120250
crossref_primary_10_3390_ijgi9110686
Cites_doi 10.1016/j.patrec.2011.02.001
10.1016/j.is.2012.09.001
10.1145/1281192.1281280
10.1109/ICDM.2006.9
10.1007/BF01908075
10.1145/361002.361007
10.1007/3-540-49257-7_15
10.1137/1.9781611972764.29
10.1145/3083897
10.1093/mnras/stw656
10.1145/93605.98741
10.1137/1.9781611973440.96
10.1145/304181.304187
10.1002/0471200611
10.1016/j.neucom.2015.05.109
10.1023/A:1009884809343
10.1145/1143844.1143857
10.1109/CVPR.2003.1211534
10.1109/ICPADS.2011.83
10.1145/2723372.2737792
10.1145/2503210.2503262
10.1145/276698.276876
10.14778/3021924.3021932
10.1145/1963405.1963487
10.1007/s10115-003-0086-9
10.1016/j.is.2006.10.006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2017.2787640
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1121
ExternalDocumentID 10_1109_TKDE_2017_2787640
8240674
Genre orig-research
GrantInformation_xml – fundername: Naval Surface Warfare Center Dahlgren Division's In-house Laboratory Independent Research Program
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-794225d7ee577dba691a0baa32b209f2bc5293de6418ddd738257030ddc8fde03
IEDL.DBID RIE
ISICitedReferencesCount 190
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431441200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Wed Nov 26 05:39:00 EST 2025
Sat Nov 29 04:46:43 EST 2025
Tue Nov 18 22:33:41 EST 2025
Wed Aug 27 02:25:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/USG.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-794225d7ee577dba691a0baa32b209f2bc5293de6418ddd738257030ddc8fde03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9653-6704
PQID 2174534621
PQPubID 85438
PageCount 13
ParticipantIDs crossref_primary_10_1109_TKDE_2017_2787640
crossref_citationtrail_10_1109_TKDE_2017_2787640
ieee_primary_8240674
proquest_journals_2174534621
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References goil (ref31) 1999
ref34
ref12
ref37
ertoz (ref35) 2002
ref14
ref30
ref11
ref32
ref10
lichman (ref17) 2013
ref2
campello (ref36) 2013
ref19
cassisi (ref13) 2011
ester (ref1) 1996
strehl (ref23) 2003; 3
ref24
gan (ref18) 1999
ref26
pedregosa (ref16) 2011; 12
ref25
ref20
(ref15) 2017
ref22
guidotti (ref33) 2015
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref27
  doi: 10.1016/j.patrec.2011.02.001
– ident: ref3
  doi: 10.1016/j.is.2012.09.001
– ident: ref37
  doi: 10.1145/1281192.1281280
– ident: ref2
  doi: 10.1109/ICDM.2006.9
– volume: 3
  start-page: 583
  year: 2003
  ident: ref23
  article-title: Cluster ensembles - a knowledge reuse framework for combining multiple partitions
  publication-title: J Mach Learn Res
– start-page: 38:1
  year: 2015
  ident: ref33
  article-title: Tosca: Two-steps clustering algorithm for personal locations detection
  publication-title: Proc SIGSPATIAL Int Conf Adv Geograph Inform Syst
– start-page: 160
  year: 2013
  ident: ref36
  publication-title: Density-Based Clustering Based on Hierarchical Density Estimates
– ident: ref22
  doi: 10.1007/BF01908075
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref16
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learning Res
– ident: ref6
  doi: 10.1145/361002.361007
– year: 1999
  ident: ref18
– year: 2013
  ident: ref17
  article-title: UCI machine learning repository
– ident: ref25
  doi: 10.1007/3-540-49257-7_15
– ident: ref32
  doi: 10.1137/1.9781611972764.29
– ident: ref8
  doi: 10.1145/3083897
– ident: ref19
  doi: 10.1093/mnras/stw656
– ident: ref5
  doi: 10.1145/93605.98741
– year: 2011
  ident: ref13
  article-title: Dbstrata: A system for density-based and outlier detection based on stratification
– start-page: 226
  year: 1996
  ident: ref1
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc of 2nd International Conference on Knowledge Discovery and
– ident: ref14
  doi: 10.1137/1.9781611973440.96
– ident: ref21
  doi: 10.1145/304181.304187
– ident: ref24
  doi: 10.1002/0471200611
– ident: ref4
  doi: 10.1016/j.neucom.2015.05.109
– ident: ref28
  doi: 10.1023/A:1009884809343
– ident: ref9
  doi: 10.1145/1143844.1143857
– ident: ref20
  doi: 10.1109/CVPR.2003.1211534
– start-page: 105
  year: 2002
  ident: ref35
  article-title: A new shared nearest neighbor clustering algorithm and its applications
  publication-title: Proc Workshop Clustering High Dimensional Data Appl 2nd SIAM Int Conf Data Mining
– ident: ref29
  doi: 10.1109/ICPADS.2011.83
– ident: ref7
  doi: 10.1145/2723372.2737792
– year: 1999
  ident: ref31
  article-title: Mafia: Efficient and scalable subspace clustering for very large data sets
– ident: ref30
  doi: 10.1145/2503210.2503262
– ident: ref10
  doi: 10.1145/276698.276876
– year: 2017
  ident: ref15
– ident: ref12
  doi: 10.14778/3021924.3021932
– ident: ref11
  doi: 10.1145/1963405.1963487
– ident: ref34
  doi: 10.1007/s10115-003-0086-9
– ident: ref26
  doi: 10.1016/j.is.2006.10.006
SSID ssj0008781
Score 2.6397684
Snippet A new density-based clustering algorithm, RNN-DBSCAN, is presented which uses reverse nearest neighbor counts as an estimate of observation density. Clustering...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1109
SubjectTerms Algorithm design and analysis
Algorithms
Approximation algorithms
Clustering
Clustering algorithms
Complexity
Complexity theory
Density
density estimation robust algorithm
Indexes
Measurement
nearest neighbor searches
Parameters
pattern analysis
pattern clustering
Unsupervised learning
Title RNN-DBSCAN: A Density-Based Clustering Algorithm Using Reverse Nearest Neighbor Density Estimates
URI https://ieeexplore.ieee.org/document/8240674
https://www.proquest.com/docview/2174534621
Volume 30
WOSCitedRecordID wos000431441200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8aAHX6u4ukoOnsRqH2mn9dZ9IShFfMDeSpukurAP2e0K_nsn2e4iKIKn5jATQr95ZJLJDMA5R9onyMC3ciWlxR1JI4HcEkTuo6CATJjq-veYJGG_Hz3U4HL1FkYpZZLP1JUemrt8ORFzfVR2HWr3g3wN1hCDxVutldUN0TQkpeiCYiKPY3WD6djR9fNdp6uTuPDKJfEM9DnHNx9kmqr8sMTGvfR2_rewXdiutpEsXuC-BzU13oedZYsGVmnsPmx9qzdYh-wxSaxO66kdJzcsZh2dvF5-Wi3yZJK1h3NdNIEIWTx8nUwH5duImYwC9qh08oZiiS54OyvpSyE9Cc9yBtYlQzHSu9YDeOl1n9u3VtVjwRLk6EuL1JE0WqJSPqLMsyByMjvPMs_NXTsq3Fz4RCdVwJ1QSoleqNveebaUIiyksr1DWB9PxuoImMrRL1zh54UQvCh4yIXreRmxYhCgyBtgL_96KqoC5LoPxjA1gYgdpRqoVAOVVkA14GLF8r6ovvEXcV0jsyKsQGlAcwltWunnLNWBmO_xwHWOf-c6gU2aO1wkhTVhvZzO1SlsiI9yMJueGdH7AvlN1fc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBR6tYn3vwJKbNY5NNvKUPUVqDaIXeQrK7UaG20qaC_97ZbVoKiuApe5hJwn7z2NmdnQG4oAzXCcJzjVQKYVBL4IgzanAkdxnHgIzr6vpdFkV-vx88rMDV4i6MlFInn8maGuqzfDHiU7VVVveV-2F0FdZcSm1zdltrYXd9pluSYnyBUZFDWXGGaZlBvddptVUaF6vZKKCe2ulY8kK6rcoPW6wdzM3O_35tF7aLhSQJZ8jvwYoclmFn3qSBFDpbhq2lioMVSB6jyGg1npphdE1C0lLp6_mX0UBfJkhzMFVlE5CQhIOX0fgtf30nOqeAPEqVviFJpEreTnJ8YlCP4jN_A2mjqXhX69Z9eL5p95q3RtFlweDo6nMDFRJ1WjApXcZEmniBlZhpkjh2aptBZqfcRTohPWr5Qgjm-KrxnWMKwf1MSNM5gNJwNJSHQGTK3MzmbppxTrOM-pTbjpMgK_M8xtMqmPNZj3lRglx1whjEOhQxg1gBFSug4gKoKlwuWD5m9Tf-Iq4oZBaEBShVOJlDGxcaOolVKOY61LOto9-5zmHjtnffjbt3UecYNvE7_ixF7ARK-XgqT2Gdf-Zvk_GZFsNvQxzZPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNN-DBSCAN%3A+A+Density-Based+Clustering+Algorithm+Using+Reverse+Nearest+Neighbor+Density+Estimates&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Bryant%2C+Avory&rft.au=Cios%2C+Krzysztof&rft.date=2018-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=30&rft.issue=6&rft.spage=1109&rft_id=info:doi/10.1109%2FTKDE.2017.2787640&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon