An Improved Multiobjective Discrete Particle Swarm Optimization for Hyperspectral Endmember Extraction

Endmember extraction (EE) is a significant task in hyperspectral unmixing. From a multiobjective optimization perspective, this task is extremely challenging because objectives often conflict with each other. Currently, a multiobjective discrete particle swarm optimization algorithm (MODPSO) is appl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 57; no. 10; pp. 7872 - 7882
Main Authors: Tong, Lyuyang, Du, Bo, Liu, Rong, Zhang, Liangpei
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Endmember extraction (EE) is a significant task in hyperspectral unmixing. From a multiobjective optimization perspective, this task is extremely challenging because objectives often conflict with each other. Currently, a multiobjective discrete particle swarm optimization algorithm (MODPSO) is applied to handle the multiobjective optimization EE problem such as the root-mean-square error (RMSE) and the volume maximization (VM). However, in MODPSO, the minimization of RMSE by unconstrained least squares (Ucls) may lack accuracy, the update of velocity by the predefined random selection probability p can also affect the exploration and exploitation, and it may lose good solution in the process of the update of particles when the particles are randomly chosen in the nondominated relationship. To address these issues, we present an improved MODPSO (IMODPSO) for hyperspectral EE. IMODPSO employs nonnegative constrained least squares (Ncls) to enhance the accuracy of RMSE. Moreover, IMODPSO eliminates the effects of probability p and combines the restart mechanism to achieve a balance of the exploration and exploitation. In addition, IMODPSO utilizes the archive strategy to reserve good nondominated particles to strengthen the population diversity. The experiments have been conducted on three real hyperspectral images and the results have demonstrated that IMODPSO obtains best performances for EE.
AbstractList Endmember extraction (EE) is a significant task in hyperspectral unmixing. From a multiobjective optimization perspective, this task is extremely challenging because objectives often conflict with each other. Currently, a multiobjective discrete particle swarm optimization algorithm (MODPSO) is applied to handle the multiobjective optimization EE problem such as the root-mean-square error (RMSE) and the volume maximization (VM). However, in MODPSO, the minimization of RMSE by unconstrained least squares (Ucls) may lack accuracy, the update of velocity by the predefined random selection probability [Formula Omitted] can also affect the exploration and exploitation, and it may lose good solution in the process of the update of particles when the particles are randomly chosen in the nondominated relationship. To address these issues, we present an improved MODPSO (IMODPSO) for hyperspectral EE. IMODPSO employs nonnegative constrained least squares (Ncls) to enhance the accuracy of RMSE. Moreover, IMODPSO eliminates the effects of probability [Formula Omitted] and combines the restart mechanism to achieve a balance of the exploration and exploitation. In addition, IMODPSO utilizes the archive strategy to reserve good nondominated particles to strengthen the population diversity. The experiments have been conducted on three real hyperspectral images and the results have demonstrated that IMODPSO obtains best performances for EE.
Endmember extraction (EE) is a significant task in hyperspectral unmixing. From a multiobjective optimization perspective, this task is extremely challenging because objectives often conflict with each other. Currently, a multiobjective discrete particle swarm optimization algorithm (MODPSO) is applied to handle the multiobjective optimization EE problem such as the root-mean-square error (RMSE) and the volume maximization (VM). However, in MODPSO, the minimization of RMSE by unconstrained least squares (Ucls) may lack accuracy, the update of velocity by the predefined random selection probability p can also affect the exploration and exploitation, and it may lose good solution in the process of the update of particles when the particles are randomly chosen in the nondominated relationship. To address these issues, we present an improved MODPSO (IMODPSO) for hyperspectral EE. IMODPSO employs nonnegative constrained least squares (Ncls) to enhance the accuracy of RMSE. Moreover, IMODPSO eliminates the effects of probability p and combines the restart mechanism to achieve a balance of the exploration and exploitation. In addition, IMODPSO utilizes the archive strategy to reserve good nondominated particles to strengthen the population diversity. The experiments have been conducted on three real hyperspectral images and the results have demonstrated that IMODPSO obtains best performances for EE.
Author Zhang, Liangpei
Du, Bo
Tong, Lyuyang
Liu, Rong
Author_xml – sequence: 1
  givenname: Lyuyang
  surname: Tong
  fullname: Tong, Lyuyang
  email: lyuyangtong@outlook.com
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Bo
  orcidid: 0000-0002-0059-8458
  surname: Du
  fullname: Du, Bo
  email: remoteking@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Rong
  surname: Liu
  fullname: Liu, Rong
  email: rong.liu@dlr.de
  organization: Germany Aerospace Center (DLR), Weßling, Germany
– sequence: 4
  givenname: Liangpei
  orcidid: 0000-0001-6890-3650
  surname: Zhang
  fullname: Zhang, Liangpei
  email: zlp62@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
BookMark eNp9kE1PAjEQhhuDiYD-AOOliefFtrtL2yNBBBIMRvC8Kd1pUrJftguKv94ixIMHT520zzPTeXuoU9UVIHRLyYBSIh_W09fVgBEqB0xSTgi9QF2apiIiwyTpoG54GUZMSHaFet5vA5CklHeRGVV4Xjau3kOOn3dFa-vNFnRr94AfrdcOWsAvyrVWF4BXH8qVeNm0trRfKrAVNrXDs0MDzjdBc6rAkyovodyAw5PPcKGP2DW6NKrwcHM---jtabIez6LFcjofjxaRZjJuIy5yFYPgjCqqORCeE2MMBcFAJTkzWuZESypYKBklhPBkY7RSqRQpl1LFfXR_6hs2et-Bb7NtvXNVGJkxJgUnw2AHip8o7WrvHZhM2_ZnnfBfW2SUZMdQs2Oo2THU7BxqMOkfs3G2VO7wr3N3ciwA_PKCxwlPSfwNDCaGdw
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2020_2988519
crossref_primary_10_1016_j_neucom_2023_03_065
crossref_primary_10_1109_JSTARS_2022_3200693
crossref_primary_10_1016_j_neucom_2024_127506
crossref_primary_10_3390_rs14040892
crossref_primary_10_3390_rs13040713
crossref_primary_10_1109_LGRS_2019_2945848
crossref_primary_10_1016_j_neucom_2019_11_084
crossref_primary_10_1109_TGRS_2020_3004307
crossref_primary_10_1109_JSTARS_2023_3333955
crossref_primary_10_1109_TGRS_2020_2992542
crossref_primary_10_1016_j_asoc_2021_107713
crossref_primary_10_1109_TGRS_2020_3037249
crossref_primary_10_1109_ACCESS_2020_3034441
crossref_primary_10_1109_ACCESS_2022_3228918
crossref_primary_10_1109_JSTARS_2020_3047677
crossref_primary_10_3390_electronics11152342
crossref_primary_10_1109_TGRS_2023_3314079
crossref_primary_10_1109_ACCESS_2020_2972123
crossref_primary_10_1109_TGRS_2022_3177648
crossref_primary_10_1109_TGRS_2022_3176856
crossref_primary_10_3390_rs16214038
crossref_primary_10_1080_01431161_2024_2320181
crossref_primary_10_3390_rs15205028
crossref_primary_10_1109_ACCESS_2020_3014736
crossref_primary_10_3390_electronics10233034
crossref_primary_10_1109_JSTARS_2021_3115177
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_1109_TGRS_2023_3242364
Cites_doi 10.1007/978-3-540-30217-9_84
10.1109/TGRS.2017.2776321
10.1016/j.isprsjprs.2013.11.014
10.1109/MGRS.2013.2244672
10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.3.CO;2-C
10.1109/79.974727
10.1109/JSTSP.2015.2419184
10.1109/TGRS.2012.2213825
10.1109/TGRS.2006.881803
10.1109/TEVC.2008.925798
10.1109/JSTARS.2014.2371615
10.1109/36.911111
10.1109/TGRS.2013.2265322
10.1016/j.swevo.2011.03.001
10.1117/12.366289
10.1109/TEVC.2007.892759
10.1109/TGRS.2005.844293
10.1109/TGRS.2014.2383440
10.1109/4235.996017
10.1109/ACCESS.2018.2856832
10.1109/LGRS.2013.2285476
10.1109/TIP.2014.2363423
10.1145/2792984
10.1109/TGRS.2010.2098413
10.1109/JSTARS.2013.2242255
10.1109/TCYB.2016.2572609
10.1109/JSTARS.2015.2427656
10.3390/rs8060464
10.1109/SIS.2003.1202243
10.1109/TEVC.2015.2420112
10.1109/LGRS.2005.856701
10.3390/rs9030197
10.3390/rs9060558
10.1109/TGRS.2014.2336858
10.1162/EVCO_a_00009
10.1109/JSTARS.2012.2194696
10.1109/JSTARS.2014.2373491
10.1109/JSTARS.2016.2640274
10.1109/TGRS.2011.2131145
10.1109/JSTARS.2013.2267204
10.1109/TGRS.2012.2226730
10.1109/TGRS.2011.2108305
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2019.2917001
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 7882
ExternalDocumentID 10_1109_TGRS_2019_2917001
8734750
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2018YFA0605501
  funderid: 10.13039/501100012166
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2018CFA050
  funderid: 10.13039/501100003819
– fundername: National Natural Science Foundation of China
  grantid: 61822113; 41871243; 41431175
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c293t-78da3e8721a1c7e07d0fff1e82ea4d2fc9d0c91822fc2100074bfcaa5985799a3
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489829200044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:19:26 EDT 2025
Sat Nov 29 02:50:00 EST 2025
Tue Nov 18 21:19:29 EST 2025
Wed Aug 27 08:30:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-78da3e8721a1c7e07d0fff1e82ea4d2fc9d0c91822fc2100074bfcaa5985799a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6890-3650
0000-0002-0059-8458
PQID 2298706918
PQPubID 85465
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2019_2917001
ieee_primary_8734750
proquest_journals_2298706918
crossref_primary_10_1109_TGRS_2019_2917001
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
chen (ref41) 2010
ref10
ref2
winter (ref16) 1999; 3753
ref1
ref39
ref19
ref18
boardman (ref17) 1995; 1
ref46
ref24
ref23
ref26
ref47
ref25
ref20
ref42
ref22
ref44
ref21
ref43
zhu (ref45) 2014
ref28
ref27
ref29
ref8
ref7
trivedi (ref32) 2017; 21
ref9
ref4
ref3
ref6
zitzler (ref38) 2001; 103
ref5
ref40
References_xml – ident: ref35
  doi: 10.1007/978-3-540-30217-9_84
– ident: ref3
  doi: 10.1109/TGRS.2017.2776321
– ident: ref44
  doi: 10.1016/j.isprsjprs.2013.11.014
– ident: ref2
  doi: 10.1109/MGRS.2013.2244672
– volume: 1
  start-page: 23
  year: 1995
  ident: ref17
  article-title: Mapping target signatures via partial unmixing of AVIRIS data
  publication-title: Proc Summaries 5th JPL Airborne Earth Sci Workshop
– ident: ref40
  doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.3.CO;2-C
– ident: ref26
  doi: 10.1109/79.974727
– ident: ref47
  doi: 10.1109/JSTSP.2015.2419184
– ident: ref10
  doi: 10.1109/TGRS.2012.2213825
– ident: ref15
  doi: 10.1109/TGRS.2006.881803
– ident: ref34
  doi: 10.1109/TEVC.2008.925798
– ident: ref19
  doi: 10.1109/JSTARS.2014.2371615
– volume: 103
  start-page: 1
  year: 2001
  ident: ref38
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: TIK-Report
– ident: ref27
  doi: 10.1109/36.911111
– ident: ref13
  doi: 10.1109/TGRS.2013.2265322
– ident: ref28
  doi: 10.1016/j.swevo.2011.03.001
– volume: 3753
  start-page: 266
  year: 1999
  ident: ref16
  article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
  publication-title: Proc SPIE Image Spectrometry V
  doi: 10.1117/12.366289
– ident: ref33
  doi: 10.1109/TEVC.2007.892759
– ident: ref14
  doi: 10.1109/TGRS.2005.844293
– ident: ref9
  doi: 10.1109/TGRS.2014.2383440
– ident: ref37
  doi: 10.1109/4235.996017
– ident: ref29
  doi: 10.1109/ACCESS.2018.2856832
– ident: ref21
  doi: 10.1109/LGRS.2013.2285476
– ident: ref43
  doi: 10.1109/TIP.2014.2363423
– ident: ref30
  doi: 10.1145/2792984
– ident: ref4
  doi: 10.1109/TGRS.2010.2098413
– ident: ref46
  doi: 10.1109/JSTARS.2013.2242255
– ident: ref20
  doi: 10.1109/TCYB.2016.2572609
– ident: ref12
  doi: 10.1109/JSTARS.2015.2427656
– ident: ref8
  doi: 10.3390/rs8060464
– ident: ref39
  doi: 10.1109/SIS.2003.1202243
– ident: ref31
  doi: 10.1109/TEVC.2015.2420112
– year: 2014
  ident: ref45
  publication-title: Effective spectral unmixing via robust representation and learning-based sparsity
– ident: ref18
  doi: 10.1109/LGRS.2005.856701
– ident: ref42
  doi: 10.3390/rs9030197
– ident: ref25
  doi: 10.3390/rs9060558
– ident: ref5
  doi: 10.1109/TGRS.2014.2336858
– start-page: 109
  year: 2010
  ident: ref41
  article-title: Nonnegativity constraints in numerical analysis
  publication-title: The Birth Of Numerical Analysis
– ident: ref36
  doi: 10.1162/EVCO_a_00009
– ident: ref7
  doi: 10.1109/JSTARS.2012.2194696
– volume: 21
  start-page: 440
  year: 2017
  ident: ref32
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans Evol Comput
– ident: ref11
  doi: 10.1109/JSTARS.2014.2373491
– ident: ref23
  doi: 10.1109/JSTARS.2016.2640274
– ident: ref24
  doi: 10.1109/TGRS.2011.2131145
– ident: ref1
  doi: 10.1109/JSTARS.2013.2267204
– ident: ref6
  doi: 10.1109/TGRS.2012.2226730
– ident: ref22
  doi: 10.1109/TGRS.2011.2108305
SSID ssj0014517
Score 2.4436903
Snippet Endmember extraction (EE) is a significant task in hyperspectral unmixing. From a multiobjective optimization perspective, this task is extremely challenging...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7872
SubjectTerms Accuracy
Algorithms
Discrete particle swarm optimization (DPSO)
endmember extraction (EE)
Exploitation
Exploration
Hyperspectral imaging
Indexes
Least squares
Linear programming
Minimization
multiobjective optimization
Multiple objective analysis
Optimization
Particle swarm optimization
Probability theory
Root-mean-square errors
Title An Improved Multiobjective Discrete Particle Swarm Optimization for Hyperspectral Endmember Extraction
URI https://ieeexplore.ieee.org/document/8734750
https://www.proquest.com/docview/2298706918
Volume 57
WOSCitedRecordID wos000489829200044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-mKOiDH5vidEoefBK7tWm7JI9Dp3uaw03YW8nyAYrrpJsff75Jmg1FEXwLJWmb_tLLXe5-dwDnKeEykomxTayTMCFMBBOGecAnnITmutSpdMUmSL9Px2M2qMDligujlHLBZ6ppm86XL2fi1R6VtSiJE2IN9DVC2iVXa-UxSNLIU6PbgTEisPdgRiFrjW7vhzaIizUxs-noom97kCuq8kMSu-3lZvd_L7YHO16NRJ0S932oqLwK21-SC1Zh0wV3inkNdCdH5eGBksgxbmeTp1LQoetHIzeM4owGfg2h4TsvpujOiJKp52gio9iinjFYS15mYR7czeVU2VoiqPuxKEpyxAE83HRHV73A11cIhNnkFwGhkseKGhuQR4KokMhQax0pihVPJNaCyVAwY4CYJo6ctjHRgvOU0ZQwxuNDWM9nuToCJNtYhFTH1g2ZkFhzo0VKSnjMNNVGB6xDuPzimfDJx20NjOfMGSEhyyxImQUp8yDV4WI15KXMvPFX55pFZdXRA1KHxhLWzP-b8wxjZp27ZmLHv486gS177zJkrwHri-JVncKGeFs8zoszt-w-AcmZ1fM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6IF9QH7-J0ah58Eqtp2prkceh0ok7RCb6VLBdQXCfdvPx8kzQORRF8CyUhbb705Hw5N4CdjAoVq9RyE2ckTCmXUZcTEYmuoNg-VyZTvtgEbbfZ_T2_HoO9USyM1to7n-l91_S2fNWXL-6q7IDRJKWOoE9kaUpwFa01shmkWRyCow8jSyNIsGHGmB90Tm9unRsX3yfcJaSLv51CvqzKD1nsD5iT-f-92gLMBUUSNSrkF2FMF0sw-yW94BJMefdOOVgG0yhQdX2gFfIxt_3uYyXq0PGDlRxWdUbXYReh2zdR9tCVFSa9EKWJrGqLWpayVpGZpZ24WaiedtVEUPN9WFbhEStwd9LsHLWiUGEhkvaYH0aUKZFoZlmgiCXVmCpsjIk1I1qkihjJFZbcUhDbJLHXN7pGCpFxllHORbIK40W_0GuA1CGRmJnEGSJTmhhh9UjFqEi4YcZqgTXAnyuey5B-3FXBeMo9DcE8dyDlDqQ8gFSD3dGQ5yr3xl-dlx0qo44BkBrUP2HNw985yAnhzrxrP2z991HbMN3qXF7kF2ft8w2YcfNUDnx1GB-WL3oTJuXr8GFQbvkt-AERcNk6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Multiobjective+Discrete+Particle+Swarm+Optimization+for+Hyperspectral+Endmember+Extraction&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Tong%2C+Lyuyang&rft.au=Du%2C+Bo&rft.au=Liu%2C+Rong&rft.au=Zhang%2C+Liangpei&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=57&rft.issue=10&rft.spage=7872&rft.epage=7882&rft_id=info:doi/10.1109%2FTGRS.2019.2917001&rft.externalDocID=8734750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon