Efficient Processing of Skyline Queries Using MapReduce

The skyline operator has attracted considerable attention recently due to its broad applications. However, computing a skyline is challenging today since we have to deal with big data. For data-intensive applications, the MapReduce framework has been widely used recently. In this paper, we propose t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on knowledge and data engineering Ročník 29; číslo 5; s. 1031 - 1044
Hlavní autori: Park, Yoonjae, Min, Jun-Ki, Shim, Kyuseok
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1041-4347, 1558-2191
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The skyline operator has attracted considerable attention recently due to its broad applications. However, computing a skyline is challenging today since we have to deal with big data. For data-intensive applications, the MapReduce framework has been widely used recently. In this paper, we propose the efficient parallel algorithm SKY-MR + for processing skyline queries using MapReduce. We first build a quadtree-based histogram for space partitioning by deciding whether to split each leaf node judiciously based on the benefit of splitting in terms of the estimated execution time. In addition, we apply the dominance power filtering method to effectively prune non-skyline points in advance. We next partition data based on the regions divided by the quadtree and compute candidate skyline points for each partition using MapReduce. Finally, we check whether each skyline candidate point is actually a skyline point in every partition using MapReduce. We also develop the workload balancing methods to make the estimated execution times of all available machines to be similar. We did experiments to compare SKY-MR + with the state-of-the-art algorithms using MapReduce and confirmed the effectiveness as well as the scalability of SKY-MR + .
AbstractList The skyline operator has attracted considerable attention recently due to its broad applications. However, computing a skyline is challenging today since we have to deal with big data. For data-intensive applications, the MapReduce framework has been widely used recently. In this paper, we propose the efficient parallel algorithm SKY-MR + for processing skyline queries using MapReduce. We first build a quadtree-based histogram for space partitioning by deciding whether to split each leaf node judiciously based on the benefit of splitting in terms of the estimated execution time. In addition, we apply the dominance power filtering method to effectively prune non-skyline points in advance. We next partition data based on the regions divided by the quadtree and compute candidate skyline points for each partition using MapReduce. Finally, we check whether each skyline candidate point is actually a skyline point in every partition using MapReduce. We also develop the workload balancing methods to make the estimated execution times of all available machines to be similar. We did experiments to compare SKY-MR + with the state-of-the-art algorithms using MapReduce and confirmed the effectiveness as well as the scalability of SKY-MR + .
Author Kyuseok Shim
Yoonjae Park
Jun-Ki Min
Author_xml – sequence: 1
  givenname: Yoonjae
  surname: Park
  fullname: Park, Yoonjae
– sequence: 2
  givenname: Jun-Ki
  surname: Min
  fullname: Min, Jun-Ki
– sequence: 3
  givenname: Kyuseok
  surname: Shim
  fullname: Shim, Kyuseok
BookMark eNp9kMtOwzAQRS0EEm3hAxCbSKxT_IztJSrlIYp4tWvLcSfIpTjFThb9exJasWDBbGYsnzMj3SE6DHUAhM4IHhOC9eX84Xo6ppjIMS0E50IfoAERQuWUaHLYzZiTnDMuj9EwpRXGWElFBkhOq8o7D6HJnmPtICUf3rO6yt4-tmsfIHtpIXpI2eLn49FuXmHZOjhBR5VdJzjd9xFa3Eznk7t89nR7P7ma5Y5q1uRSlFpxuSxwBa4suGaaOGYV5ppzxZel1v1LF9pSUGWhLDhqhbSqoFxQx0boYrd3E-uvFlJjVnUbQ3fSUCJ5V0SwjpI7ysU6pQiVcb6xja9DE61fG4JNn5LpUzJ9SmafUmeSP-Ym-k8bt_865zvHA8AvL1UHKcq-AX2JcrM
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_knosys_2019_06_003
crossref_primary_10_1007_s44443_025_00183_3
crossref_primary_10_1109_TKDE_2020_3021470
crossref_primary_10_1007_s10619_020_07297_9
crossref_primary_10_1007_s11704_020_9246_2
crossref_primary_10_1007_s10115_018_1310_y
crossref_primary_10_1109_JIOT_2018_2882820
crossref_primary_10_1007_s11704_020_0122_x
crossref_primary_10_1109_TC_2022_3140884
crossref_primary_10_1007_s11227_017_2171_y
crossref_primary_10_1016_j_is_2019_101443
crossref_primary_10_1007_s12293_018_0271_8
crossref_primary_10_1007_s10586_017_1070_6
crossref_primary_10_1007_s41019_024_00261_y
crossref_primary_10_1016_j_chb_2018_10_009
crossref_primary_10_1002_cpe_4848
crossref_primary_10_3390_app10051708
Cites_doi 10.1109/TKDE.2011.64
10.1145/1559845.1559899
10.1145/2463676.2465324
10.1109/TPDS.2015.2472016
10.1109/ICDE.2011.5767896
10.1145/2274576.2274605
10.1145/1376616.1376642
10.1109/BigData.Congress.2013.35
10.1145/1412331.1412343
10.1016/j.adhoc.2015.07.006
10.1109/ICDE.2010.5447780
10.1145/1989323.1989333
10.1137/0117039
10.1109/ICDE.2001.914855
10.1145/872757.872814
10.1016/B978-155860869-6/50032-9
10.14778/2824032.2824040
10.14778/2556549.2556580
10.1109/ICDE.2003.1260846
10.1145/1327452.1327492
10.1007/978-3-642-12098-5_5
10.1098/rspl.1895.0041
10.2307/2332226
10.1016/j.is.2013.05.005
10.1109/TKDE.2006.48
10.1109/TKDE.2008.142
10.1007/978-3-642-15883-4_13
10.1016/j.is.2014.11.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2017.2654459
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1044
ExternalDocumentID 10_1109_TKDE_2017_2654459
7820182
Genre orig-research
GrantInformation_xml – fundername: Next-Generation Information Computing Development Program
– fundername: IITP
  grantid: IITP-2016-H8501-16-1013
– fundername: Ministry of Education
  grantid: 2015R1D1A1A01058909
  funderid: 10.13039/501100002701
– fundername: Basic Science Research Program
– fundername: Ministry of Science, ICT & Future Planning
  grantid: NRF-2012M3C4A7033342
  funderid: 10.13039/501100003621
– fundername: ITRC
– fundername: National Research Foundation of Korea (NRF)
  funderid: 10.13039/501100003725
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-75b9847d60fecb649391c3a80494484db993a80969a2e8b68aec2a57a862452c3
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399289300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Mon Jun 30 03:45:38 EDT 2025
Sat Nov 29 04:46:39 EST 2025
Tue Nov 18 22:27:35 EST 2025
Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-75b9847d60fecb649391c3a80494484db993a80969a2e8b68aec2a57a862452c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2174444153
PQPubID 85438
PageCount 14
ParticipantIDs proquest_journals_2174444153
crossref_citationtrail_10_1109_TKDE_2017_2654459
crossref_primary_10_1109_TKDE_2017_2654459
ieee_primary_7820182
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref15
ref14
ref31
ref30
ref33
ref32
ref10
ref2
ref1
ref16
ref19
ref18
(ref17) 2006
tao (ref22) 2006; 18
zhang (ref12) 2011
huang (ref26) 2006
ref24
ref23
pearson (ref34) 1895; 58
ref21
tan (ref20) 2001
mullesgaard (ref11) 2014
ref28
ref27
ref29
ref8
ref7
ref9
ref4
dellis (ref3) 2007
ref6
ref5
bartolini (ref25) 2006
References_xml – year: 2006
  ident: ref17
– ident: ref6
  doi: 10.1109/TKDE.2011.64
– ident: ref33
  doi: 10.1145/1559845.1559899
– ident: ref9
  doi: 10.1145/2463676.2465324
– ident: ref13
  doi: 10.1109/TPDS.2015.2472016
– ident: ref23
  doi: 10.1109/ICDE.2011.5767896
– start-page: 66
  year: 2006
  ident: ref26
  article-title: Skyline queries against mobile lightweight devices in MANETs
  publication-title: Proc 2nd Int Conf Data Eng
– ident: ref27
  doi: 10.1145/2274576.2274605
– ident: ref32
  doi: 10.1145/1376616.1376642
– ident: ref30
  doi: 10.1109/BigData.Congress.2013.35
– ident: ref21
  doi: 10.1145/1412331.1412343
– ident: ref31
  doi: 10.1016/j.adhoc.2015.07.006
– start-page: 403
  year: 2011
  ident: ref12
  article-title: Adapting skyline computation to the MapReduce framework: Algorithms and experiments
  publication-title: Proc Int Conf Database Syst Adv Appl
– ident: ref4
  doi: 10.1109/ICDE.2010.5447780
– ident: ref28
  doi: 10.1145/1989323.1989333
– ident: ref15
  doi: 10.1137/0117039
– ident: ref1
  doi: 10.1109/ICDE.2001.914855
– ident: ref2
  doi: 10.1145/872757.872814
– ident: ref19
  doi: 10.1016/B978-155860869-6/50032-9
– start-page: 37
  year: 2014
  ident: ref11
  article-title: Efficient skyline computation in MapReduce
  publication-title: Proc Intl Conf Extending Database Technology
– ident: ref16
  doi: 10.14778/2824032.2824040
– ident: ref14
  doi: 10.14778/2556549.2556580
– ident: ref18
  doi: 10.1109/ICDE.2003.1260846
– start-page: 291
  year: 2007
  ident: ref3
  article-title: Efficient computation of reverse skyline queries
  publication-title: Proc Int Conf On Very Large Data Bases
– ident: ref10
  doi: 10.1145/1327452.1327492
– ident: ref7
  doi: 10.1007/978-3-642-12098-5_5
– start-page: 405
  year: 2006
  ident: ref25
  article-title: SaLSa: Computing the skyline without scanning the whole sky
  publication-title: Proc 15th ACM Int Conf Inf Knowl Manage
– start-page: 301
  year: 2001
  ident: ref20
  article-title: Efficient progressive skyline computation
  publication-title: Proc 27th Int Conf Very Large Data Bases
– volume: 58
  start-page: 240
  year: 1895
  ident: ref34
  article-title: Note on regression and inheritance in the case of two parents
  publication-title: Proc Roy Soc London
  doi: 10.1098/rspl.1895.0041
– ident: ref35
  doi: 10.2307/2332226
– ident: ref24
  doi: 10.1016/j.is.2013.05.005
– volume: 18
  start-page: 377
  year: 2006
  ident: ref22
  article-title: Maintaining sliding window skylines on data streams
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2006.48
– ident: ref29
  doi: 10.1109/TKDE.2008.142
– ident: ref5
  doi: 10.1007/978-3-642-15883-4_13
– ident: ref8
  doi: 10.1016/j.is.2014.11.005
SSID ssj0008781
Score 2.341384
Snippet The skyline operator has attracted considerable attention recently due to its broad applications. However, computing a skyline is challenging today since we...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1031
SubjectTerms Algorithms
Big data
Buildings
Data management
distributed and parallel algorithms
Histograms
Indexes
MapReduce algorithms
Parallel algorithms
Partitioning algorithms
Partitions
Query processing
Scalability
Skyline queries
State of the art
Two dimensional displays
Title Efficient Processing of Skyline Queries Using MapReduce
URI https://ieeexplore.ieee.org/document/7820182
https://www.proquest.com/docview/2174444153
Volume 29
WOSCitedRecordID wos000399289300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHq61itUoOnsTtYzebbI6iLYJYfFTobclrQZS29CH4782kaVEUwdvukoTlyyYzs5n5PoCzREmeWllEsbU6ooqaSBVxESXaxR9UdURqMi82wfv9bDgU9yW4WNfCWGt98plt4qU_yzdjvcBfZS3kdnP-8AZscM6WtVrrXTfjXpDURRcuJkooDyeYnbZoDW6vu5jExZsxQ-4Z8c0GeVGVHzuxNy-9yv9ebBd2ghtJLpfzvgclO6pCZSXRQMKKrcL2F77BGvCuJ4xwY5FQIOAek3FBnl4_0N0kDwvkPZ4Rn0hA7uTkEZld7T4897qDq5soKCdE2pnvecRTJZzZMaxdWK0YFYno6ERmSAZDM2qU80rcnWBCxjZTLJNWxzLlEstF0lgnB1AejUf2EIi0SCpXMGaUpoayTBnDRZEaYVM30Z06tFdY5jrQiqO6xVvuw4u2yBH-HOHPA_x1OF93mSw5Nf5qXEO81w0D1HVorCYsD6tulmN4RTFATI5-73UMWzj2MmGxAeX5dGFPYFO_z19m01P_QX0CJTHHDg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3qY4r3nwSey2tmnTPIpOlM3hZYJvJbeCKJu4TfDfm5NlRVEE39qStOWkyTlfc873ARzFUrDEiCKIjFEBlVQHsoiKIFYWf1AZ8kRnTmyC9XrZ4yO_qcBJWQtjjHHJZ6aBh24vXw_VBH-VNZHbzcbDczCfUIt7ptVa5bqbMSdJavGFRUUxZX4PM2zxZr9z3sY0LtaIUmSf4d-8kJNV-bEWOwdzsfq_V1uDFR9IktPpyK9DxQw2YHUm0kD8nN2A5S-MgzVgbUcZYe9FfImAvUyGBbl__sCAk9xOkPl4RFwqAbkWr3fI7Wo24eGi3T-7DLx2QqCsAx8HLJHcOh6dtgqjZEp5zEMViwzpYGhGtbRxiT3jKReRyWSaCaMikTCBBSNJpOItqA6GA7MNRBiklSvSVEtFNU0zqTXjRaK5SexQh3VozWyZK08sjvoWL7kDGC2eo_lzNH_uzV-H47LL65RV46_GNbR32dCbug57swHL_bwb5QiwKELEeOf3XoeweNm_7ubdq15nF5bwOdP0xT2ojt8mZh8W1Pv4afR24D6uT61eylU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Processing+of+Skyline+Queries+Using+MapReduce&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Park%2C+Yoonjae&rft.au=Jun-Ki%2C+Min&rft.au=Shim%2C+Kyuseok&rft.date=2017-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=29&rft.issue=5&rft.spage=1031&rft_id=info:doi/10.1109%2FTKDE.2017.2654459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon