Spatial-Spectral Attention Network Guided With Change Magnitude Image for Land Cover Change Detection Using Remote Sensing Images
Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring, and wildfire destruction detection. However, bitemporal images are usually acquired at different atmospheric conditions, such as sun height and...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 12 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring, and wildfire destruction detection. However, bitemporal images are usually acquired at different atmospheric conditions, such as sun height and soil moisture, which usually cause pseudo and noise change in the change detection map. Changed areas on the ground also generally have various shapes and sizes, consequently making the utilization of spatial contextual information a challenging task. In this article, we design a novel neural network with a spatial-spectral attention mechanism and multiscale dilation convolution modules. This work is based on the previously demonstrated promising performance of convolutional neural network for LCCD with RSIs and attempts to capture more positive changes and further enhance the detection accuracies. The learning of the proposed neural network is guided with a change magnitude image. The performance and feasibility of the proposed network are validated with four pairs of RSIs that depict real land cover change events on the Earth's surface. Comparison of the performance of the proposed approach with that of five state-of-art methods indicates the superiority of the proposed network in terms of ten quantitative evaluation metrics and visual performance. Such as, the proposed network achieved an improvement of about 0.08%-14.87% in terms of overall accuracy (OA) for Dataset-A. |
|---|---|
| AbstractList | Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring, and wildfire destruction detection. However, bitemporal images are usually acquired at different atmospheric conditions, such as sun height and soil moisture, which usually cause pseudo and noise change in the change detection map. Changed areas on the ground also generally have various shapes and sizes, consequently making the utilization of spatial contextual information a challenging task. In this article, we design a novel neural network with a spatial–spectral attention mechanism and multiscale dilation convolution modules. This work is based on the previously demonstrated promising performance of convolutional neural network for LCCD with RSIs and attempts to capture more positive changes and further enhance the detection accuracies. The learning of the proposed neural network is guided with a change magnitude image. The performance and feasibility of the proposed network are validated with four pairs of RSIs that depict real land cover change events on the Earth’s surface. Comparison of the performance of the proposed approach with that of five state-of-art methods indicates the superiority of the proposed network in terms of ten quantitative evaluation metrics and visual performance. Such as, the proposed network achieved an improvement of about 0.08%–14.87% in terms of overall accuracy (OA) for Dataset-A. |
| Author | Benediktsson, Jon Atli Wang, Fengjun Cui, Guoqing Lei, Tao Lv, Zhiyong Sun, Weiwei |
| Author_xml | – sequence: 1 givenname: Zhiyong orcidid: 0000-0003-2595-4794 surname: Lv fullname: Lv, Zhiyong email: lvzhiyong_hotmail.com organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China – sequence: 2 givenname: Fengjun surname: Wang fullname: Wang, Fengjun email: wangfengjun_run@outlook.com organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China – sequence: 3 givenname: Guoqing surname: Cui fullname: Cui, Guoqing email: cuiguoqing@chd.edu.cn organization: Northwest Land and Resource Research Center, Shaanxi Normal University, Xi'an, China – sequence: 4 givenname: Jon Atli orcidid: 0000-0003-0621-9647 surname: Benediktsson fullname: Benediktsson, Jon Atli email: benedikt@hi.is organization: Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland – sequence: 5 givenname: Tao orcidid: 0000-0002-2104-9298 surname: Lei fullname: Lei, Tao email: leitaoly@163.com organization: School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, China – sequence: 6 givenname: Weiwei orcidid: 0000-0003-3399-7858 surname: Sun fullname: Sun, Weiwei email: nbsww@outlook.com organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China |
| BookMark | eNp9kE1LAzEURYMoWD9-gLgJuJ6az85kKVWrUBVsi8shM3mp0TapmVRx6T93xqoLF2bzeHDPDe_soW0fPCB0REmfUqJOp6P7SZ8RxvqcqlwRuoV6VMoiIwMhtlGPUDXIWKHYLtprmidCqJA076GPyUonpxfZZAV1inqBz1ICn1zw-BbSW4jPeLR2Bgx-cOkRDx-1nwO-0XPv0toAvl7qdrch4rH2Bg_DK8Sf1DmktrSrmjXOz_E9LEMCPAH_tX6hzQHasXrRwOH33Eezy4vp8Cob342uh2fjrGaKpywXWvGB5YJoBULoQqja0Lq9UREL1UAqKavKWm6IsFxZZqwmxgC1takqDnwfnWx6VzG8rKFJ5VNYR99-WbKcyEKyXNI2lW9SdQxNE8GWtUu6u6GV4xYlJWXnu-x8l53v8tt3S9I_5Cq6pY7v_zLHG8YBwG9eFbJoH_8ERIePdA |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2024_3432533 crossref_primary_10_1109_TGRS_2023_3278739 crossref_primary_10_1109_TGRS_2023_3243954 crossref_primary_10_1109_JSTARS_2025_3559708 crossref_primary_10_1109_TGRS_2023_3271024 crossref_primary_10_3390_agronomy14112678 crossref_primary_10_1109_TGRS_2023_3336791 crossref_primary_10_1109_TGRS_2024_3505201 crossref_primary_10_1109_TGRS_2023_3318521 crossref_primary_10_1109_TGRS_2024_3400215 crossref_primary_10_1007_s11227_025_07445_x crossref_primary_10_1109_TGRS_2023_3260121 crossref_primary_10_1109_JSTARS_2023_3288294 crossref_primary_10_1109_TGRS_2023_3311093 crossref_primary_10_1109_TGRS_2024_3500073 crossref_primary_10_1109_TGRS_2025_3555959 crossref_primary_10_1049_ipr2_13037 crossref_primary_10_1109_JPROC_2022_3219376 crossref_primary_10_1109_JSEN_2023_3271391 crossref_primary_10_3389_fevo_2023_1197419 crossref_primary_10_1109_TGRS_2023_3258061 crossref_primary_10_1109_TGRS_2023_3305554 crossref_primary_10_1080_15481603_2024_2426589 crossref_primary_10_1109_TGRS_2023_3299642 crossref_primary_10_1109_TGRS_2024_3386334 crossref_primary_10_1109_JSTARS_2025_3586016 crossref_primary_10_22399_ijcesen_1360 crossref_primary_10_1007_s10851_025_01238_w crossref_primary_10_1109_TGRS_2024_3380199 crossref_primary_10_1109_TGRS_2023_3275140 crossref_primary_10_1109_TGRS_2024_3403877 crossref_primary_10_1109_TGRS_2023_3325536 crossref_primary_10_1109_TGRS_2023_3280647 crossref_primary_10_1109_TGRS_2023_3266477 crossref_primary_10_1109_TGRS_2023_3320805 crossref_primary_10_1109_TGRS_2023_3286183 crossref_primary_10_1109_TGRS_2023_3294884 crossref_primary_10_1109_JSTARS_2022_3228261 crossref_primary_10_1109_JSTARS_2024_3374290 crossref_primary_10_1109_LGRS_2023_3251652 crossref_primary_10_3390_land13101696 crossref_primary_10_1109_TGRS_2024_3413677 crossref_primary_10_1109_JSTARS_2023_3316302 crossref_primary_10_1109_TGRS_2024_3367970 crossref_primary_10_1109_JSTARS_2024_3479703 crossref_primary_10_1109_MGRS_2024_3412770 crossref_primary_10_1109_TGRS_2025_3590023 crossref_primary_10_1109_JSTARS_2024_3435575 crossref_primary_10_1109_TGRS_2023_3337816 crossref_primary_10_1109_TGRS_2024_3424532 crossref_primary_10_1109_JSTARS_2025_3601996 crossref_primary_10_1109_TGRS_2023_3323409 crossref_primary_10_3390_app13169180 crossref_primary_10_1109_JSTARS_2023_3268104 crossref_primary_10_1109_LGRS_2023_3318593 crossref_primary_10_1109_TGRS_2023_3325829 crossref_primary_10_1109_TGRS_2023_3346968 crossref_primary_10_1109_TGRS_2023_3265879 crossref_primary_10_3390_electronics12010035 crossref_primary_10_1109_TGRS_2024_3381751 crossref_primary_10_1016_j_displa_2025_102994 crossref_primary_10_1109_TGRS_2024_3438465 crossref_primary_10_1109_JSTARS_2024_3455261 crossref_primary_10_1109_TGRS_2023_3261273 crossref_primary_10_1109_TCSVT_2024_3494820 crossref_primary_10_1109_TGRS_2024_3376432 crossref_primary_10_1109_TGRS_2024_3410977 crossref_primary_10_1109_TGRS_2022_3204834 crossref_primary_10_1109_TIM_2024_3373089 crossref_primary_10_3390_app14135415 crossref_primary_10_3390_rs16040629 crossref_primary_10_4081_jae_2025_1783 crossref_primary_10_3390_rs17010042 crossref_primary_10_1109_JSTARS_2025_3569128 crossref_primary_10_1109_JSTARS_2024_3454754 crossref_primary_10_1109_TGRS_2025_3525811 crossref_primary_10_1016_j_displa_2025_103097 crossref_primary_10_1109_TGRS_2023_3275753 crossref_primary_10_1109_TGRS_2023_3297092 crossref_primary_10_1109_TGRS_2023_3321716 crossref_primary_10_1109_TGRS_2024_3491111 crossref_primary_10_1109_TGRS_2023_3317701 crossref_primary_10_1109_TGRS_2025_3548562 crossref_primary_10_1109_TGRS_2025_3545012 crossref_primary_10_1117_1_JRS_17_044515 crossref_primary_10_3390_s25133882 crossref_primary_10_1109_TGRS_2022_3221489 crossref_primary_10_1109_TGRS_2024_3352050 crossref_primary_10_1109_TGRS_2023_3268038 |
| Cites_doi | 10.1109/TGRS.2021.3130940 10.1109/TGRS.2022.3174276 10.3390/rs11020142 10.1109/JSTARS.2012.2220531 10.1109/TGRS.2021.3131993 10.1016/j.jag.2011.10.013 10.1007/978-3-319-47037-5_2 10.1109/LGRS.2017.2763182 10.3390/rs11202417 10.1016/j.rse.2016.10.008 10.1016/j.rse.2013.01.012 10.1109/TGRS.2021.3085870 10.1109/LGRS.2020.3041409 10.1109/TGRS.2020.2996064 10.3390/rs12020205 10.1080/2150704X.2017.1317929 10.1080/01431161.2019.1577576 10.1016/j.procs.2016.05.438 10.1016/j.patcog.2021.108316 10.1016/j.rse.2015.12.040 10.1109/MGRS.2021.3088865 10.1109/JSTARS.2010.2053918 10.1109/TNNLS.2018.2847309 10.3390/rs12010174 10.1109/MGRS.2021.3063465 10.1109/LGRS.2021.3098774 10.1109/JSTARS.2020.2980895 10.1109/LGRS.2020.3037930 10.1109/TGRS.2010.2045506 10.1109/TGRS.2017.2783902 10.1016/j.isprsjprs.2013.09.014 10.1109/TGRS.2022.3149780 10.3390/rs12101688 10.1109/TGRS.2020.3015826 10.1109/TGRS.2019.2927659 10.1007/978-3-319-24574-4_28 10.1109/TGRS.2021.3140108 10.3390/rs13040630 10.1109/LGRS.2009.2025059 10.17977/um018v2i12019p41-46 10.1109/TGRS.2018.2886643 10.1016/j.rse.2015.01.006 10.1109/TGRS.2020.2981051 10.1109/TGRS.2021.3053571 10.1109/LGRS.2018.2889307 10.1109/LGRS.2013.2278205 10.1109/LGRS.2017.2681198 10.1109/TGRS.2021.3110998 10.1109/ICIP.2018.8451652 10.1109/TGRS.2021.3128764 10.3390/rs10081251 10.1109/LGRS.2007.905121 10.5194/isprs-archives-XLIII-B3-2020-1507-2020 10.1080/01431168908903939 10.1109/LGRS.2022.3159545 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2022.3197901 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TGRS_2022_3197901 9858888 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation China grantid: 41971296; 42122009; 61701396 funderid: 10.13039/501100001809 – fundername: Key Research and Development Program of Shaanxi grantid: 2022GY-436 – fundername: Natural Science Basic Research Program of Shaanxi grantid: 2021JC-47 funderid: 10.13039/501100017596 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-74a936f340a9e44a849cd1c15590feb65955bbff3d04f39f2dfa0dde1fcdbb3e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844159700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:21:40 EDT 2025 Sat Nov 29 02:50:24 EST 2025 Tue Nov 18 20:44:39 EST 2025 Wed Aug 27 02:28:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-74a936f340a9e44a849cd1c15590feb65955bbff3d04f39f2dfa0dde1fcdbb3e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2104-9298 0000-0003-0621-9647 0000-0003-3399-7858 0000-0003-2595-4794 |
| PQID | 2705852751 |
| PQPubID | 85465 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2022_3197901 crossref_primary_10_1109_TGRS_2022_3197901 ieee_primary_9858888 proquest_journals_2705852751 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Jianya (ref48) 2008; 37 ref51 ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref47 doi: 10.1109/TGRS.2021.3130940 – ident: ref3 doi: 10.1109/TGRS.2022.3174276 – ident: ref25 doi: 10.3390/rs11020142 – ident: ref33 doi: 10.1109/JSTARS.2012.2220531 – ident: ref38 doi: 10.1109/TGRS.2021.3131993 – ident: ref22 doi: 10.1016/j.jag.2011.10.013 – ident: ref6 doi: 10.1007/978-3-319-47037-5_2 – ident: ref32 doi: 10.1109/LGRS.2017.2763182 – ident: ref46 doi: 10.3390/rs11202417 – ident: ref9 doi: 10.1016/j.rse.2016.10.008 – ident: ref10 doi: 10.1016/j.rse.2013.01.012 – ident: ref37 doi: 10.1109/TGRS.2021.3085870 – ident: ref55 doi: 10.1109/LGRS.2020.3041409 – ident: ref53 doi: 10.1109/TGRS.2020.2996064 – ident: ref45 doi: 10.3390/rs12020205 – ident: ref18 doi: 10.1080/2150704X.2017.1317929 – ident: ref24 doi: 10.1080/01431161.2019.1577576 – ident: ref15 doi: 10.1016/j.procs.2016.05.438 – ident: ref28 doi: 10.1016/j.patcog.2021.108316 – ident: ref11 doi: 10.1016/j.rse.2015.12.040 – ident: ref12 doi: 10.1109/MGRS.2021.3088865 – ident: ref20 doi: 10.1109/JSTARS.2010.2053918 – ident: ref41 doi: 10.1109/TNNLS.2018.2847309 – volume: 37 start-page: 757 issue: B7 year: 2008 ident: ref48 article-title: A review of multi-temporal remote sensing data change detection algorithms publication-title: Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci. – ident: ref31 doi: 10.3390/rs12010174 – ident: ref13 doi: 10.1109/MGRS.2021.3063465 – ident: ref44 doi: 10.1109/LGRS.2021.3098774 – ident: ref50 doi: 10.1109/JSTARS.2020.2980895 – ident: ref29 doi: 10.1109/LGRS.2020.3037930 – ident: ref17 doi: 10.1109/TGRS.2010.2045506 – ident: ref2 doi: 10.1109/TGRS.2017.2783902 – ident: ref30 doi: 10.1016/j.isprsjprs.2013.09.014 – ident: ref4 doi: 10.1109/TGRS.2022.3149780 – ident: ref34 doi: 10.3390/rs12101688 – ident: ref8 doi: 10.1109/TGRS.2020.3015826 – ident: ref27 doi: 10.1109/TGRS.2019.2927659 – ident: ref35 doi: 10.1007/978-3-319-24574-4_28 – ident: ref5 doi: 10.1109/TGRS.2021.3140108 – ident: ref26 doi: 10.3390/rs13040630 – ident: ref14 doi: 10.1109/LGRS.2009.2025059 – ident: ref56 doi: 10.17977/um018v2i12019p41-46 – ident: ref16 doi: 10.1109/TGRS.2018.2886643 – ident: ref49 doi: 10.1016/j.rse.2015.01.006 – ident: ref42 doi: 10.1109/TGRS.2020.2981051 – ident: ref52 doi: 10.1109/TGRS.2021.3053571 – ident: ref43 doi: 10.1109/LGRS.2018.2889307 – ident: ref21 doi: 10.1109/LGRS.2013.2278205 – ident: ref19 doi: 10.1109/LGRS.2017.2681198 – ident: ref54 doi: 10.1109/TGRS.2021.3110998 – ident: ref40 doi: 10.1109/ICIP.2018.8451652 – ident: ref1 doi: 10.1109/TGRS.2021.3128764 – ident: ref51 doi: 10.3390/rs10081251 – ident: ref23 doi: 10.1109/LGRS.2007.905121 – ident: ref36 doi: 10.5194/isprs-archives-XLIII-B3-2020-1507-2020 – ident: ref7 doi: 10.1080/01431168908903939 – ident: ref39 doi: 10.1109/LGRS.2022.3159545 |
| SSID | ssj0014517 |
| Score | 2.6602082 |
| Snippet | Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks Atmospheric conditions Change detection Convolution Convolutional block attention module (CBAM) Deformation Detection Earth surface Feature extraction guide change magnitude image (CMI) Image acquisition Land cover land cover change detection (LCCD) Mathematical models Moisture effects multiscale dilation convolution module (MDCM) Natural disasters Neural networks Remote sensing remote sensing images (RSIs) Shape Smoothing methods Soil moisture Temperature Wildfires |
| Title | Spatial-Spectral Attention Network Guided With Change Magnitude Image for Land Cover Change Detection Using Remote Sensing Images |
| URI | https://ieeexplore.ieee.org/document/9858888 https://www.proquest.com/docview/2705852751 |
| Volume | 60 |
| WOSCitedRecordID | wos000844159700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7a0MH2sP7aWLa06KFPY25lWbasx5A1baENpe3WvBnbOrHA5ozE2fv-8-lkJQw2Cn2zQWcMn6TT6b67D-AkdT43d545Si3KSJaminRWiagWae5Oy7nOfLPqr9dqMsmnU327BZ82tTCI6MlneEqPPpdv5vWKrsrOdJ66gC3fhm2lVFertckYyDQOpdFZ5IIIETKYMddnDxd39y4SFMIFqFrpoP-y9kFeVOWfndi7l_Hu835sD16HYyQbdrjvwxY2B_Dqr-aCB_DCkzvr5SH8Jt1hN88iEpunmw02bNuO5sgmHQ2cXaxmBg17nLXfWFdxwG5KYhatDLKrH27XYe54y67LxrAR0T7Xoz5j69lcDfPsA3aHDnxk90SMd6_edPkGvozPH0aXUZBecCDppI2ULHWS2UTyUqOUZS51beKacpjcYkVNCNOqsjYxXNpEW2Fsyd1OGdvaVFWCyVvoNfMG3wEjFxgbE2emJLkzqY3zj5kQKLg2Ktd94Gswijr0JSd5jO-Fj0-4Lgi_gvArAn59-Lgx-dk15Xhq8CEBthkYsOrDYI14EZbtshCKu_BJqDR-_3-rD_CSvt3dwQyg1y5WeAQ79a92tlwc-xn5B0Lw3co |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xKAIOtLzE8mh96KlqiuM4Dx9XvNVlVcG25RYl8VhdCQLazXLnn-NxvKtKICRuieRRIn22x-P5Zj6Ar7H1uZn1zEFsUAay0GWgklIElYgze1rOVOKaVf_ppf1-dnOjfs3B91ktDCI68hn-oEeXy9f31YSuyg5VFtuALZuHxVhKEbbVWrOcgYxDXxydBDaMED6HGXJ1ODi7uraxoBA2RFWp8gowUy_kZFVe7MXOwZx-fN-vfYI1f5Bk3Rb5dZjDegNW_2svuAFLjt5ZjTfhiZSH7UwLSG6e7jZYt2laoiPrt0RwdjYZatTs77D5x9qaA3ZZELdoopFd3Nl9h9kDLusVtWZHRPycjjrGxvG5aub4B-wKLfzIrokab1-d6XgLfp-eDI7OAy--YGFSUROkslBRYiLJC4VSFplUlQ4rymJygyW1IYzL0phIc2kiZYQ2Bbd7ZWgqXZYRRtuwUN_XuAOMnGCodZjoggTPpNLWQyZCoOBKp5nqAJ-CkVe-MzkJZNzmLkLhKif8csIv9_h14NvM5KFty_HW4E0CbDbQY9WB_SniuV-441yk3AZQIo3D3detvsDy-eCyl_cu-j_3YIW-097I7MNCM5rgAXyoHpvhePTZzc5n8R_hEQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial%E2%80%93Spectral+Attention+Network+Guided+With+Change+Magnitude+Image+for+Land+Cover+Change+Detection+Using+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Lv%2C+Zhiyong&rft.au=Wang%2C+Fengjun&rft.au=Cui%2C+Guoqing&rft.au=Benediktsson%2C+Jon+Atli&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2022.3197901&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3197901 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |