Spatial-Spectral Attention Network Guided With Change Magnitude Image for Land Cover Change Detection Using Remote Sensing Images

Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring, and wildfire destruction detection. However, bitemporal images are usually acquired at different atmospheric conditions, such as sun height and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 12
Hlavní autori: Lv, Zhiyong, Wang, Fengjun, Cui, Guoqing, Benediktsson, Jon Atli, Lei, Tao, Sun, Weiwei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring, and wildfire destruction detection. However, bitemporal images are usually acquired at different atmospheric conditions, such as sun height and soil moisture, which usually cause pseudo and noise change in the change detection map. Changed areas on the ground also generally have various shapes and sizes, consequently making the utilization of spatial contextual information a challenging task. In this article, we design a novel neural network with a spatial-spectral attention mechanism and multiscale dilation convolution modules. This work is based on the previously demonstrated promising performance of convolutional neural network for LCCD with RSIs and attempts to capture more positive changes and further enhance the detection accuracies. The learning of the proposed neural network is guided with a change magnitude image. The performance and feasibility of the proposed network are validated with four pairs of RSIs that depict real land cover change events on the Earth's surface. Comparison of the performance of the proposed approach with that of five state-of-art methods indicates the superiority of the proposed network in terms of ten quantitative evaluation metrics and visual performance. Such as, the proposed network achieved an improvement of about 0.08%-14.87% in terms of overall accuracy (OA) for Dataset-A.
AbstractList Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring, and wildfire destruction detection. However, bitemporal images are usually acquired at different atmospheric conditions, such as sun height and soil moisture, which usually cause pseudo and noise change in the change detection map. Changed areas on the ground also generally have various shapes and sizes, consequently making the utilization of spatial contextual information a challenging task. In this article, we design a novel neural network with a spatial–spectral attention mechanism and multiscale dilation convolution modules. This work is based on the previously demonstrated promising performance of convolutional neural network for LCCD with RSIs and attempts to capture more positive changes and further enhance the detection accuracies. The learning of the proposed neural network is guided with a change magnitude image. The performance and feasibility of the proposed network are validated with four pairs of RSIs that depict real land cover change events on the Earth’s surface. Comparison of the performance of the proposed approach with that of five state-of-art methods indicates the superiority of the proposed network in terms of ten quantitative evaluation metrics and visual performance. Such as, the proposed network achieved an improvement of about 0.08%–14.87% in terms of overall accuracy (OA) for Dataset-A.
Author Benediktsson, Jon Atli
Wang, Fengjun
Cui, Guoqing
Lei, Tao
Lv, Zhiyong
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Zhiyong
  orcidid: 0000-0003-2595-4794
  surname: Lv
  fullname: Lv, Zhiyong
  email: lvzhiyong_hotmail.com
  organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
– sequence: 2
  givenname: Fengjun
  surname: Wang
  fullname: Wang, Fengjun
  email: wangfengjun_run@outlook.com
  organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
– sequence: 3
  givenname: Guoqing
  surname: Cui
  fullname: Cui, Guoqing
  email: cuiguoqing@chd.edu.cn
  organization: Northwest Land and Resource Research Center, Shaanxi Normal University, Xi'an, China
– sequence: 4
  givenname: Jon Atli
  orcidid: 0000-0003-0621-9647
  surname: Benediktsson
  fullname: Benediktsson, Jon Atli
  email: benedikt@hi.is
  organization: Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
– sequence: 5
  givenname: Tao
  orcidid: 0000-0002-2104-9298
  surname: Lei
  fullname: Lei, Tao
  email: leitaoly@163.com
  organization: School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 6
  givenname: Weiwei
  orcidid: 0000-0003-3399-7858
  surname: Sun
  fullname: Sun, Weiwei
  email: nbsww@outlook.com
  organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China
BookMark eNp9kE1LAzEURYMoWD9-gLgJuJ6az85kKVWrUBVsi8shM3mp0TapmVRx6T93xqoLF2bzeHDPDe_soW0fPCB0REmfUqJOp6P7SZ8RxvqcqlwRuoV6VMoiIwMhtlGPUDXIWKHYLtprmidCqJA076GPyUonpxfZZAV1inqBz1ICn1zw-BbSW4jPeLR2Bgx-cOkRDx-1nwO-0XPv0toAvl7qdrch4rH2Bg_DK8Sf1DmktrSrmjXOz_E9LEMCPAH_tX6hzQHasXrRwOH33Eezy4vp8Cob342uh2fjrGaKpywXWvGB5YJoBULoQqja0Lq9UREL1UAqKavKWm6IsFxZZqwmxgC1takqDnwfnWx6VzG8rKFJ5VNYR99-WbKcyEKyXNI2lW9SdQxNE8GWtUu6u6GV4xYlJWXnu-x8l53v8tt3S9I_5Cq6pY7v_zLHG8YBwG9eFbJoH_8ERIePdA
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2024_3432533
crossref_primary_10_1109_TGRS_2023_3278739
crossref_primary_10_1109_TGRS_2023_3243954
crossref_primary_10_1109_JSTARS_2025_3559708
crossref_primary_10_1109_TGRS_2023_3271024
crossref_primary_10_3390_agronomy14112678
crossref_primary_10_1109_TGRS_2023_3336791
crossref_primary_10_1109_TGRS_2024_3505201
crossref_primary_10_1109_TGRS_2023_3318521
crossref_primary_10_1109_TGRS_2024_3400215
crossref_primary_10_1007_s11227_025_07445_x
crossref_primary_10_1109_TGRS_2023_3260121
crossref_primary_10_1109_JSTARS_2023_3288294
crossref_primary_10_1109_TGRS_2023_3311093
crossref_primary_10_1109_TGRS_2024_3500073
crossref_primary_10_1109_TGRS_2025_3555959
crossref_primary_10_1049_ipr2_13037
crossref_primary_10_1109_JPROC_2022_3219376
crossref_primary_10_1109_JSEN_2023_3271391
crossref_primary_10_3389_fevo_2023_1197419
crossref_primary_10_1109_TGRS_2023_3258061
crossref_primary_10_1109_TGRS_2023_3305554
crossref_primary_10_1080_15481603_2024_2426589
crossref_primary_10_1109_TGRS_2023_3299642
crossref_primary_10_1109_TGRS_2024_3386334
crossref_primary_10_1109_JSTARS_2025_3586016
crossref_primary_10_22399_ijcesen_1360
crossref_primary_10_1007_s10851_025_01238_w
crossref_primary_10_1109_TGRS_2024_3380199
crossref_primary_10_1109_TGRS_2023_3275140
crossref_primary_10_1109_TGRS_2024_3403877
crossref_primary_10_1109_TGRS_2023_3325536
crossref_primary_10_1109_TGRS_2023_3280647
crossref_primary_10_1109_TGRS_2023_3266477
crossref_primary_10_1109_TGRS_2023_3320805
crossref_primary_10_1109_TGRS_2023_3286183
crossref_primary_10_1109_TGRS_2023_3294884
crossref_primary_10_1109_JSTARS_2022_3228261
crossref_primary_10_1109_JSTARS_2024_3374290
crossref_primary_10_1109_LGRS_2023_3251652
crossref_primary_10_3390_land13101696
crossref_primary_10_1109_TGRS_2024_3413677
crossref_primary_10_1109_JSTARS_2023_3316302
crossref_primary_10_1109_TGRS_2024_3367970
crossref_primary_10_1109_JSTARS_2024_3479703
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_1109_TGRS_2025_3590023
crossref_primary_10_1109_JSTARS_2024_3435575
crossref_primary_10_1109_TGRS_2023_3337816
crossref_primary_10_1109_TGRS_2024_3424532
crossref_primary_10_1109_JSTARS_2025_3601996
crossref_primary_10_1109_TGRS_2023_3323409
crossref_primary_10_3390_app13169180
crossref_primary_10_1109_JSTARS_2023_3268104
crossref_primary_10_1109_LGRS_2023_3318593
crossref_primary_10_1109_TGRS_2023_3325829
crossref_primary_10_1109_TGRS_2023_3346968
crossref_primary_10_1109_TGRS_2023_3265879
crossref_primary_10_3390_electronics12010035
crossref_primary_10_1109_TGRS_2024_3381751
crossref_primary_10_1016_j_displa_2025_102994
crossref_primary_10_1109_TGRS_2024_3438465
crossref_primary_10_1109_JSTARS_2024_3455261
crossref_primary_10_1109_TGRS_2023_3261273
crossref_primary_10_1109_TCSVT_2024_3494820
crossref_primary_10_1109_TGRS_2024_3376432
crossref_primary_10_1109_TGRS_2024_3410977
crossref_primary_10_1109_TGRS_2022_3204834
crossref_primary_10_1109_TIM_2024_3373089
crossref_primary_10_3390_app14135415
crossref_primary_10_3390_rs16040629
crossref_primary_10_4081_jae_2025_1783
crossref_primary_10_3390_rs17010042
crossref_primary_10_1109_JSTARS_2025_3569128
crossref_primary_10_1109_JSTARS_2024_3454754
crossref_primary_10_1109_TGRS_2025_3525811
crossref_primary_10_1016_j_displa_2025_103097
crossref_primary_10_1109_TGRS_2023_3275753
crossref_primary_10_1109_TGRS_2023_3297092
crossref_primary_10_1109_TGRS_2023_3321716
crossref_primary_10_1109_TGRS_2024_3491111
crossref_primary_10_1109_TGRS_2023_3317701
crossref_primary_10_1109_TGRS_2025_3548562
crossref_primary_10_1109_TGRS_2025_3545012
crossref_primary_10_1117_1_JRS_17_044515
crossref_primary_10_3390_s25133882
crossref_primary_10_1109_TGRS_2022_3221489
crossref_primary_10_1109_TGRS_2024_3352050
crossref_primary_10_1109_TGRS_2023_3268038
Cites_doi 10.1109/TGRS.2021.3130940
10.1109/TGRS.2022.3174276
10.3390/rs11020142
10.1109/JSTARS.2012.2220531
10.1109/TGRS.2021.3131993
10.1016/j.jag.2011.10.013
10.1007/978-3-319-47037-5_2
10.1109/LGRS.2017.2763182
10.3390/rs11202417
10.1016/j.rse.2016.10.008
10.1016/j.rse.2013.01.012
10.1109/TGRS.2021.3085870
10.1109/LGRS.2020.3041409
10.1109/TGRS.2020.2996064
10.3390/rs12020205
10.1080/2150704X.2017.1317929
10.1080/01431161.2019.1577576
10.1016/j.procs.2016.05.438
10.1016/j.patcog.2021.108316
10.1016/j.rse.2015.12.040
10.1109/MGRS.2021.3088865
10.1109/JSTARS.2010.2053918
10.1109/TNNLS.2018.2847309
10.3390/rs12010174
10.1109/MGRS.2021.3063465
10.1109/LGRS.2021.3098774
10.1109/JSTARS.2020.2980895
10.1109/LGRS.2020.3037930
10.1109/TGRS.2010.2045506
10.1109/TGRS.2017.2783902
10.1016/j.isprsjprs.2013.09.014
10.1109/TGRS.2022.3149780
10.3390/rs12101688
10.1109/TGRS.2020.3015826
10.1109/TGRS.2019.2927659
10.1007/978-3-319-24574-4_28
10.1109/TGRS.2021.3140108
10.3390/rs13040630
10.1109/LGRS.2009.2025059
10.17977/um018v2i12019p41-46
10.1109/TGRS.2018.2886643
10.1016/j.rse.2015.01.006
10.1109/TGRS.2020.2981051
10.1109/TGRS.2021.3053571
10.1109/LGRS.2018.2889307
10.1109/LGRS.2013.2278205
10.1109/LGRS.2017.2681198
10.1109/TGRS.2021.3110998
10.1109/ICIP.2018.8451652
10.1109/TGRS.2021.3128764
10.3390/rs10081251
10.1109/LGRS.2007.905121
10.5194/isprs-archives-XLIII-B3-2020-1507-2020
10.1080/01431168908903939
10.1109/LGRS.2022.3159545
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2022.3197901
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 12
ExternalDocumentID 10_1109_TGRS_2022_3197901
9858888
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation China
  grantid: 41971296; 42122009; 61701396
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Program of Shaanxi
  grantid: 2022GY-436
– fundername: Natural Science Basic Research Program of Shaanxi
  grantid: 2021JC-47
  funderid: 10.13039/501100017596
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-74a936f340a9e44a849cd1c15590feb65955bbff3d04f39f2dfa0dde1fcdbb3e3
IEDL.DBID RIE
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844159700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:21:40 EDT 2025
Sat Nov 29 02:50:24 EST 2025
Tue Nov 18 20:44:39 EST 2025
Wed Aug 27 02:28:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-74a936f340a9e44a849cd1c15590feb65955bbff3d04f39f2dfa0dde1fcdbb3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2104-9298
0000-0003-0621-9647
0000-0003-3399-7858
0000-0003-2595-4794
PQID 2705852751
PQPubID 85465
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2022_3197901
crossref_primary_10_1109_TGRS_2022_3197901
ieee_primary_9858888
proquest_journals_2705852751
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Jianya (ref48) 2008; 37
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref47
  doi: 10.1109/TGRS.2021.3130940
– ident: ref3
  doi: 10.1109/TGRS.2022.3174276
– ident: ref25
  doi: 10.3390/rs11020142
– ident: ref33
  doi: 10.1109/JSTARS.2012.2220531
– ident: ref38
  doi: 10.1109/TGRS.2021.3131993
– ident: ref22
  doi: 10.1016/j.jag.2011.10.013
– ident: ref6
  doi: 10.1007/978-3-319-47037-5_2
– ident: ref32
  doi: 10.1109/LGRS.2017.2763182
– ident: ref46
  doi: 10.3390/rs11202417
– ident: ref9
  doi: 10.1016/j.rse.2016.10.008
– ident: ref10
  doi: 10.1016/j.rse.2013.01.012
– ident: ref37
  doi: 10.1109/TGRS.2021.3085870
– ident: ref55
  doi: 10.1109/LGRS.2020.3041409
– ident: ref53
  doi: 10.1109/TGRS.2020.2996064
– ident: ref45
  doi: 10.3390/rs12020205
– ident: ref18
  doi: 10.1080/2150704X.2017.1317929
– ident: ref24
  doi: 10.1080/01431161.2019.1577576
– ident: ref15
  doi: 10.1016/j.procs.2016.05.438
– ident: ref28
  doi: 10.1016/j.patcog.2021.108316
– ident: ref11
  doi: 10.1016/j.rse.2015.12.040
– ident: ref12
  doi: 10.1109/MGRS.2021.3088865
– ident: ref20
  doi: 10.1109/JSTARS.2010.2053918
– ident: ref41
  doi: 10.1109/TNNLS.2018.2847309
– volume: 37
  start-page: 757
  issue: B7
  year: 2008
  ident: ref48
  article-title: A review of multi-temporal remote sensing data change detection algorithms
  publication-title: Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci.
– ident: ref31
  doi: 10.3390/rs12010174
– ident: ref13
  doi: 10.1109/MGRS.2021.3063465
– ident: ref44
  doi: 10.1109/LGRS.2021.3098774
– ident: ref50
  doi: 10.1109/JSTARS.2020.2980895
– ident: ref29
  doi: 10.1109/LGRS.2020.3037930
– ident: ref17
  doi: 10.1109/TGRS.2010.2045506
– ident: ref2
  doi: 10.1109/TGRS.2017.2783902
– ident: ref30
  doi: 10.1016/j.isprsjprs.2013.09.014
– ident: ref4
  doi: 10.1109/TGRS.2022.3149780
– ident: ref34
  doi: 10.3390/rs12101688
– ident: ref8
  doi: 10.1109/TGRS.2020.3015826
– ident: ref27
  doi: 10.1109/TGRS.2019.2927659
– ident: ref35
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref5
  doi: 10.1109/TGRS.2021.3140108
– ident: ref26
  doi: 10.3390/rs13040630
– ident: ref14
  doi: 10.1109/LGRS.2009.2025059
– ident: ref56
  doi: 10.17977/um018v2i12019p41-46
– ident: ref16
  doi: 10.1109/TGRS.2018.2886643
– ident: ref49
  doi: 10.1016/j.rse.2015.01.006
– ident: ref42
  doi: 10.1109/TGRS.2020.2981051
– ident: ref52
  doi: 10.1109/TGRS.2021.3053571
– ident: ref43
  doi: 10.1109/LGRS.2018.2889307
– ident: ref21
  doi: 10.1109/LGRS.2013.2278205
– ident: ref19
  doi: 10.1109/LGRS.2017.2681198
– ident: ref54
  doi: 10.1109/TGRS.2021.3110998
– ident: ref40
  doi: 10.1109/ICIP.2018.8451652
– ident: ref1
  doi: 10.1109/TGRS.2021.3128764
– ident: ref51
  doi: 10.3390/rs10081251
– ident: ref23
  doi: 10.1109/LGRS.2007.905121
– ident: ref36
  doi: 10.5194/isprs-archives-XLIII-B3-2020-1507-2020
– ident: ref7
  doi: 10.1080/01431168908903939
– ident: ref39
  doi: 10.1109/LGRS.2022.3159545
SSID ssj0014517
Score 2.6602082
Snippet Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Atmospheric conditions
Change detection
Convolution
Convolutional block attention module (CBAM)
Deformation
Detection
Earth surface
Feature extraction
guide change magnitude image (CMI)
Image acquisition
Land cover
land cover change detection (LCCD)
Mathematical models
Moisture effects
multiscale dilation convolution module (MDCM)
Natural disasters
Neural networks
Remote sensing
remote sensing images (RSIs)
Shape
Smoothing methods
Soil moisture
Temperature
Wildfires
Title Spatial-Spectral Attention Network Guided With Change Magnitude Image for Land Cover Change Detection Using Remote Sensing Images
URI https://ieeexplore.ieee.org/document/9858888
https://www.proquest.com/docview/2705852751
Volume 60
WOSCitedRecordID wos000844159700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7a0MH2sP7aWLa06KFPY25lWbasx5A1baENpe3WvBnbOrHA5ozE2fv-8-lkJQw2Cn2zQWcMn6TT6b67D-AkdT43d545Si3KSJaminRWiagWae5Oy7nOfLPqr9dqMsmnU327BZ82tTCI6MlneEqPPpdv5vWKrsrOdJ66gC3fhm2lVFertckYyDQOpdFZ5IIIETKYMddnDxd39y4SFMIFqFrpoP-y9kFeVOWfndi7l_Hu835sD16HYyQbdrjvwxY2B_Dqr-aCB_DCkzvr5SH8Jt1hN88iEpunmw02bNuO5sgmHQ2cXaxmBg17nLXfWFdxwG5KYhatDLKrH27XYe54y67LxrAR0T7Xoz5j69lcDfPsA3aHDnxk90SMd6_edPkGvozPH0aXUZBecCDppI2ULHWS2UTyUqOUZS51beKacpjcYkVNCNOqsjYxXNpEW2Fsyd1OGdvaVFWCyVvoNfMG3wEjFxgbE2emJLkzqY3zj5kQKLg2Ktd94Gswijr0JSd5jO-Fj0-4Lgi_gvArAn59-Lgx-dk15Xhq8CEBthkYsOrDYI14EZbtshCKu_BJqDR-_3-rD_CSvt3dwQyg1y5WeAQ79a92tlwc-xn5B0Lw3co
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xKAIOtLzE8mh96KlqiuM4Dx9XvNVlVcG25RYl8VhdCQLazXLnn-NxvKtKICRuieRRIn22x-P5Zj6Ar7H1uZn1zEFsUAay0GWgklIElYgze1rOVOKaVf_ppf1-dnOjfs3B91ktDCI68hn-oEeXy9f31YSuyg5VFtuALZuHxVhKEbbVWrOcgYxDXxydBDaMED6HGXJ1ODi7uraxoBA2RFWp8gowUy_kZFVe7MXOwZx-fN-vfYI1f5Bk3Rb5dZjDegNW_2svuAFLjt5ZjTfhiZSH7UwLSG6e7jZYt2laoiPrt0RwdjYZatTs77D5x9qaA3ZZELdoopFd3Nl9h9kDLusVtWZHRPycjjrGxvG5aub4B-wKLfzIrokab1-d6XgLfp-eDI7OAy--YGFSUROkslBRYiLJC4VSFplUlQ4rymJygyW1IYzL0phIc2kiZYQ2Bbd7ZWgqXZYRRtuwUN_XuAOMnGCodZjoggTPpNLWQyZCoOBKp5nqAJ-CkVe-MzkJZNzmLkLhKif8csIv9_h14NvM5KFty_HW4E0CbDbQY9WB_SniuV-441yk3AZQIo3D3detvsDy-eCyl_cu-j_3YIW-097I7MNCM5rgAXyoHpvhePTZzc5n8R_hEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial%E2%80%93Spectral+Attention+Network+Guided+With+Change+Magnitude+Image+for+Land+Cover+Change+Detection+Using+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Lv%2C+Zhiyong&rft.au=Wang%2C+Fengjun&rft.au=Cui%2C+Guoqing&rft.au=Benediktsson%2C+Jon+Atli&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2022.3197901&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3197901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon