GMC: Graph-Based Multi-View Clustering
Multi-view graph-based clustering aims to provide clustering solutions to multi-view data. However, most existing methods do not give sufficient consideration to weights of different views and require an additional clustering step to produce the final clusters. They also usually optimize their objec...
Saved in:
| Published in: | IEEE transactions on knowledge and data engineering Vol. 32; no. 6; pp. 1116 - 1129 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Multi-view graph-based clustering aims to provide clustering solutions to multi-view data. However, most existing methods do not give sufficient consideration to weights of different views and require an additional clustering step to produce the final clusters. They also usually optimize their objectives based on fixed graph similarity matrices of all views. In this paper, we propose a general G raph-based M ulti-view C lustering (GMC) to tackle these problems. GMC takes the data graph matrices of all views and fuses them to generate a unified graph matrix. The unified graph matrix in turn improves the data graph matrix of each view, and also gives the final clusters directly. The key novelty of GMC is its learning method, which can help the learning of each view graph matrix and the learning of the unified graph matrix in a mutual reinforcement manner. A novel multi-view fusion technique can automatically weight each data graph matrix to derive the unified graph matrix. A rank constraint without introducing a tuning parameter is also imposed on the graph Laplacian matrix of the unified matrix, which helps partition the data points naturally into the required number of clusters. An alternating iterative optimization algorithm is presented to optimize the objective function. Experimental results using both toy data and real-world data demonstrate that the proposed method outperforms state-of-the-art baselines markedly. |
|---|---|
| AbstractList | Multi-view graph-based clustering aims to provide clustering solutions to multi-view data. However, most existing methods do not give sufficient consideration to weights of different views and require an additional clustering step to produce the final clusters. They also usually optimize their objectives based on fixed graph similarity matrices of all views. In this paper, we propose a general G raph-based M ulti-view C lustering (GMC) to tackle these problems. GMC takes the data graph matrices of all views and fuses them to generate a unified graph matrix. The unified graph matrix in turn improves the data graph matrix of each view, and also gives the final clusters directly. The key novelty of GMC is its learning method, which can help the learning of each view graph matrix and the learning of the unified graph matrix in a mutual reinforcement manner. A novel multi-view fusion technique can automatically weight each data graph matrix to derive the unified graph matrix. A rank constraint without introducing a tuning parameter is also imposed on the graph Laplacian matrix of the unified matrix, which helps partition the data points naturally into the required number of clusters. An alternating iterative optimization algorithm is presented to optimize the objective function. Experimental results using both toy data and real-world data demonstrate that the proposed method outperforms state-of-the-art baselines markedly. |
| Author | Yang, Yan Liu, Bing Wang, Hao |
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0001-9492-3807 surname: Wang fullname: Wang, Hao email: cshaowang@gmail.com organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China – sequence: 2 givenname: Yan orcidid: 0000-0002-6134-6094 surname: Yang fullname: Yang, Yan email: yyang@swjtu.edu.cn organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China – sequence: 3 givenname: Bing surname: Liu fullname: Liu, Bing email: liub@uic.edu organization: Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA |
| BookMark | eNp9kE1Lw0AQQBdRsK3-APFSELylzuz3etNYq9jipXpdtslGU2JSdxPEf29KiwcPnmYO783AG5LDuqk9IWcIE0QwV8unu-mEApoJNcA0wgEZoBA6oWjwsN-BY8IZV8dkGOMaALTSOCCXs0V6PZ4Ft3lPbl30-XjRVW2ZvJb-a5xWXWx9KOu3E3JUuCr60_0ckZf76TJ9SObPs8f0Zp5k1LA2UVxwtcoKkVHvZK68LyhAwTLhKKegkEslhTAGJRU5FCj9inqxwqxALUzORuRid3cTms_Ox9aumy7U_UtLmZFaagW8p9SOykITY_CFzcrWtWVTt8GVlUWw2yh2G8Vuo9h9lN7EP-YmlB8ufP_rnO-c0nv_y2spqQLGfgCXCGvE |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1109_TCYB_2021_3062830 crossref_primary_10_1109_TIP_2021_3128323 crossref_primary_10_32604_cmc_2023_046011 crossref_primary_10_1007_s00521_022_08137_w crossref_primary_10_1016_j_comcom_2023_11_029 crossref_primary_10_1016_j_knosys_2023_110816 crossref_primary_10_1016_j_engappai_2024_107857 crossref_primary_10_1177_01655515241233742 crossref_primary_10_1109_TCYB_2021_3123081 crossref_primary_10_1016_j_inffus_2021_09_009 crossref_primary_10_1117_1_JEI_31_4_043024 crossref_primary_10_1016_j_ipm_2022_102967 crossref_primary_10_1016_j_neucom_2024_128266 crossref_primary_10_1109_TKDE_2022_3185683 crossref_primary_10_1016_j_patcog_2025_111582 crossref_primary_10_1016_j_eswa_2024_124021 crossref_primary_10_1109_TETCI_2024_3502459 crossref_primary_10_1007_s10489_023_04580_x crossref_primary_10_1016_j_eswa_2025_127943 crossref_primary_10_1109_LSP_2025_3527231 crossref_primary_10_1109_TMM_2021_3081930 crossref_primary_10_1016_j_inffus_2025_103035 crossref_primary_10_1109_TNNLS_2022_3224748 crossref_primary_10_1109_LSP_2024_3466011 crossref_primary_10_1007_s11390_025_3739_2 crossref_primary_10_3390_math10111821 crossref_primary_10_1007_s10489_022_04267_9 crossref_primary_10_1007_s13042_021_01421_6 crossref_primary_10_1109_LSP_2023_3327652 crossref_primary_10_1007_s00530_025_01823_4 crossref_primary_10_1016_j_inffus_2025_103152 crossref_primary_10_3233_JIFS_212316 crossref_primary_10_1016_j_sigpro_2025_110144 crossref_primary_10_1145_3708887 crossref_primary_10_1016_j_jvcir_2020_103003 crossref_primary_10_1007_s11280_024_01256_5 crossref_primary_10_1007_s41019_022_00190_8 crossref_primary_10_1109_TIP_2023_3297410 crossref_primary_10_1007_s10489_022_03816_6 crossref_primary_10_1016_j_eswa_2025_126868 crossref_primary_10_1016_j_ins_2023_119622 crossref_primary_10_1109_TCSVT_2023_3276362 crossref_primary_10_1109_TBDATA_2024_3371357 crossref_primary_10_1109_TMM_2019_2952984 crossref_primary_10_1007_s40747_023_01112_5 crossref_primary_10_1016_j_knosys_2025_113314 crossref_primary_10_1016_j_engappai_2024_108851 crossref_primary_10_1109_TFUZZ_2020_3041191 crossref_primary_10_1016_j_ins_2023_01_013 crossref_primary_10_1109_LGRS_2025_3554356 crossref_primary_10_1109_ACCESS_2023_3242286 crossref_primary_10_1007_s10618_025_01109_3 crossref_primary_10_1007_s11063_021_10483_0 crossref_primary_10_1109_TNNLS_2021_3059874 crossref_primary_10_1016_j_ins_2023_03_072 crossref_primary_10_1109_TCYB_2021_3051606 crossref_primary_10_3390_e24081141 crossref_primary_10_1007_s10489_022_04277_7 crossref_primary_10_1109_TNNLS_2023_3256066 crossref_primary_10_1016_j_inffus_2023_101986 crossref_primary_10_1109_TCSS_2021_3109151 crossref_primary_10_1016_j_ins_2021_05_025 crossref_primary_10_1109_TNNLS_2024_3401449 crossref_primary_10_1109_TNNLS_2024_3447006 crossref_primary_10_1007_s10994_021_06071_x crossref_primary_10_1016_j_ins_2022_10_089 crossref_primary_10_1016_j_neucom_2025_130944 crossref_primary_10_3390_electronics14091847 crossref_primary_10_3233_JIFS_224578 crossref_primary_10_32604_cmc_2025_060918 crossref_primary_10_1016_j_inffus_2024_102831 crossref_primary_10_1016_j_eswa_2021_114657 crossref_primary_10_1109_TCSVT_2021_3055625 crossref_primary_10_1109_TCSVT_2024_3376720 crossref_primary_10_1007_s00530_024_01400_1 crossref_primary_10_1109_TKDE_2021_3101227 crossref_primary_10_1109_TCSS_2022_3173367 crossref_primary_10_1016_j_eswa_2023_121518 crossref_primary_10_1016_j_neunet_2021_07_020 crossref_primary_10_1016_j_patcog_2024_111140 crossref_primary_10_1007_s10489_023_05237_5 crossref_primary_10_1109_TCSVT_2021_3099846 crossref_primary_10_1016_j_ins_2024_120604 crossref_primary_10_1007_s11063_022_11136_6 crossref_primary_10_1109_TNNLS_2022_3201964 crossref_primary_10_1016_j_ipm_2023_103284 crossref_primary_10_1109_TIP_2024_3378471 crossref_primary_10_1016_j_knosys_2023_110601 crossref_primary_10_1016_j_knosys_2022_108364 crossref_primary_10_1109_TNNLS_2023_3319823 crossref_primary_10_1109_TKDE_2022_3172687 crossref_primary_10_1016_j_ins_2022_07_177 crossref_primary_10_1109_LSP_2025_3540369 crossref_primary_10_1109_TR_2021_3079955 crossref_primary_10_1016_j_patcog_2022_109118 crossref_primary_10_1109_TNNLS_2025_3545435 crossref_primary_10_1109_TIP_2022_3176223 crossref_primary_10_1109_TAI_2021_3052425 crossref_primary_10_1007_s10489_022_04385_4 crossref_primary_10_1109_TNNLS_2023_3261460 crossref_primary_10_1109_TSIPN_2022_3169633 crossref_primary_10_1109_TETCI_2022_3221491 crossref_primary_10_1109_TNNLS_2022_3189763 crossref_primary_10_1109_TNSE_2024_3485646 crossref_primary_10_1145_3653305 crossref_primary_10_1016_j_eswa_2023_121976 crossref_primary_10_1109_LSP_2020_2970811 crossref_primary_10_1016_j_knosys_2025_114200 crossref_primary_10_1109_TKDE_2024_3424511 crossref_primary_10_1016_j_patcog_2025_111430 crossref_primary_10_1016_j_eswa_2022_119484 crossref_primary_10_1007_s42979_024_02970_7 crossref_primary_10_1109_TPAMI_2023_3257407 crossref_primary_10_1109_ACCESS_2022_3176436 crossref_primary_10_1109_TCYB_2021_3131749 crossref_primary_10_1016_j_asoc_2023_110702 crossref_primary_10_1016_j_ins_2024_120830 crossref_primary_10_1109_TKDE_2022_3151861 crossref_primary_10_1016_j_inffus_2025_103322 crossref_primary_10_3390_electronics13122421 crossref_primary_10_3390_app13158791 crossref_primary_10_1007_s11634_025_00628_7 crossref_primary_10_1016_j_patcog_2022_109264 crossref_primary_10_1109_TKDE_2025_3562723 crossref_primary_10_1109_TPAMI_2023_3319700 crossref_primary_10_1109_TKDE_2024_3440352 crossref_primary_10_1177_1088467X251315633 crossref_primary_10_1109_TBDATA_2021_3128906 crossref_primary_10_1109_TCYB_2020_3025636 crossref_primary_10_1109_TKDE_2022_3224052 crossref_primary_10_1109_TIP_2024_3444269 crossref_primary_10_1109_TNNLS_2021_3104846 crossref_primary_10_1016_j_knosys_2022_110141 crossref_primary_10_1145_3537900 crossref_primary_10_1109_LSP_2024_3455988 crossref_primary_10_1016_j_patcog_2025_111853 crossref_primary_10_1016_j_ins_2023_03_016 crossref_primary_10_1109_TMM_2022_3212270 crossref_primary_10_1371_journal_pone_0269878 crossref_primary_10_1109_TCSVT_2023_3266801 crossref_primary_10_1016_j_eswa_2025_128757 crossref_primary_10_1109_TETCI_2024_3369316 crossref_primary_10_1109_TKDE_2020_3048678 crossref_primary_10_3390_e25020371 crossref_primary_10_1016_j_knosys_2020_106666 crossref_primary_10_1109_TCE_2023_3330824 crossref_primary_10_1016_j_neucom_2023_126993 crossref_primary_10_1016_j_inffus_2023_03_002 crossref_primary_10_1109_TKDE_2022_3193569 crossref_primary_10_3390_e24040568 crossref_primary_10_1016_j_imavis_2025_105722 crossref_primary_10_1109_TSC_2025_3577480 crossref_primary_10_1109_TSG_2024_3411306 crossref_primary_10_1007_s00521_019_04243_4 crossref_primary_10_1016_j_neunet_2024_107111 crossref_primary_10_1109_ACCESS_2023_3241810 crossref_primary_10_1016_j_eswa_2025_128995 crossref_primary_10_1007_s11042_022_14057_7 crossref_primary_10_1002_int_22958 crossref_primary_10_1007_s10489_021_02417_z crossref_primary_10_1016_j_patcog_2023_110082 crossref_primary_10_1109_TNNLS_2023_3262590 crossref_primary_10_1016_j_patcog_2024_110598 crossref_primary_10_1109_TGRS_2023_3331236 crossref_primary_10_1109_TCBB_2022_3143897 crossref_primary_10_1109_TCYB_2019_2922042 crossref_primary_10_1109_TIP_2024_3436615 crossref_primary_10_1109_TKDE_2023_3312794 crossref_primary_10_1109_TBDATA_2024_3433525 crossref_primary_10_1016_j_inffus_2025_103461 crossref_primary_10_1016_j_ins_2023_118937 crossref_primary_10_1109_TMM_2020_3025666 crossref_primary_10_1016_j_inffus_2025_103460 crossref_primary_10_1016_j_inffus_2023_101914 crossref_primary_10_1109_TGRS_2025_3545460 crossref_primary_10_1109_TMM_2024_3360689 crossref_primary_10_1016_j_neunet_2025_107647 crossref_primary_10_1016_j_ins_2024_121396 crossref_primary_10_1016_j_neunet_2021_11_027 crossref_primary_10_1109_TCE_2023_3301067 crossref_primary_10_1007_s10489_024_05616_6 crossref_primary_10_1016_j_ins_2024_121278 crossref_primary_10_1016_j_patcog_2025_111880 crossref_primary_10_1016_j_patcog_2024_110592 crossref_primary_10_1007_s00521_022_07864_4 crossref_primary_10_1007_s11042_023_15018_4 crossref_primary_10_1109_TFUZZ_2021_3058572 crossref_primary_10_1016_j_inffus_2023_101916 crossref_primary_10_1109_TPAMI_2022_3224978 crossref_primary_10_1016_j_patcog_2025_111874 crossref_primary_10_1016_j_knosys_2022_109479 crossref_primary_10_1049_ell2_70329 crossref_primary_10_1109_TMM_2023_3340095 crossref_primary_10_1016_j_sigpro_2024_109729 crossref_primary_10_1007_s00607_025_01464_5 crossref_primary_10_1109_TKDE_2023_3253244 crossref_primary_10_1016_j_knosys_2021_106745 crossref_primary_10_1016_j_dsp_2022_103447 crossref_primary_10_1016_j_cmpb_2020_105895 crossref_primary_10_1007_s13042_024_02105_7 crossref_primary_10_1109_TIP_2023_3261746 crossref_primary_10_1109_TNNLS_2025_3526590 crossref_primary_10_1016_j_knosys_2025_114356 crossref_primary_10_1016_j_eswa_2025_129741 crossref_primary_10_1109_TSIPN_2020_2970313 crossref_primary_10_1109_TKDE_2025_3538852 crossref_primary_10_1016_j_eswa_2025_128413 crossref_primary_10_1016_j_ins_2025_122677 crossref_primary_10_1007_s00530_025_01794_6 crossref_primary_10_1109_TKDE_2022_3178145 crossref_primary_10_1109_TNNLS_2023_3239033 crossref_primary_10_1109_TETCI_2024_3409724 crossref_primary_10_1109_TSMC_2025_3537801 crossref_primary_10_1109_TIP_2020_3045631 crossref_primary_10_1007_s00371_024_03661_3 crossref_primary_10_1016_j_patcog_2022_109187 crossref_primary_10_1016_j_neucom_2023_126320 crossref_primary_10_1109_TAI_2023_3293479 crossref_primary_10_1016_j_neucom_2022_04_030 crossref_primary_10_1109_TKDE_2022_3192686 crossref_primary_10_1145_3568684 crossref_primary_10_1109_TMM_2022_3157997 crossref_primary_10_1016_j_inffus_2022_08_014 crossref_primary_10_1016_j_ipm_2024_103735 crossref_primary_10_1109_TNNLS_2022_3189239 crossref_primary_10_1016_j_patcog_2025_111811 crossref_primary_10_1007_s00371_022_02419_z crossref_primary_10_1007_s10489_025_06476_4 crossref_primary_10_1016_j_engappai_2022_105585 crossref_primary_10_1016_j_patcog_2025_111818 crossref_primary_10_3390_genes12040526 crossref_primary_10_1007_s00530_023_01225_4 crossref_primary_10_1109_TNNLS_2023_3304626 crossref_primary_10_3390_electronics12214467 crossref_primary_10_1109_TKDE_2024_3487534 crossref_primary_10_1109_LSP_2025_3558161 crossref_primary_10_1016_j_neunet_2025_107779 crossref_primary_10_1109_TCYB_2021_3083592 crossref_primary_10_1109_TCYB_2021_3061660 crossref_primary_10_1016_j_ins_2021_03_059 crossref_primary_10_1109_TMM_2023_3248173 crossref_primary_10_1016_j_eswa_2023_120272 crossref_primary_10_1109_TIP_2024_3459651 crossref_primary_10_1016_j_patcog_2025_111844 crossref_primary_10_1007_s10489_022_04074_2 crossref_primary_10_1016_j_patcog_2022_109083 crossref_primary_10_1109_TBDATA_2023_3255003 crossref_primary_10_1007_s00530_025_01815_4 crossref_primary_10_1145_3694689 crossref_primary_10_1080_1206212X_2024_2380975 crossref_primary_10_1016_j_fss_2024_109135 crossref_primary_10_1016_j_neucom_2024_127945 crossref_primary_10_1007_s13042_022_01729_x crossref_primary_10_1109_ACCESS_2023_3271730 crossref_primary_10_1109_TNNLS_2024_3359690 crossref_primary_10_1016_j_ins_2025_122483 crossref_primary_10_1109_TSP_2024_3385654 crossref_primary_10_1016_j_knosys_2021_106807 crossref_primary_10_1016_j_inffus_2023_101832 crossref_primary_10_1016_j_neucom_2022_10_007 crossref_primary_10_1109_TNSE_2023_3244624 crossref_primary_10_1109_TNNLS_2024_3381223 crossref_primary_10_1016_j_knosys_2022_110244 crossref_primary_10_1007_s12559_022_10060_0 crossref_primary_10_1016_j_iot_2024_101203 crossref_primary_10_1007_s10489_022_03551_y crossref_primary_10_1016_j_inffus_2023_101959 crossref_primary_10_1016_j_inffus_2025_103134 crossref_primary_10_1016_j_knosys_2023_110424 crossref_primary_10_1016_j_knosys_2024_112902 crossref_primary_10_1016_j_neunet_2025_107550 crossref_primary_10_1007_s11263_020_01307_0 crossref_primary_10_1016_j_neucom_2022_05_069 crossref_primary_10_1109_TNNLS_2021_3121224 crossref_primary_10_1109_TNSE_2025_3570354 crossref_primary_10_1007_s10489_021_02779_4 crossref_primary_10_1109_TIP_2021_3068646 crossref_primary_10_1109_TIP_2023_3293764 crossref_primary_10_1016_j_dsp_2022_103888 crossref_primary_10_1109_TNNLS_2024_3524205 crossref_primary_10_1007_s10489_022_04161_4 crossref_primary_10_1016_j_ins_2023_119719 crossref_primary_10_3389_fphy_2020_618224 crossref_primary_10_1016_j_inffus_2023_101947 crossref_primary_10_1016_j_knosys_2025_114158 crossref_primary_10_1016_j_knosys_2025_114157 crossref_primary_10_1016_j_neucom_2023_126695 crossref_primary_10_1007_s10462_025_11240_8 crossref_primary_10_1109_TMM_2025_3535360 crossref_primary_10_1007_s13042_024_02444_5 crossref_primary_10_1016_j_eswa_2025_127242 crossref_primary_10_1016_j_neunet_2024_106287 crossref_primary_10_1109_TKDE_2020_3014104 crossref_primary_10_1007_s00530_025_01792_8 crossref_primary_10_1109_ACCESS_2023_3260971 crossref_primary_10_1109_TIP_2025_3593057 crossref_primary_10_1109_TSMC_2024_3418582 crossref_primary_10_1109_TCSVT_2024_3434577 crossref_primary_10_1109_TCSS_2023_3253502 crossref_primary_10_1007_s13042_023_01969_5 crossref_primary_10_1109_ACCESS_2024_3358681 crossref_primary_10_1145_3664290 crossref_primary_10_1109_TNNLS_2020_3026686 crossref_primary_10_1155_2021_5526479 crossref_primary_10_1016_j_apnum_2023_11_009 crossref_primary_10_3390_math12030372 crossref_primary_10_1145_3532612 crossref_primary_10_1016_j_inffus_2023_02_013 crossref_primary_10_1016_j_inffus_2024_102483 crossref_primary_10_1016_j_phycom_2023_102231 crossref_primary_10_1016_j_ins_2021_11_075 crossref_primary_10_1007_s00521_024_09865_x crossref_primary_10_1016_j_patcog_2024_110420 crossref_primary_10_1109_TMM_2022_3210376 crossref_primary_10_1109_TMM_2024_3521803 crossref_primary_10_1016_j_eswa_2021_115374 crossref_primary_10_1109_TKDE_2023_3333522 crossref_primary_10_1016_j_engappai_2024_108145 crossref_primary_10_1016_j_eswa_2022_116637 crossref_primary_10_1109_TCYB_2021_3087114 crossref_primary_10_1007_s10044_025_01455_4 crossref_primary_10_1109_TCYB_2020_2984552 crossref_primary_10_1016_j_eswa_2025_128007 crossref_primary_10_1109_TIP_2024_3388969 crossref_primary_10_1002_int_22655 crossref_primary_10_1016_j_ins_2022_11_026 crossref_primary_10_1093_bib_bbaf193 crossref_primary_10_1109_TCE_2023_3255231 crossref_primary_10_1109_TKDE_2024_3392209 crossref_primary_10_1016_j_neucom_2024_128839 crossref_primary_10_1109_TGRS_2025_3574020 crossref_primary_10_1109_TNNLS_2025_3552969 crossref_primary_10_7717_peerj_cs_922 crossref_primary_10_1016_j_sigpro_2023_109014 crossref_primary_10_1109_TBDATA_2023_3325045 crossref_primary_10_1016_j_ins_2022_12_063 crossref_primary_10_1007_s00521_023_08915_0 crossref_primary_10_1109_TCYB_2025_3554901 crossref_primary_10_1016_j_eswa_2023_121013 crossref_primary_10_1109_TPAMI_2022_3179556 crossref_primary_10_1109_TNNLS_2023_3253246 crossref_primary_10_1002_int_22409 crossref_primary_10_1109_TKDE_2022_3202561 crossref_primary_10_1016_j_knosys_2020_106280 crossref_primary_10_1016_j_knosys_2021_107439 crossref_primary_10_1109_MCI_2023_3245729 crossref_primary_10_3390_info15100591 crossref_primary_10_1109_TETCI_2024_3452687 crossref_primary_10_1038_s41598_022_20358_6 crossref_primary_10_1016_j_asoc_2025_113025 crossref_primary_10_1016_j_csbj_2021_04_060 crossref_primary_10_1109_TFUZZ_2024_3489025 crossref_primary_10_1109_TNNLS_2023_3265699 crossref_primary_10_1109_TKDE_2021_3082470 crossref_primary_10_1016_j_neucom_2023_127102 crossref_primary_10_1016_j_dsp_2022_103607 crossref_primary_10_1016_j_eswa_2022_118911 crossref_primary_10_1016_j_dsp_2022_103847 crossref_primary_10_1109_TNNLS_2022_3172588 crossref_primary_10_1016_j_neucom_2022_09_087 crossref_primary_10_1016_j_neunet_2024_106523 crossref_primary_10_3390_app12105094 crossref_primary_10_1109_LSP_2025_3560529 crossref_primary_10_1016_j_eswa_2024_125831 crossref_primary_10_1109_JAS_2022_105959 crossref_primary_10_3390_math11132940 crossref_primary_10_1109_TCSVT_2023_3278285 crossref_primary_10_1109_TKDE_2024_3425393 crossref_primary_10_1002_cpe_70134 crossref_primary_10_1109_TETCI_2023_3306027 crossref_primary_10_3390_electronics14040817 crossref_primary_10_1109_TII_2024_3514152 crossref_primary_10_1016_j_inffus_2024_102393 crossref_primary_10_1007_s11432_020_3369_8 crossref_primary_10_1109_ACCESS_2022_3232285 crossref_primary_10_1109_TAI_2021_3139573 crossref_primary_10_1109_TBDATA_2022_3163584 crossref_primary_10_1016_j_sigpro_2024_109597 crossref_primary_10_1109_TKDE_2020_3025759 crossref_primary_10_1016_j_csi_2025_104029 crossref_primary_10_1016_j_patcog_2023_109349 crossref_primary_10_1109_TKDE_2020_3035695 crossref_primary_10_1016_j_knosys_2024_111553 crossref_primary_10_1109_TMM_2024_3398295 crossref_primary_10_1007_s10489_022_04141_8 crossref_primary_10_1109_LSP_2023_3322324 crossref_primary_10_1145_3612923 crossref_primary_10_1016_j_engappai_2024_108336 crossref_primary_10_1007_s12559_021_09889_8 crossref_primary_10_1016_j_neunet_2021_04_033 crossref_primary_10_1016_j_neucom_2024_128627 crossref_primary_10_1109_TNNLS_2025_3525766 crossref_primary_10_1109_TNNLS_2024_3489585 crossref_primary_10_1109_TNNLS_2022_3213374 crossref_primary_10_1109_ACCESS_2019_2958493 crossref_primary_10_1145_3645108 crossref_primary_10_1016_j_engappai_2025_110715 crossref_primary_10_1109_TKDE_2020_2973981 crossref_primary_10_1016_j_neunet_2024_106103 crossref_primary_10_1109_TCSVT_2024_3430041 crossref_primary_10_1109_TKDE_2022_3171911 crossref_primary_10_1016_j_asoc_2021_107724 crossref_primary_10_1016_j_inffus_2023_102097 crossref_primary_10_1007_s11063_024_11589_x crossref_primary_10_1016_j_neucom_2023_03_004 crossref_primary_10_1109_TIP_2025_3542602 crossref_primary_10_1007_s11276_023_03312_w crossref_primary_10_1016_j_patcog_2024_110715 crossref_primary_10_1016_j_patcog_2024_110839 crossref_primary_10_1109_TKDE_2022_3199587 crossref_primary_10_1109_TNNLS_2022_3201498 crossref_primary_10_1007_s10618_021_00788_y crossref_primary_10_1016_j_neucom_2024_128884 crossref_primary_10_1109_TNNLS_2022_3173742 crossref_primary_10_1109_TVCG_2025_3567084 crossref_primary_10_1007_s10044_022_01125_9 crossref_primary_10_1109_LSP_2020_3011599 crossref_primary_10_1016_j_cviu_2023_103829 crossref_primary_10_1109_ACCESS_2021_3107673 crossref_primary_10_1145_3534931 crossref_primary_10_1007_s11704_022_1376_2 crossref_primary_10_1016_j_eswa_2020_113913 crossref_primary_10_1109_TCYB_2023_3263175 crossref_primary_10_1016_j_knosys_2021_107632 crossref_primary_10_1016_j_neucom_2025_130233 crossref_primary_10_1109_TIP_2025_3583122 crossref_primary_10_1109_TMM_2021_3136094 crossref_primary_10_1109_TNNLS_2021_3054789 crossref_primary_10_1016_j_knosys_2020_106489 crossref_primary_10_1109_TETCI_2024_3406704 crossref_primary_10_1109_TMM_2021_3136098 crossref_primary_10_1371_journal_pone_0326852 crossref_primary_10_1016_j_patcog_2021_108429 crossref_primary_10_1016_j_knosys_2022_110092 crossref_primary_10_1016_j_neunet_2025_107836 crossref_primary_10_1007_s00521_023_08279_5 crossref_primary_10_1016_j_ins_2024_121482 crossref_primary_10_1109_TCSVT_2023_3311174 crossref_primary_10_1007_s10489_022_03735_6 crossref_primary_10_1111_tgis_13113 crossref_primary_10_1109_TNNLS_2022_3232538 crossref_primary_10_1016_j_jksuci_2024_102129 crossref_primary_10_1007_s13748_023_00312_x crossref_primary_10_1016_j_inffus_2024_102630 crossref_primary_10_1016_j_inffus_2022_10_020 crossref_primary_10_1109_TNNLS_2023_3244021 crossref_primary_10_1109_TCSVT_2020_3049005 crossref_primary_10_1016_j_knosys_2021_107244 crossref_primary_10_1016_j_ins_2023_01_071 crossref_primary_10_1016_j_knosys_2023_111073 crossref_primary_10_1007_s10489_025_06515_0 crossref_primary_10_1016_j_knosys_2025_113810 crossref_primary_10_1109_TNNLS_2023_3279133 crossref_primary_10_1007_s00521_024_09560_x crossref_primary_10_1007_s10489_024_05652_2 crossref_primary_10_1016_j_inffus_2024_102507 crossref_primary_10_1007_s10489_024_05807_1 crossref_primary_10_1007_s11042_022_14298_6 crossref_primary_10_1109_TPAMI_2020_3011148 crossref_primary_10_1109_TCYB_2021_3053057 crossref_primary_10_1016_j_knosys_2022_109937 crossref_primary_10_1007_s40747_024_01509_w crossref_primary_10_1109_ACCESS_2023_3259361 crossref_primary_10_1007_s11042_023_14557_0 crossref_primary_10_1109_TPAMI_2025_3582689 crossref_primary_10_1016_j_eswa_2025_128193 crossref_primary_10_1007_s10044_022_01085_0 crossref_primary_10_1109_TCSVT_2025_3546973 crossref_primary_10_1109_TKDE_2020_3021649 crossref_primary_10_1111_tgis_70073 crossref_primary_10_1016_j_ins_2024_120899 crossref_primary_10_1109_TCSVT_2025_3533301 crossref_primary_10_1109_TPAMI_2025_3573613 crossref_primary_10_1016_j_ins_2024_121705 crossref_primary_10_1016_j_ins_2024_120739 crossref_primary_10_1016_j_patcog_2023_109764 crossref_primary_10_1016_j_knosys_2024_112537 crossref_primary_10_1109_TGRS_2021_3068779 crossref_primary_10_1109_TNNLS_2023_3269789 crossref_primary_10_1109_TKDE_2025_3589794 crossref_primary_10_1109_TKDE_2025_3591500 crossref_primary_10_1016_j_eswa_2022_118408 crossref_primary_10_1016_j_ipm_2022_102902 crossref_primary_10_1007_s11280_024_01290_3 crossref_primary_10_1016_j_neucom_2025_131528 crossref_primary_10_1016_j_inffus_2024_102849 crossref_primary_10_1016_j_neunet_2025_107193 crossref_primary_10_1016_j_ins_2024_121718 crossref_primary_10_1016_j_ins_2022_08_117 crossref_primary_10_1109_TKDE_2021_3068461 crossref_primary_10_1109_TKDE_2021_3059506 crossref_primary_10_1109_TKDE_2024_3487907 crossref_primary_10_1109_TKDE_2022_3185126 crossref_primary_10_1016_j_knosys_2021_107156 crossref_primary_10_1109_TAI_2023_3271964 crossref_primary_10_1016_j_neucom_2025_129568 crossref_primary_10_1016_j_neucom_2025_129689 crossref_primary_10_1109_TNNLS_2020_3045932 crossref_primary_10_1007_s00138_023_01497_w crossref_primary_10_1109_TCSVT_2022_3200451 crossref_primary_10_1007_s11063_021_10634_3 crossref_primary_10_1016_j_neunet_2023_03_013 crossref_primary_10_1002_int_22596 crossref_primary_10_1016_j_inffus_2023_102155 crossref_primary_10_1016_j_patcog_2023_109860 crossref_primary_10_1016_j_neucom_2022_08_047 crossref_primary_10_1109_TKDE_2020_3045770 crossref_primary_10_1109_TMM_2021_3110098 crossref_primary_10_1007_s10044_025_01517_7 crossref_primary_10_1016_j_ins_2023_02_089 crossref_primary_10_1016_j_patcog_2022_108772 crossref_primary_10_1145_3465056 crossref_primary_10_1007_s10489_022_03600_6 crossref_primary_10_3390_rs17183217 crossref_primary_10_1016_j_neunet_2024_106856 crossref_primary_10_1016_j_neunet_2022_03_009 crossref_primary_10_1016_j_patcog_2025_111384 crossref_primary_10_1016_j_eswa_2024_125431 crossref_primary_10_1109_TBDATA_2023_3319249 crossref_primary_10_1016_j_ins_2023_02_092 crossref_primary_10_1016_j_inffus_2024_102323 crossref_primary_10_1016_j_knosys_2022_109736 crossref_primary_10_1016_j_knosys_2025_113960 crossref_primary_10_1016_j_neucom_2022_09_145 crossref_primary_10_1109_TETCI_2024_3423459 crossref_primary_10_1109_TNNLS_2025_3551159 crossref_primary_10_1209_0295_5075_135_18001 crossref_primary_10_1007_s10489_021_02365_8 crossref_primary_10_1109_TCSVT_2023_3266283 crossref_primary_10_1016_j_ins_2024_120458 crossref_primary_10_1016_j_eswa_2024_125454 crossref_primary_10_1109_TNNLS_2025_3543219 crossref_primary_10_1109_TFUZZ_2023_3306639 crossref_primary_10_1109_TPAMI_2025_3526790 crossref_primary_10_1007_s12652_021_03002_5 crossref_primary_10_1109_TBDATA_2024_3426277 crossref_primary_10_1016_j_cosrev_2025_100788 crossref_primary_10_1016_j_neucom_2024_128367 crossref_primary_10_1016_j_knosys_2024_112106 crossref_primary_10_1109_TNNLS_2022_3210370 crossref_primary_10_1007_s00530_022_00985_9 crossref_primary_10_1016_j_ipm_2021_102546 crossref_primary_10_1016_j_dsp_2024_104534 crossref_primary_10_1109_TIP_2025_3574924 crossref_primary_10_1016_j_inffus_2023_102123 crossref_primary_10_1016_j_inffus_2024_102785 crossref_primary_10_1016_j_neunet_2025_108088 crossref_primary_10_1016_j_eswa_2025_126835 crossref_primary_10_1016_j_patcog_2025_112124 crossref_primary_10_1007_s00530_024_01637_w crossref_primary_10_1109_TKDE_2023_3270311 crossref_primary_10_1016_j_neunet_2023_04_016 crossref_primary_10_1016_j_neucom_2023_01_028 crossref_primary_10_1016_j_neunet_2023_10_001 crossref_primary_10_1109_TCE_2024_3376397 crossref_primary_10_1007_s10489_022_03898_2 crossref_primary_10_1016_j_eswa_2023_119949 crossref_primary_10_1016_j_neucom_2025_129889 crossref_primary_10_1016_j_neucom_2025_129766 crossref_primary_10_1016_j_neunet_2024_106849 crossref_primary_10_1016_j_patcog_2023_109836 crossref_primary_10_3233_JIFS_238420 crossref_primary_10_1016_j_ins_2025_121945 crossref_primary_10_1109_TCSS_2023_3331366 crossref_primary_10_1016_j_neunet_2024_106842 |
| Cites_doi | 10.1109/TKDE.2017.2725263 10.1109/TPAMI.2015.2417578 10.1016/j.inffus.2016.09.008 10.1109/TKDE.2017.2681670 10.1109/TNNLS.2013.2238682 10.1109/TCYB.2017.2751646 10.1016/j.neunet.2018.03.006 10.1109/TCYB.2018.2815012 10.1007/978-3-540-87987-9_8 10.1016/j.neunet.2017.02.003 10.1109/34.868688 10.1109/ICDM.2011.35 10.1109/TSC.2015.2430327 10.1109/TCYB.2017.2747400 10.1007/s10994-009-5157-z 10.1109/CVPR.2017.461 10.1109/TPAMI.2013.2296528 10.1109/ICCV.2015.482 10.1137/1.9781611972832.28 10.1109/TKDE.2015.2448542 10.1109/ICDM.2012.43 10.24963/ijcai.2017/357 10.1109/TIP.2015.2457339 10.26599/BDMA.2018.9020003 10.1109/TNNLS.2015.2498149 10.1109/TIP.2017.2754939 10.1109/TIP.2016.2553459 10.1109/TNNLS.2017.2777489 10.1016/j.patcog.2015.08.012 10.1109/TPAMI.2008.79 10.24963/ijcai.2017/418 10.1109/IJCNN.2015.7280445 10.1007/s10115-015-0861-4 10.1016/j.patcog.2014.05.005 10.1109/TIP.2015.2490539 10.1073/pnas.35.11.652 10.1145/2505515.2505591 10.1109/TSMCB.2009.2039566 10.1016/j.patcog.2017.01.035 10.1109/TIP.2017.2651379 10.1016/j.inffus.2017.02.007 10.1016/j.patcog.2018.01.012 10.1007/s00500-016-2120-3 10.1145/279943.279962 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2019.2903810 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 1129 |
| ExternalDocumentID | 10_1109_TKDE_2019_2903810 8662703 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61572407 funderid: 10.13039/501100001809 – fundername: China Scholarship Council grantid: 201707000064 funderid: 10.13039/501100004543 – fundername: Huawei Technologies funderid: 10.13039/501100003816 – fundername: National Science Foundation grantid: IIS-1407927; IIS-1838770 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-74547bcf5c2ea6d7eef200f3c5a242071467655991625d0f16eb2e5b1cf1859d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 670 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531422700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Nov 09 07:34:18 EST 2025 Tue Nov 18 21:25:32 EST 2025 Sat Nov 29 04:46:48 EST 2025 Wed Aug 27 02:43:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-74547bcf5c2ea6d7eef200f3c5a242071467655991625d0f16eb2e5b1cf1859d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9492-3807 0000-0002-6134-6094 |
| PQID | 2396868704 |
| PQPubID | 85438 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2396868704 crossref_citationtrail_10_1109_TKDE_2019_2903810 crossref_primary_10_1109_TKDE_2019_2903810 ieee_primary_8662703 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | shi (ref60) 2000; 22 ref57 ref12 ref15 ref14 li (ref58) 2015 ref55 ref11 ref10 saha (ref5) 2013 zhao (ref38) 2017 ref17 ref16 ref18 cai (ref41) 2013 mohar (ref53) 1991; 2 yang (ref4) 2018; 1 ref51 ref50 ref46 ref45 ref48 ref47 ref42 xia (ref20) 2014 chao (ref3) 2017 ref44 ref43 sun (ref27) 2015 ref49 bertsekas (ref56) 2014 ref8 ref7 ref9 ref40 cortes (ref13) 2008 ref35 ref34 ref37 ref36 wang (ref23) 2016 ref31 ref30 ref33 ref32 ref2 ref39 nie (ref59) 2010 nie (ref52) 2016 ref24 nie (ref6) 2016 ref26 ref25 ref22 chung (ref54) 1997; 92 ref21 ref28 xu (ref1) 2013 ref29 kumar (ref19) 2011 |
| References_xml | – ident: ref10 doi: 10.1109/TKDE.2017.2725263 – ident: ref47 doi: 10.1109/TPAMI.2015.2417578 – start-page: 757 year: 2015 ident: ref27 article-title: Multi-view sparse co-clustering via proximal alternating linearized minimization publication-title: Proc Int Conf Mach Learn – ident: ref14 doi: 10.1016/j.inffus.2016.09.008 – ident: ref7 doi: 10.1109/TKDE.2017.2681670 – ident: ref45 doi: 10.1109/TNNLS.2013.2238682 – ident: ref12 doi: 10.1109/TCYB.2017.2751646 – ident: ref25 doi: 10.1016/j.neunet.2018.03.006 – start-page: 2153 year: 2016 ident: ref23 article-title: Iterative views agreement: An iterative low-rank based structured optimization method to multi-view spectral clustering publication-title: Proc Int Joint Conf Artif Intell – start-page: 128 year: 2013 ident: ref5 article-title: A graph based approach to multiview clustering publication-title: Proc IEEE Int Conf Pattern Recognit Mach Intell – ident: ref11 doi: 10.1109/TCYB.2018.2815012 – start-page: 38 year: 2008 ident: ref13 article-title: Sample selection bias correction theory publication-title: Proc Int Conf Algorithmic Learn Theory doi: 10.1007/978-3-540-87987-9_8 – ident: ref43 doi: 10.1016/j.neunet.2017.02.003 – volume: 2 start-page: 871 year: 1991 ident: ref53 article-title: The Laplacian spectrum of graphs publication-title: Graph Theory Comb Appl – volume: 22 start-page: 888 year: 2000 ident: ref60 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.868688 – start-page: 1413 year: 2011 ident: ref19 article-title: Co-regularized multi-view spectral clustering publication-title: Proc Int Conf Neural Inf Process – ident: ref57 doi: 10.1109/ICDM.2011.35 – ident: ref26 doi: 10.1109/TSC.2015.2430327 – year: 2014 ident: ref56 publication-title: Constrained Optimization and Lagrange Multiplier Methods – start-page: 1813 year: 2010 ident: ref59 article-title: Efficient and robust feature selection via joint $l_{2,1}$l2,1-norms minimization publication-title: Proc Int Conf Neural Inf Process – ident: ref42 doi: 10.1109/TCYB.2017.2747400 – ident: ref29 doi: 10.1007/s10994-009-5157-z – ident: ref40 doi: 10.1109/CVPR.2017.461 – start-page: 2149 year: 2014 ident: ref20 article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition publication-title: Proc AAAI Conf Artif Intell – ident: ref46 doi: 10.1109/TPAMI.2013.2296528 – start-page: 2598 year: 2013 ident: ref41 article-title: Multi-view K-means clustering on big data publication-title: Proc Int Joint Conf Artif Intell – start-page: 1969 year: 2016 ident: ref52 article-title: The constrained Laplacian rank algorithm for graph-based clustering publication-title: Proc AAAI Conf Artif Intell – ident: ref33 doi: 10.1109/ICCV.2015.482 – volume: 92 year: 1997 ident: ref54 publication-title: Spectral Graph Theory – ident: ref37 doi: 10.1137/1.9781611972832.28 – ident: ref39 doi: 10.1109/TKDE.2015.2448542 – ident: ref31 doi: 10.1109/ICDM.2012.43 – ident: ref9 doi: 10.24963/ijcai.2017/357 – ident: ref34 doi: 10.1109/TIP.2015.2457339 – volume: 1 start-page: 83 year: 2018 ident: ref4 article-title: Multi-view clustering: A survey publication-title: Big data mining and analytics doi: 10.26599/BDMA.2018.9020003 – ident: ref17 doi: 10.1109/TNNLS.2015.2498149 – ident: ref8 doi: 10.1109/TIP.2017.2754939 – ident: ref21 doi: 10.1109/TIP.2016.2553459 – start-page: 2750 year: 2015 ident: ref58 article-title: Large-scale multi-view spectral clustering via bipartite graph publication-title: Proc AAAI Conf Artif Intell – year: 2017 ident: ref3 article-title: A survey on multi-view clustering publication-title: arXiv preprint arXiv 1712 06246 – ident: ref24 doi: 10.1109/TNNLS.2017.2777489 – ident: ref48 doi: 10.1016/j.patcog.2015.08.012 – ident: ref51 doi: 10.1109/TPAMI.2008.79 – ident: ref32 doi: 10.24963/ijcai.2017/418 – start-page: 2921 year: 2017 ident: ref38 article-title: Multi-view clustering via deep matrix factorization publication-title: Proc AAAI Conf Artif Intell – ident: ref15 doi: 10.1109/IJCNN.2015.7280445 – year: 2013 ident: ref1 article-title: A survey on multi-view learning publication-title: arXiv preprint arXiv 1304 5634 – ident: ref28 doi: 10.1007/s10115-015-0861-4 – ident: ref30 doi: 10.1016/j.patcog.2014.05.005 – ident: ref36 doi: 10.1109/TIP.2015.2490539 – ident: ref55 doi: 10.1073/pnas.35.11.652 – ident: ref16 doi: 10.1145/2505515.2505591 – ident: ref18 doi: 10.1109/TSMCB.2009.2039566 – ident: ref35 doi: 10.1016/j.patcog.2017.01.035 – ident: ref49 doi: 10.1109/TIP.2017.2651379 – ident: ref2 doi: 10.1016/j.inffus.2017.02.007 – ident: ref50 doi: 10.1016/j.patcog.2018.01.012 – ident: ref22 doi: 10.1007/s00500-016-2120-3 – ident: ref44 doi: 10.1145/279943.279962 – start-page: 1881 year: 2016 ident: ref6 article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification publication-title: Proc Int Joint Conf Artif Intell |
| SSID | ssj0008781 |
| Score | 2.7221506 |
| Snippet | Multi-view graph-based clustering aims to provide clustering solutions to multi-view data. However, most existing methods do not give sufficient consideration... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1116 |
| SubjectTerms | Algorithms Clustering Clustering algorithms Clustering methods Computational complexity Computational modeling data fusion Data points graph-based clustering Kernel Laplace equations Laplacian matrix Learning Matrix converters Multi-view clustering Optimization rank constraint |
| Title | GMC: Graph-Based Multi-View Clustering |
| URI | https://ieeexplore.ieee.org/document/8662703 https://www.proquest.com/docview/2396868704 |
| Volume | 32 |
| WOSCitedRecordID | wos000531422700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHq61itcoexIOYNvtosvGmta0gFg9Vels2j4VCaaUP_ftO0u2iKIK3PWQgTJL59stkvgG4UIwarYWP0U9QEhkZkVQJRSSSZ8V1KtMwdc0m-GAQj0biuQTXRS2MMcY9PjNN--ly-XqmVvaqrBVbtXIr7bnFOV_XahVRN-auISmyC-REYcTzDKZPRWv4eN-1j7hEMxA2MUa_YZBrqvIjEjt46VX-N7F92Mt_I73b9bofQMlMq1DZtGjw8hNbhd0veoM1uOw_dW68vtWoJncIX9pz9bfkdWw-vM5kZUUTcOAhvPS6w84DyRslEIVovSTcqnJJlbVVYFKmuTEZbv4sVO0UEdiWKDHOrLSYj2xH08xnyKdNW_oqQ7gWOjyC8nQ2NcfgBUpzhoc6jGUQxZLLQKJNO0wFAj_NZB3oxnWJylXEbTOLSeLYBBWJ9XZivZ3k3q7DVWHytpbQ-Gtwzbq3GJh7tg6Nzfok-SFbJEEoWMww4EQnv1udwk5g6bG7NGlAeTlfmTPYVu_L8WJ-7vbPJxQNvwc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFdSD1VaxWnUP4kHcNpvdTTbetPYhfeChSm_L5rFQKK30oX_fJN0WRRG87SEDYZLMt18m8w3AlSBISck8Hf0YcgPFAzcRTLhck2dBZcITP7HNJmi_Hw2H7DkHt5taGKWUfXymqubT5vLlVCzNVVktMmrlRtpzKwwC7K2qtTZxN6K2JanmF5oV-QHNcpgeYrVB57FhnnGxKmYmNYa-oZBtq_IjFluAaRb-N7UD2M9-JJ371cofQk5NilBYN2lwsjNbhL0vioMluG716ndOy6hUuw8awKRjK3Dd15H6cOrjpZFN0AOP4KXZGNTbbtYqwRUarxcuNbpcXKShwCohkiqV6u2f-iJMNAabIiVCiREX8zTfkSj1iGbUKuSeSDVgM-kfQ34ynagTcLCQlOhj7UccBxGnHHNtE_oJ09CPUl4GtHZdLDIdcdPOYhxbPoFYbLwdG2_HmbfLcLMxeVuJaPw1uGTcuxmYebYMlfX6xNkxm8fYZyQiOuQEp79bXcJOe9Drxt2nfucMdrEhy_YKpQL5xWypzmFbvC9G89mF3UufNfvCTg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GMC%3A+Graph-Based+Multi-View+Clustering&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Wang%2C+Hao&rft.au=Yang%2C+Yan&rft.au=Liu%2C+Bing&rft.date=2020-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=32&rft.issue=6&rft.spage=1116&rft_id=info:doi/10.1109%2FTKDE.2019.2903810&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |