GMC: Graph-Based Multi-View Clustering

Multi-view graph-based clustering aims to provide clustering solutions to multi-view data. However, most existing methods do not give sufficient consideration to weights of different views and require an additional clustering step to produce the final clusters. They also usually optimize their objec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 32; H. 6; S. 1116 - 1129
Hauptverfasser: Wang, Hao, Yang, Yan, Liu, Bing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1041-4347, 1558-2191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi-view graph-based clustering aims to provide clustering solutions to multi-view data. However, most existing methods do not give sufficient consideration to weights of different views and require an additional clustering step to produce the final clusters. They also usually optimize their objectives based on fixed graph similarity matrices of all views. In this paper, we propose a general G raph-based M ulti-view C lustering (GMC) to tackle these problems. GMC takes the data graph matrices of all views and fuses them to generate a unified graph matrix. The unified graph matrix in turn improves the data graph matrix of each view, and also gives the final clusters directly. The key novelty of GMC is its learning method, which can help the learning of each view graph matrix and the learning of the unified graph matrix in a mutual reinforcement manner. A novel multi-view fusion technique can automatically weight each data graph matrix to derive the unified graph matrix. A rank constraint without introducing a tuning parameter is also imposed on the graph Laplacian matrix of the unified matrix, which helps partition the data points naturally into the required number of clusters. An alternating iterative optimization algorithm is presented to optimize the objective function. Experimental results using both toy data and real-world data demonstrate that the proposed method outperforms state-of-the-art baselines markedly.
AbstractList Multi-view graph-based clustering aims to provide clustering solutions to multi-view data. However, most existing methods do not give sufficient consideration to weights of different views and require an additional clustering step to produce the final clusters. They also usually optimize their objectives based on fixed graph similarity matrices of all views. In this paper, we propose a general G raph-based M ulti-view C lustering (GMC) to tackle these problems. GMC takes the data graph matrices of all views and fuses them to generate a unified graph matrix. The unified graph matrix in turn improves the data graph matrix of each view, and also gives the final clusters directly. The key novelty of GMC is its learning method, which can help the learning of each view graph matrix and the learning of the unified graph matrix in a mutual reinforcement manner. A novel multi-view fusion technique can automatically weight each data graph matrix to derive the unified graph matrix. A rank constraint without introducing a tuning parameter is also imposed on the graph Laplacian matrix of the unified matrix, which helps partition the data points naturally into the required number of clusters. An alternating iterative optimization algorithm is presented to optimize the objective function. Experimental results using both toy data and real-world data demonstrate that the proposed method outperforms state-of-the-art baselines markedly.
Author Yang, Yan
Liu, Bing
Wang, Hao
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0001-9492-3807
  surname: Wang
  fullname: Wang, Hao
  email: cshaowang@gmail.com
  organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
– sequence: 2
  givenname: Yan
  orcidid: 0000-0002-6134-6094
  surname: Yang
  fullname: Yang, Yan
  email: yyang@swjtu.edu.cn
  organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
– sequence: 3
  givenname: Bing
  surname: Liu
  fullname: Liu, Bing
  email: liub@uic.edu
  organization: Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
BookMark eNp9kE1Lw0AQQBdRsK3-APFSELylzuz3etNYq9jipXpdtslGU2JSdxPEf29KiwcPnmYO783AG5LDuqk9IWcIE0QwV8unu-mEApoJNcA0wgEZoBA6oWjwsN-BY8IZV8dkGOMaALTSOCCXs0V6PZ4Ft3lPbl30-XjRVW2ZvJb-a5xWXWx9KOu3E3JUuCr60_0ckZf76TJ9SObPs8f0Zp5k1LA2UVxwtcoKkVHvZK68LyhAwTLhKKegkEslhTAGJRU5FCj9inqxwqxALUzORuRid3cTms_Ox9aumy7U_UtLmZFaagW8p9SOykITY_CFzcrWtWVTt8GVlUWw2yh2G8Vuo9h9lN7EP-YmlB8ufP_rnO-c0nv_y2spqQLGfgCXCGvE
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_TCYB_2021_3062830
crossref_primary_10_1109_TIP_2021_3128323
crossref_primary_10_32604_cmc_2023_046011
crossref_primary_10_1007_s00521_022_08137_w
crossref_primary_10_1016_j_comcom_2023_11_029
crossref_primary_10_1016_j_knosys_2023_110816
crossref_primary_10_1016_j_engappai_2024_107857
crossref_primary_10_1177_01655515241233742
crossref_primary_10_1109_TCYB_2021_3123081
crossref_primary_10_1016_j_inffus_2021_09_009
crossref_primary_10_1117_1_JEI_31_4_043024
crossref_primary_10_1016_j_ipm_2022_102967
crossref_primary_10_1016_j_neucom_2024_128266
crossref_primary_10_1109_TKDE_2022_3185683
crossref_primary_10_1016_j_patcog_2025_111582
crossref_primary_10_1016_j_eswa_2024_124021
crossref_primary_10_1109_TETCI_2024_3502459
crossref_primary_10_1007_s10489_023_04580_x
crossref_primary_10_1016_j_eswa_2025_127943
crossref_primary_10_1109_LSP_2025_3527231
crossref_primary_10_1109_TMM_2021_3081930
crossref_primary_10_1016_j_inffus_2025_103035
crossref_primary_10_1109_TNNLS_2022_3224748
crossref_primary_10_1109_LSP_2024_3466011
crossref_primary_10_1007_s11390_025_3739_2
crossref_primary_10_3390_math10111821
crossref_primary_10_1007_s10489_022_04267_9
crossref_primary_10_1007_s13042_021_01421_6
crossref_primary_10_1109_LSP_2023_3327652
crossref_primary_10_1007_s00530_025_01823_4
crossref_primary_10_1016_j_inffus_2025_103152
crossref_primary_10_3233_JIFS_212316
crossref_primary_10_1016_j_sigpro_2025_110144
crossref_primary_10_1145_3708887
crossref_primary_10_1016_j_jvcir_2020_103003
crossref_primary_10_1007_s11280_024_01256_5
crossref_primary_10_1007_s41019_022_00190_8
crossref_primary_10_1109_TIP_2023_3297410
crossref_primary_10_1007_s10489_022_03816_6
crossref_primary_10_1016_j_eswa_2025_126868
crossref_primary_10_1016_j_ins_2023_119622
crossref_primary_10_1109_TCSVT_2023_3276362
crossref_primary_10_1109_TBDATA_2024_3371357
crossref_primary_10_1109_TMM_2019_2952984
crossref_primary_10_1007_s40747_023_01112_5
crossref_primary_10_1016_j_knosys_2025_113314
crossref_primary_10_1016_j_engappai_2024_108851
crossref_primary_10_1109_TFUZZ_2020_3041191
crossref_primary_10_1016_j_ins_2023_01_013
crossref_primary_10_1109_LGRS_2025_3554356
crossref_primary_10_1109_ACCESS_2023_3242286
crossref_primary_10_1007_s10618_025_01109_3
crossref_primary_10_1007_s11063_021_10483_0
crossref_primary_10_1109_TNNLS_2021_3059874
crossref_primary_10_1016_j_ins_2023_03_072
crossref_primary_10_1109_TCYB_2021_3051606
crossref_primary_10_3390_e24081141
crossref_primary_10_1007_s10489_022_04277_7
crossref_primary_10_1109_TNNLS_2023_3256066
crossref_primary_10_1016_j_inffus_2023_101986
crossref_primary_10_1109_TCSS_2021_3109151
crossref_primary_10_1016_j_ins_2021_05_025
crossref_primary_10_1109_TNNLS_2024_3401449
crossref_primary_10_1109_TNNLS_2024_3447006
crossref_primary_10_1007_s10994_021_06071_x
crossref_primary_10_1016_j_ins_2022_10_089
crossref_primary_10_1016_j_neucom_2025_130944
crossref_primary_10_3390_electronics14091847
crossref_primary_10_3233_JIFS_224578
crossref_primary_10_32604_cmc_2025_060918
crossref_primary_10_1016_j_inffus_2024_102831
crossref_primary_10_1016_j_eswa_2021_114657
crossref_primary_10_1109_TCSVT_2021_3055625
crossref_primary_10_1109_TCSVT_2024_3376720
crossref_primary_10_1007_s00530_024_01400_1
crossref_primary_10_1109_TKDE_2021_3101227
crossref_primary_10_1109_TCSS_2022_3173367
crossref_primary_10_1016_j_eswa_2023_121518
crossref_primary_10_1016_j_neunet_2021_07_020
crossref_primary_10_1016_j_patcog_2024_111140
crossref_primary_10_1007_s10489_023_05237_5
crossref_primary_10_1109_TCSVT_2021_3099846
crossref_primary_10_1016_j_ins_2024_120604
crossref_primary_10_1007_s11063_022_11136_6
crossref_primary_10_1109_TNNLS_2022_3201964
crossref_primary_10_1016_j_ipm_2023_103284
crossref_primary_10_1109_TIP_2024_3378471
crossref_primary_10_1016_j_knosys_2023_110601
crossref_primary_10_1016_j_knosys_2022_108364
crossref_primary_10_1109_TNNLS_2023_3319823
crossref_primary_10_1109_TKDE_2022_3172687
crossref_primary_10_1016_j_ins_2022_07_177
crossref_primary_10_1109_LSP_2025_3540369
crossref_primary_10_1109_TR_2021_3079955
crossref_primary_10_1016_j_patcog_2022_109118
crossref_primary_10_1109_TNNLS_2025_3545435
crossref_primary_10_1109_TIP_2022_3176223
crossref_primary_10_1109_TAI_2021_3052425
crossref_primary_10_1007_s10489_022_04385_4
crossref_primary_10_1109_TNNLS_2023_3261460
crossref_primary_10_1109_TSIPN_2022_3169633
crossref_primary_10_1109_TETCI_2022_3221491
crossref_primary_10_1109_TNNLS_2022_3189763
crossref_primary_10_1109_TNSE_2024_3485646
crossref_primary_10_1145_3653305
crossref_primary_10_1016_j_eswa_2023_121976
crossref_primary_10_1109_LSP_2020_2970811
crossref_primary_10_1016_j_knosys_2025_114200
crossref_primary_10_1109_TKDE_2024_3424511
crossref_primary_10_1016_j_patcog_2025_111430
crossref_primary_10_1016_j_eswa_2022_119484
crossref_primary_10_1007_s42979_024_02970_7
crossref_primary_10_1109_TPAMI_2023_3257407
crossref_primary_10_1109_ACCESS_2022_3176436
crossref_primary_10_1109_TCYB_2021_3131749
crossref_primary_10_1016_j_asoc_2023_110702
crossref_primary_10_1016_j_ins_2024_120830
crossref_primary_10_1109_TKDE_2022_3151861
crossref_primary_10_1016_j_inffus_2025_103322
crossref_primary_10_3390_electronics13122421
crossref_primary_10_3390_app13158791
crossref_primary_10_1007_s11634_025_00628_7
crossref_primary_10_1016_j_patcog_2022_109264
crossref_primary_10_1109_TKDE_2025_3562723
crossref_primary_10_1109_TPAMI_2023_3319700
crossref_primary_10_1109_TKDE_2024_3440352
crossref_primary_10_1177_1088467X251315633
crossref_primary_10_1109_TBDATA_2021_3128906
crossref_primary_10_1109_TCYB_2020_3025636
crossref_primary_10_1109_TKDE_2022_3224052
crossref_primary_10_1109_TIP_2024_3444269
crossref_primary_10_1109_TNNLS_2021_3104846
crossref_primary_10_1016_j_knosys_2022_110141
crossref_primary_10_1145_3537900
crossref_primary_10_1109_LSP_2024_3455988
crossref_primary_10_1016_j_patcog_2025_111853
crossref_primary_10_1016_j_ins_2023_03_016
crossref_primary_10_1109_TMM_2022_3212270
crossref_primary_10_1371_journal_pone_0269878
crossref_primary_10_1109_TCSVT_2023_3266801
crossref_primary_10_1016_j_eswa_2025_128757
crossref_primary_10_1109_TETCI_2024_3369316
crossref_primary_10_1109_TKDE_2020_3048678
crossref_primary_10_3390_e25020371
crossref_primary_10_1016_j_knosys_2020_106666
crossref_primary_10_1109_TCE_2023_3330824
crossref_primary_10_1016_j_neucom_2023_126993
crossref_primary_10_1016_j_inffus_2023_03_002
crossref_primary_10_1109_TKDE_2022_3193569
crossref_primary_10_3390_e24040568
crossref_primary_10_1016_j_imavis_2025_105722
crossref_primary_10_1109_TSC_2025_3577480
crossref_primary_10_1109_TSG_2024_3411306
crossref_primary_10_1007_s00521_019_04243_4
crossref_primary_10_1016_j_neunet_2024_107111
crossref_primary_10_1109_ACCESS_2023_3241810
crossref_primary_10_1016_j_eswa_2025_128995
crossref_primary_10_1007_s11042_022_14057_7
crossref_primary_10_1002_int_22958
crossref_primary_10_1007_s10489_021_02417_z
crossref_primary_10_1016_j_patcog_2023_110082
crossref_primary_10_1109_TNNLS_2023_3262590
crossref_primary_10_1016_j_patcog_2024_110598
crossref_primary_10_1109_TGRS_2023_3331236
crossref_primary_10_1109_TCBB_2022_3143897
crossref_primary_10_1109_TCYB_2019_2922042
crossref_primary_10_1109_TIP_2024_3436615
crossref_primary_10_1109_TKDE_2023_3312794
crossref_primary_10_1109_TBDATA_2024_3433525
crossref_primary_10_1016_j_inffus_2025_103461
crossref_primary_10_1016_j_ins_2023_118937
crossref_primary_10_1109_TMM_2020_3025666
crossref_primary_10_1016_j_inffus_2025_103460
crossref_primary_10_1016_j_inffus_2023_101914
crossref_primary_10_1109_TGRS_2025_3545460
crossref_primary_10_1109_TMM_2024_3360689
crossref_primary_10_1016_j_neunet_2025_107647
crossref_primary_10_1016_j_ins_2024_121396
crossref_primary_10_1016_j_neunet_2021_11_027
crossref_primary_10_1109_TCE_2023_3301067
crossref_primary_10_1007_s10489_024_05616_6
crossref_primary_10_1016_j_ins_2024_121278
crossref_primary_10_1016_j_patcog_2025_111880
crossref_primary_10_1016_j_patcog_2024_110592
crossref_primary_10_1007_s00521_022_07864_4
crossref_primary_10_1007_s11042_023_15018_4
crossref_primary_10_1109_TFUZZ_2021_3058572
crossref_primary_10_1016_j_inffus_2023_101916
crossref_primary_10_1109_TPAMI_2022_3224978
crossref_primary_10_1016_j_patcog_2025_111874
crossref_primary_10_1016_j_knosys_2022_109479
crossref_primary_10_1049_ell2_70329
crossref_primary_10_1109_TMM_2023_3340095
crossref_primary_10_1016_j_sigpro_2024_109729
crossref_primary_10_1007_s00607_025_01464_5
crossref_primary_10_1109_TKDE_2023_3253244
crossref_primary_10_1016_j_knosys_2021_106745
crossref_primary_10_1016_j_dsp_2022_103447
crossref_primary_10_1016_j_cmpb_2020_105895
crossref_primary_10_1007_s13042_024_02105_7
crossref_primary_10_1109_TIP_2023_3261746
crossref_primary_10_1109_TNNLS_2025_3526590
crossref_primary_10_1016_j_knosys_2025_114356
crossref_primary_10_1016_j_eswa_2025_129741
crossref_primary_10_1109_TSIPN_2020_2970313
crossref_primary_10_1109_TKDE_2025_3538852
crossref_primary_10_1016_j_eswa_2025_128413
crossref_primary_10_1016_j_ins_2025_122677
crossref_primary_10_1007_s00530_025_01794_6
crossref_primary_10_1109_TKDE_2022_3178145
crossref_primary_10_1109_TNNLS_2023_3239033
crossref_primary_10_1109_TETCI_2024_3409724
crossref_primary_10_1109_TSMC_2025_3537801
crossref_primary_10_1109_TIP_2020_3045631
crossref_primary_10_1007_s00371_024_03661_3
crossref_primary_10_1016_j_patcog_2022_109187
crossref_primary_10_1016_j_neucom_2023_126320
crossref_primary_10_1109_TAI_2023_3293479
crossref_primary_10_1016_j_neucom_2022_04_030
crossref_primary_10_1109_TKDE_2022_3192686
crossref_primary_10_1145_3568684
crossref_primary_10_1109_TMM_2022_3157997
crossref_primary_10_1016_j_inffus_2022_08_014
crossref_primary_10_1016_j_ipm_2024_103735
crossref_primary_10_1109_TNNLS_2022_3189239
crossref_primary_10_1016_j_patcog_2025_111811
crossref_primary_10_1007_s00371_022_02419_z
crossref_primary_10_1007_s10489_025_06476_4
crossref_primary_10_1016_j_engappai_2022_105585
crossref_primary_10_1016_j_patcog_2025_111818
crossref_primary_10_3390_genes12040526
crossref_primary_10_1007_s00530_023_01225_4
crossref_primary_10_1109_TNNLS_2023_3304626
crossref_primary_10_3390_electronics12214467
crossref_primary_10_1109_TKDE_2024_3487534
crossref_primary_10_1109_LSP_2025_3558161
crossref_primary_10_1016_j_neunet_2025_107779
crossref_primary_10_1109_TCYB_2021_3083592
crossref_primary_10_1109_TCYB_2021_3061660
crossref_primary_10_1016_j_ins_2021_03_059
crossref_primary_10_1109_TMM_2023_3248173
crossref_primary_10_1016_j_eswa_2023_120272
crossref_primary_10_1109_TIP_2024_3459651
crossref_primary_10_1016_j_patcog_2025_111844
crossref_primary_10_1007_s10489_022_04074_2
crossref_primary_10_1016_j_patcog_2022_109083
crossref_primary_10_1109_TBDATA_2023_3255003
crossref_primary_10_1007_s00530_025_01815_4
crossref_primary_10_1145_3694689
crossref_primary_10_1080_1206212X_2024_2380975
crossref_primary_10_1016_j_fss_2024_109135
crossref_primary_10_1016_j_neucom_2024_127945
crossref_primary_10_1007_s13042_022_01729_x
crossref_primary_10_1109_ACCESS_2023_3271730
crossref_primary_10_1109_TNNLS_2024_3359690
crossref_primary_10_1016_j_ins_2025_122483
crossref_primary_10_1109_TSP_2024_3385654
crossref_primary_10_1016_j_knosys_2021_106807
crossref_primary_10_1016_j_inffus_2023_101832
crossref_primary_10_1016_j_neucom_2022_10_007
crossref_primary_10_1109_TNSE_2023_3244624
crossref_primary_10_1109_TNNLS_2024_3381223
crossref_primary_10_1016_j_knosys_2022_110244
crossref_primary_10_1007_s12559_022_10060_0
crossref_primary_10_1016_j_iot_2024_101203
crossref_primary_10_1007_s10489_022_03551_y
crossref_primary_10_1016_j_inffus_2023_101959
crossref_primary_10_1016_j_inffus_2025_103134
crossref_primary_10_1016_j_knosys_2023_110424
crossref_primary_10_1016_j_knosys_2024_112902
crossref_primary_10_1016_j_neunet_2025_107550
crossref_primary_10_1007_s11263_020_01307_0
crossref_primary_10_1016_j_neucom_2022_05_069
crossref_primary_10_1109_TNNLS_2021_3121224
crossref_primary_10_1109_TNSE_2025_3570354
crossref_primary_10_1007_s10489_021_02779_4
crossref_primary_10_1109_TIP_2021_3068646
crossref_primary_10_1109_TIP_2023_3293764
crossref_primary_10_1016_j_dsp_2022_103888
crossref_primary_10_1109_TNNLS_2024_3524205
crossref_primary_10_1007_s10489_022_04161_4
crossref_primary_10_1016_j_ins_2023_119719
crossref_primary_10_3389_fphy_2020_618224
crossref_primary_10_1016_j_inffus_2023_101947
crossref_primary_10_1016_j_knosys_2025_114158
crossref_primary_10_1016_j_knosys_2025_114157
crossref_primary_10_1016_j_neucom_2023_126695
crossref_primary_10_1007_s10462_025_11240_8
crossref_primary_10_1109_TMM_2025_3535360
crossref_primary_10_1007_s13042_024_02444_5
crossref_primary_10_1016_j_eswa_2025_127242
crossref_primary_10_1016_j_neunet_2024_106287
crossref_primary_10_1109_TKDE_2020_3014104
crossref_primary_10_1007_s00530_025_01792_8
crossref_primary_10_1109_ACCESS_2023_3260971
crossref_primary_10_1109_TIP_2025_3593057
crossref_primary_10_1109_TSMC_2024_3418582
crossref_primary_10_1109_TCSVT_2024_3434577
crossref_primary_10_1109_TCSS_2023_3253502
crossref_primary_10_1007_s13042_023_01969_5
crossref_primary_10_1109_ACCESS_2024_3358681
crossref_primary_10_1145_3664290
crossref_primary_10_1109_TNNLS_2020_3026686
crossref_primary_10_1155_2021_5526479
crossref_primary_10_1016_j_apnum_2023_11_009
crossref_primary_10_3390_math12030372
crossref_primary_10_1145_3532612
crossref_primary_10_1016_j_inffus_2023_02_013
crossref_primary_10_1016_j_inffus_2024_102483
crossref_primary_10_1016_j_phycom_2023_102231
crossref_primary_10_1016_j_ins_2021_11_075
crossref_primary_10_1007_s00521_024_09865_x
crossref_primary_10_1016_j_patcog_2024_110420
crossref_primary_10_1109_TMM_2022_3210376
crossref_primary_10_1109_TMM_2024_3521803
crossref_primary_10_1016_j_eswa_2021_115374
crossref_primary_10_1109_TKDE_2023_3333522
crossref_primary_10_1016_j_engappai_2024_108145
crossref_primary_10_1016_j_eswa_2022_116637
crossref_primary_10_1109_TCYB_2021_3087114
crossref_primary_10_1007_s10044_025_01455_4
crossref_primary_10_1109_TCYB_2020_2984552
crossref_primary_10_1016_j_eswa_2025_128007
crossref_primary_10_1109_TIP_2024_3388969
crossref_primary_10_1002_int_22655
crossref_primary_10_1016_j_ins_2022_11_026
crossref_primary_10_1093_bib_bbaf193
crossref_primary_10_1109_TCE_2023_3255231
crossref_primary_10_1109_TKDE_2024_3392209
crossref_primary_10_1016_j_neucom_2024_128839
crossref_primary_10_1109_TGRS_2025_3574020
crossref_primary_10_1109_TNNLS_2025_3552969
crossref_primary_10_7717_peerj_cs_922
crossref_primary_10_1016_j_sigpro_2023_109014
crossref_primary_10_1109_TBDATA_2023_3325045
crossref_primary_10_1016_j_ins_2022_12_063
crossref_primary_10_1007_s00521_023_08915_0
crossref_primary_10_1109_TCYB_2025_3554901
crossref_primary_10_1016_j_eswa_2023_121013
crossref_primary_10_1109_TPAMI_2022_3179556
crossref_primary_10_1109_TNNLS_2023_3253246
crossref_primary_10_1002_int_22409
crossref_primary_10_1109_TKDE_2022_3202561
crossref_primary_10_1016_j_knosys_2020_106280
crossref_primary_10_1016_j_knosys_2021_107439
crossref_primary_10_1109_MCI_2023_3245729
crossref_primary_10_3390_info15100591
crossref_primary_10_1109_TETCI_2024_3452687
crossref_primary_10_1038_s41598_022_20358_6
crossref_primary_10_1016_j_asoc_2025_113025
crossref_primary_10_1016_j_csbj_2021_04_060
crossref_primary_10_1109_TFUZZ_2024_3489025
crossref_primary_10_1109_TNNLS_2023_3265699
crossref_primary_10_1109_TKDE_2021_3082470
crossref_primary_10_1016_j_neucom_2023_127102
crossref_primary_10_1016_j_dsp_2022_103607
crossref_primary_10_1016_j_eswa_2022_118911
crossref_primary_10_1016_j_dsp_2022_103847
crossref_primary_10_1109_TNNLS_2022_3172588
crossref_primary_10_1016_j_neucom_2022_09_087
crossref_primary_10_1016_j_neunet_2024_106523
crossref_primary_10_3390_app12105094
crossref_primary_10_1109_LSP_2025_3560529
crossref_primary_10_1016_j_eswa_2024_125831
crossref_primary_10_1109_JAS_2022_105959
crossref_primary_10_3390_math11132940
crossref_primary_10_1109_TCSVT_2023_3278285
crossref_primary_10_1109_TKDE_2024_3425393
crossref_primary_10_1002_cpe_70134
crossref_primary_10_1109_TETCI_2023_3306027
crossref_primary_10_3390_electronics14040817
crossref_primary_10_1109_TII_2024_3514152
crossref_primary_10_1016_j_inffus_2024_102393
crossref_primary_10_1007_s11432_020_3369_8
crossref_primary_10_1109_ACCESS_2022_3232285
crossref_primary_10_1109_TAI_2021_3139573
crossref_primary_10_1109_TBDATA_2022_3163584
crossref_primary_10_1016_j_sigpro_2024_109597
crossref_primary_10_1109_TKDE_2020_3025759
crossref_primary_10_1016_j_csi_2025_104029
crossref_primary_10_1016_j_patcog_2023_109349
crossref_primary_10_1109_TKDE_2020_3035695
crossref_primary_10_1016_j_knosys_2024_111553
crossref_primary_10_1109_TMM_2024_3398295
crossref_primary_10_1007_s10489_022_04141_8
crossref_primary_10_1109_LSP_2023_3322324
crossref_primary_10_1145_3612923
crossref_primary_10_1016_j_engappai_2024_108336
crossref_primary_10_1007_s12559_021_09889_8
crossref_primary_10_1016_j_neunet_2021_04_033
crossref_primary_10_1016_j_neucom_2024_128627
crossref_primary_10_1109_TNNLS_2025_3525766
crossref_primary_10_1109_TNNLS_2024_3489585
crossref_primary_10_1109_TNNLS_2022_3213374
crossref_primary_10_1109_ACCESS_2019_2958493
crossref_primary_10_1145_3645108
crossref_primary_10_1016_j_engappai_2025_110715
crossref_primary_10_1109_TKDE_2020_2973981
crossref_primary_10_1016_j_neunet_2024_106103
crossref_primary_10_1109_TCSVT_2024_3430041
crossref_primary_10_1109_TKDE_2022_3171911
crossref_primary_10_1016_j_asoc_2021_107724
crossref_primary_10_1016_j_inffus_2023_102097
crossref_primary_10_1007_s11063_024_11589_x
crossref_primary_10_1016_j_neucom_2023_03_004
crossref_primary_10_1109_TIP_2025_3542602
crossref_primary_10_1007_s11276_023_03312_w
crossref_primary_10_1016_j_patcog_2024_110715
crossref_primary_10_1016_j_patcog_2024_110839
crossref_primary_10_1109_TKDE_2022_3199587
crossref_primary_10_1109_TNNLS_2022_3201498
crossref_primary_10_1007_s10618_021_00788_y
crossref_primary_10_1016_j_neucom_2024_128884
crossref_primary_10_1109_TNNLS_2022_3173742
crossref_primary_10_1109_TVCG_2025_3567084
crossref_primary_10_1007_s10044_022_01125_9
crossref_primary_10_1109_LSP_2020_3011599
crossref_primary_10_1016_j_cviu_2023_103829
crossref_primary_10_1109_ACCESS_2021_3107673
crossref_primary_10_1145_3534931
crossref_primary_10_1007_s11704_022_1376_2
crossref_primary_10_1016_j_eswa_2020_113913
crossref_primary_10_1109_TCYB_2023_3263175
crossref_primary_10_1016_j_knosys_2021_107632
crossref_primary_10_1016_j_neucom_2025_130233
crossref_primary_10_1109_TIP_2025_3583122
crossref_primary_10_1109_TMM_2021_3136094
crossref_primary_10_1109_TNNLS_2021_3054789
crossref_primary_10_1016_j_knosys_2020_106489
crossref_primary_10_1109_TETCI_2024_3406704
crossref_primary_10_1109_TMM_2021_3136098
crossref_primary_10_1371_journal_pone_0326852
crossref_primary_10_1016_j_patcog_2021_108429
crossref_primary_10_1016_j_knosys_2022_110092
crossref_primary_10_1016_j_neunet_2025_107836
crossref_primary_10_1007_s00521_023_08279_5
crossref_primary_10_1016_j_ins_2024_121482
crossref_primary_10_1109_TCSVT_2023_3311174
crossref_primary_10_1007_s10489_022_03735_6
crossref_primary_10_1111_tgis_13113
crossref_primary_10_1109_TNNLS_2022_3232538
crossref_primary_10_1016_j_jksuci_2024_102129
crossref_primary_10_1007_s13748_023_00312_x
crossref_primary_10_1016_j_inffus_2024_102630
crossref_primary_10_1016_j_inffus_2022_10_020
crossref_primary_10_1109_TNNLS_2023_3244021
crossref_primary_10_1109_TCSVT_2020_3049005
crossref_primary_10_1016_j_knosys_2021_107244
crossref_primary_10_1016_j_ins_2023_01_071
crossref_primary_10_1016_j_knosys_2023_111073
crossref_primary_10_1007_s10489_025_06515_0
crossref_primary_10_1016_j_knosys_2025_113810
crossref_primary_10_1109_TNNLS_2023_3279133
crossref_primary_10_1007_s00521_024_09560_x
crossref_primary_10_1007_s10489_024_05652_2
crossref_primary_10_1016_j_inffus_2024_102507
crossref_primary_10_1007_s10489_024_05807_1
crossref_primary_10_1007_s11042_022_14298_6
crossref_primary_10_1109_TPAMI_2020_3011148
crossref_primary_10_1109_TCYB_2021_3053057
crossref_primary_10_1016_j_knosys_2022_109937
crossref_primary_10_1007_s40747_024_01509_w
crossref_primary_10_1109_ACCESS_2023_3259361
crossref_primary_10_1007_s11042_023_14557_0
crossref_primary_10_1109_TPAMI_2025_3582689
crossref_primary_10_1016_j_eswa_2025_128193
crossref_primary_10_1007_s10044_022_01085_0
crossref_primary_10_1109_TCSVT_2025_3546973
crossref_primary_10_1109_TKDE_2020_3021649
crossref_primary_10_1111_tgis_70073
crossref_primary_10_1016_j_ins_2024_120899
crossref_primary_10_1109_TCSVT_2025_3533301
crossref_primary_10_1109_TPAMI_2025_3573613
crossref_primary_10_1016_j_ins_2024_121705
crossref_primary_10_1016_j_ins_2024_120739
crossref_primary_10_1016_j_patcog_2023_109764
crossref_primary_10_1016_j_knosys_2024_112537
crossref_primary_10_1109_TGRS_2021_3068779
crossref_primary_10_1109_TNNLS_2023_3269789
crossref_primary_10_1109_TKDE_2025_3589794
crossref_primary_10_1109_TKDE_2025_3591500
crossref_primary_10_1016_j_eswa_2022_118408
crossref_primary_10_1016_j_ipm_2022_102902
crossref_primary_10_1007_s11280_024_01290_3
crossref_primary_10_1016_j_neucom_2025_131528
crossref_primary_10_1016_j_inffus_2024_102849
crossref_primary_10_1016_j_neunet_2025_107193
crossref_primary_10_1016_j_ins_2024_121718
crossref_primary_10_1016_j_ins_2022_08_117
crossref_primary_10_1109_TKDE_2021_3068461
crossref_primary_10_1109_TKDE_2021_3059506
crossref_primary_10_1109_TKDE_2024_3487907
crossref_primary_10_1109_TKDE_2022_3185126
crossref_primary_10_1016_j_knosys_2021_107156
crossref_primary_10_1109_TAI_2023_3271964
crossref_primary_10_1016_j_neucom_2025_129568
crossref_primary_10_1016_j_neucom_2025_129689
crossref_primary_10_1109_TNNLS_2020_3045932
crossref_primary_10_1007_s00138_023_01497_w
crossref_primary_10_1109_TCSVT_2022_3200451
crossref_primary_10_1007_s11063_021_10634_3
crossref_primary_10_1016_j_neunet_2023_03_013
crossref_primary_10_1002_int_22596
crossref_primary_10_1016_j_inffus_2023_102155
crossref_primary_10_1016_j_patcog_2023_109860
crossref_primary_10_1016_j_neucom_2022_08_047
crossref_primary_10_1109_TKDE_2020_3045770
crossref_primary_10_1109_TMM_2021_3110098
crossref_primary_10_1007_s10044_025_01517_7
crossref_primary_10_1016_j_ins_2023_02_089
crossref_primary_10_1016_j_patcog_2022_108772
crossref_primary_10_1145_3465056
crossref_primary_10_1007_s10489_022_03600_6
crossref_primary_10_3390_rs17183217
crossref_primary_10_1016_j_neunet_2024_106856
crossref_primary_10_1016_j_neunet_2022_03_009
crossref_primary_10_1016_j_patcog_2025_111384
crossref_primary_10_1016_j_eswa_2024_125431
crossref_primary_10_1109_TBDATA_2023_3319249
crossref_primary_10_1016_j_ins_2023_02_092
crossref_primary_10_1016_j_inffus_2024_102323
crossref_primary_10_1016_j_knosys_2022_109736
crossref_primary_10_1016_j_knosys_2025_113960
crossref_primary_10_1016_j_neucom_2022_09_145
crossref_primary_10_1109_TETCI_2024_3423459
crossref_primary_10_1109_TNNLS_2025_3551159
crossref_primary_10_1209_0295_5075_135_18001
crossref_primary_10_1007_s10489_021_02365_8
crossref_primary_10_1109_TCSVT_2023_3266283
crossref_primary_10_1016_j_ins_2024_120458
crossref_primary_10_1016_j_eswa_2024_125454
crossref_primary_10_1109_TNNLS_2025_3543219
crossref_primary_10_1109_TFUZZ_2023_3306639
crossref_primary_10_1109_TPAMI_2025_3526790
crossref_primary_10_1007_s12652_021_03002_5
crossref_primary_10_1109_TBDATA_2024_3426277
crossref_primary_10_1016_j_cosrev_2025_100788
crossref_primary_10_1016_j_neucom_2024_128367
crossref_primary_10_1016_j_knosys_2024_112106
crossref_primary_10_1109_TNNLS_2022_3210370
crossref_primary_10_1007_s00530_022_00985_9
crossref_primary_10_1016_j_ipm_2021_102546
crossref_primary_10_1016_j_dsp_2024_104534
crossref_primary_10_1109_TIP_2025_3574924
crossref_primary_10_1016_j_inffus_2023_102123
crossref_primary_10_1016_j_inffus_2024_102785
crossref_primary_10_1016_j_neunet_2025_108088
crossref_primary_10_1016_j_eswa_2025_126835
crossref_primary_10_1016_j_patcog_2025_112124
crossref_primary_10_1007_s00530_024_01637_w
crossref_primary_10_1109_TKDE_2023_3270311
crossref_primary_10_1016_j_neunet_2023_04_016
crossref_primary_10_1016_j_neucom_2023_01_028
crossref_primary_10_1016_j_neunet_2023_10_001
crossref_primary_10_1109_TCE_2024_3376397
crossref_primary_10_1007_s10489_022_03898_2
crossref_primary_10_1016_j_eswa_2023_119949
crossref_primary_10_1016_j_neucom_2025_129889
crossref_primary_10_1016_j_neucom_2025_129766
crossref_primary_10_1016_j_neunet_2024_106849
crossref_primary_10_1016_j_patcog_2023_109836
crossref_primary_10_3233_JIFS_238420
crossref_primary_10_1016_j_ins_2025_121945
crossref_primary_10_1109_TCSS_2023_3331366
crossref_primary_10_1016_j_neunet_2024_106842
Cites_doi 10.1109/TKDE.2017.2725263
10.1109/TPAMI.2015.2417578
10.1016/j.inffus.2016.09.008
10.1109/TKDE.2017.2681670
10.1109/TNNLS.2013.2238682
10.1109/TCYB.2017.2751646
10.1016/j.neunet.2018.03.006
10.1109/TCYB.2018.2815012
10.1007/978-3-540-87987-9_8
10.1016/j.neunet.2017.02.003
10.1109/34.868688
10.1109/ICDM.2011.35
10.1109/TSC.2015.2430327
10.1109/TCYB.2017.2747400
10.1007/s10994-009-5157-z
10.1109/CVPR.2017.461
10.1109/TPAMI.2013.2296528
10.1109/ICCV.2015.482
10.1137/1.9781611972832.28
10.1109/TKDE.2015.2448542
10.1109/ICDM.2012.43
10.24963/ijcai.2017/357
10.1109/TIP.2015.2457339
10.26599/BDMA.2018.9020003
10.1109/TNNLS.2015.2498149
10.1109/TIP.2017.2754939
10.1109/TIP.2016.2553459
10.1109/TNNLS.2017.2777489
10.1016/j.patcog.2015.08.012
10.1109/TPAMI.2008.79
10.24963/ijcai.2017/418
10.1109/IJCNN.2015.7280445
10.1007/s10115-015-0861-4
10.1016/j.patcog.2014.05.005
10.1109/TIP.2015.2490539
10.1073/pnas.35.11.652
10.1145/2505515.2505591
10.1109/TSMCB.2009.2039566
10.1016/j.patcog.2017.01.035
10.1109/TIP.2017.2651379
10.1016/j.inffus.2017.02.007
10.1016/j.patcog.2018.01.012
10.1007/s00500-016-2120-3
10.1145/279943.279962
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2019.2903810
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1129
ExternalDocumentID 10_1109_TKDE_2019_2903810
8662703
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61572407
  funderid: 10.13039/501100001809
– fundername: China Scholarship Council
  grantid: 201707000064
  funderid: 10.13039/501100004543
– fundername: Huawei Technologies
  funderid: 10.13039/501100003816
– fundername: National Science Foundation
  grantid: IIS-1407927; IIS-1838770
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-74547bcf5c2ea6d7eef200f3c5a242071467655991625d0f16eb2e5b1cf1859d3
IEDL.DBID RIE
ISICitedReferencesCount 670
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531422700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 09 07:34:18 EST 2025
Tue Nov 18 21:25:32 EST 2025
Sat Nov 29 04:46:48 EST 2025
Wed Aug 27 02:43:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-74547bcf5c2ea6d7eef200f3c5a242071467655991625d0f16eb2e5b1cf1859d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9492-3807
0000-0002-6134-6094
PQID 2396868704
PQPubID 85438
PageCount 14
ParticipantIDs proquest_journals_2396868704
crossref_citationtrail_10_1109_TKDE_2019_2903810
crossref_primary_10_1109_TKDE_2019_2903810
ieee_primary_8662703
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References shi (ref60) 2000; 22
ref57
ref12
ref15
ref14
li (ref58) 2015
ref55
ref11
ref10
saha (ref5) 2013
zhao (ref38) 2017
ref17
ref16
ref18
cai (ref41) 2013
mohar (ref53) 1991; 2
yang (ref4) 2018; 1
ref51
ref50
ref46
ref45
ref48
ref47
ref42
xia (ref20) 2014
chao (ref3) 2017
ref44
ref43
sun (ref27) 2015
ref49
bertsekas (ref56) 2014
ref8
ref7
ref9
ref40
cortes (ref13) 2008
ref35
ref34
ref37
ref36
wang (ref23) 2016
ref31
ref30
ref33
ref32
ref2
ref39
nie (ref59) 2010
nie (ref52) 2016
ref24
nie (ref6) 2016
ref26
ref25
ref22
chung (ref54) 1997; 92
ref21
ref28
xu (ref1) 2013
ref29
kumar (ref19) 2011
References_xml – ident: ref10
  doi: 10.1109/TKDE.2017.2725263
– ident: ref47
  doi: 10.1109/TPAMI.2015.2417578
– start-page: 757
  year: 2015
  ident: ref27
  article-title: Multi-view sparse co-clustering via proximal alternating linearized minimization
  publication-title: Proc Int Conf Mach Learn
– ident: ref14
  doi: 10.1016/j.inffus.2016.09.008
– ident: ref7
  doi: 10.1109/TKDE.2017.2681670
– ident: ref45
  doi: 10.1109/TNNLS.2013.2238682
– ident: ref12
  doi: 10.1109/TCYB.2017.2751646
– ident: ref25
  doi: 10.1016/j.neunet.2018.03.006
– start-page: 2153
  year: 2016
  ident: ref23
  article-title: Iterative views agreement: An iterative low-rank based structured optimization method to multi-view spectral clustering
  publication-title: Proc Int Joint Conf Artif Intell
– start-page: 128
  year: 2013
  ident: ref5
  article-title: A graph based approach to multiview clustering
  publication-title: Proc IEEE Int Conf Pattern Recognit Mach Intell
– ident: ref11
  doi: 10.1109/TCYB.2018.2815012
– start-page: 38
  year: 2008
  ident: ref13
  article-title: Sample selection bias correction theory
  publication-title: Proc Int Conf Algorithmic Learn Theory
  doi: 10.1007/978-3-540-87987-9_8
– ident: ref43
  doi: 10.1016/j.neunet.2017.02.003
– volume: 2
  start-page: 871
  year: 1991
  ident: ref53
  article-title: The Laplacian spectrum of graphs
  publication-title: Graph Theory Comb Appl
– volume: 22
  start-page: 888
  year: 2000
  ident: ref60
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.868688
– start-page: 1413
  year: 2011
  ident: ref19
  article-title: Co-regularized multi-view spectral clustering
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref57
  doi: 10.1109/ICDM.2011.35
– ident: ref26
  doi: 10.1109/TSC.2015.2430327
– year: 2014
  ident: ref56
  publication-title: Constrained Optimization and Lagrange Multiplier Methods
– start-page: 1813
  year: 2010
  ident: ref59
  article-title: Efficient and robust feature selection via joint $l_{2,1}$l2,1-norms minimization
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref42
  doi: 10.1109/TCYB.2017.2747400
– ident: ref29
  doi: 10.1007/s10994-009-5157-z
– ident: ref40
  doi: 10.1109/CVPR.2017.461
– start-page: 2149
  year: 2014
  ident: ref20
  article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref46
  doi: 10.1109/TPAMI.2013.2296528
– start-page: 2598
  year: 2013
  ident: ref41
  article-title: Multi-view K-means clustering on big data
  publication-title: Proc Int Joint Conf Artif Intell
– start-page: 1969
  year: 2016
  ident: ref52
  article-title: The constrained Laplacian rank algorithm for graph-based clustering
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref33
  doi: 10.1109/ICCV.2015.482
– volume: 92
  year: 1997
  ident: ref54
  publication-title: Spectral Graph Theory
– ident: ref37
  doi: 10.1137/1.9781611972832.28
– ident: ref39
  doi: 10.1109/TKDE.2015.2448542
– ident: ref31
  doi: 10.1109/ICDM.2012.43
– ident: ref9
  doi: 10.24963/ijcai.2017/357
– ident: ref34
  doi: 10.1109/TIP.2015.2457339
– volume: 1
  start-page: 83
  year: 2018
  ident: ref4
  article-title: Multi-view clustering: A survey
  publication-title: Big data mining and analytics
  doi: 10.26599/BDMA.2018.9020003
– ident: ref17
  doi: 10.1109/TNNLS.2015.2498149
– ident: ref8
  doi: 10.1109/TIP.2017.2754939
– ident: ref21
  doi: 10.1109/TIP.2016.2553459
– start-page: 2750
  year: 2015
  ident: ref58
  article-title: Large-scale multi-view spectral clustering via bipartite graph
  publication-title: Proc AAAI Conf Artif Intell
– year: 2017
  ident: ref3
  article-title: A survey on multi-view clustering
  publication-title: arXiv preprint arXiv 1712 06246
– ident: ref24
  doi: 10.1109/TNNLS.2017.2777489
– ident: ref48
  doi: 10.1016/j.patcog.2015.08.012
– ident: ref51
  doi: 10.1109/TPAMI.2008.79
– ident: ref32
  doi: 10.24963/ijcai.2017/418
– start-page: 2921
  year: 2017
  ident: ref38
  article-title: Multi-view clustering via deep matrix factorization
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref15
  doi: 10.1109/IJCNN.2015.7280445
– year: 2013
  ident: ref1
  article-title: A survey on multi-view learning
  publication-title: arXiv preprint arXiv 1304 5634
– ident: ref28
  doi: 10.1007/s10115-015-0861-4
– ident: ref30
  doi: 10.1016/j.patcog.2014.05.005
– ident: ref36
  doi: 10.1109/TIP.2015.2490539
– ident: ref55
  doi: 10.1073/pnas.35.11.652
– ident: ref16
  doi: 10.1145/2505515.2505591
– ident: ref18
  doi: 10.1109/TSMCB.2009.2039566
– ident: ref35
  doi: 10.1016/j.patcog.2017.01.035
– ident: ref49
  doi: 10.1109/TIP.2017.2651379
– ident: ref2
  doi: 10.1016/j.inffus.2017.02.007
– ident: ref50
  doi: 10.1016/j.patcog.2018.01.012
– ident: ref22
  doi: 10.1007/s00500-016-2120-3
– ident: ref44
  doi: 10.1145/279943.279962
– start-page: 1881
  year: 2016
  ident: ref6
  article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification
  publication-title: Proc Int Joint Conf Artif Intell
SSID ssj0008781
Score 2.7221506
Snippet Multi-view graph-based clustering aims to provide clustering solutions to multi-view data. However, most existing methods do not give sufficient consideration...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1116
SubjectTerms Algorithms
Clustering
Clustering algorithms
Clustering methods
Computational complexity
Computational modeling
data fusion
Data points
graph-based clustering
Kernel
Laplace equations
Laplacian matrix
Learning
Matrix converters
Multi-view clustering
Optimization
rank constraint
Title GMC: Graph-Based Multi-View Clustering
URI https://ieeexplore.ieee.org/document/8662703
https://www.proquest.com/docview/2396868704
Volume 32
WOSCitedRecordID wos000531422700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL3U4kIXVlvFapVZiAtx2syjycSd1raCWFxU6W6YyQMKpZU-9Pe9SdNBUQQXA7NImOHkcXKS3HMBLrJMEnyoLzKFAkUGykcZof0szzMkmCAXWttkE2wwSEYj_lyC6yIWRillL5-ppnm1Z_lyJlZmq6yVGLdyY-25xRhbx2oVs27CbEJSVBf4yShm7gQzILw1fLzvmktcvBlyczBGvnGQTaryYya29NKr_O_H9mHPLSO923W7H0BJTatQ2aRo8NyIrcLuF7_BGlz2nzo3Xt94VPt3SF_Ss_G3_utYfXidycqYJmDBQ3jpdYedB98lSvAFsvXSZ8aVC1Fti1BlVDKlNHZ-HYl2hgxsQpQoo8ZaLEC1I4kOKOpp1c4DoZGuuYyOoDydTdUxeISTPOcyDlSMY5slucQFTCCpCKlG9EQdyAa6VDgXcZPMYpJaNUF4atBODdqpQ7sOV0WVt7WFxl-FawbeoqBDtg6NTfukbpAt0jDiNKE44cQnv9c6hZ3QyGO7adKA8nK-UmewLd6X48X83PafT_YQv-E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGP0YU1AfnG6K06l9EB_EbkkvaeObzl1kF3yYsrfSJikMxia76N_3S9YNRRF8KPQhoeXkcnKSfOcDuIpjSfBhtogVChRJlY0yIrXjJImRYGgi0tQkmwj6_XA45M85uN3EwiilzOUzVdWv5ixfTsVSb5XVQu1Wrq09t3zPc-gqWmsz74aBSUmK-gI_6npBdoZJCa8NOo8NfY2LVx2uj8bINxYyaVV-zMWGYJqF__3aAexnC0nrftXyh5BTkyIU1kkarGzMFmHvi-NgCa5bvfqd1dIu1fYDEpi0TASu_TpSH1Z9vNS2CVjwCF6ajUG9bWepEmyBfL2wA-3Lhbj6wlExk4FSKXb_1BV-jBysg5RYwLS5GEW9I0lKGSpq5SdUpEjYXLrHkJ9MJ-oELMJJknDpUeXh6A7CROIShkomHJYieqIMZA1dJDIfcZ3OYhwZPUF4pNGONNpRhnYZbjZV3lYmGn8VLml4NwUzZMtQWbdPlA2zeeS4nIUMpxzv9Pdal7DTHvS6Ufep3zmDXUeLZbOFUoH8YrZU57At3hej-ezC9KVPI43DKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GMC%3A+Graph-Based+Multi-View+Clustering&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Wang%2C+Hao&rft.au=Yang%2C+Yan&rft.au=Liu%2C+Bing&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=32&rft.issue=6&rft.spage=1116&rft.epage=1129&rft_id=info:doi/10.1109%2FTKDE.2019.2903810&rft.externalDocID=8662703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon