TGAE: Temporal Graph Autoencoder for Travel Forecasting
With the development of intelligent transportation systems, timely and accurate travel forecasting task has witnessed growing interest. Unlike most previous research that only considers the demand prediction in origin regions, this task aims to predict the origin-destination demand between all-regio...
Uloženo v:
| Vydáno v: | IEEE transactions on intelligent transportation systems Ročník 24; číslo 8; s. 1 - 13 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the development of intelligent transportation systems, timely and accurate travel forecasting task has witnessed growing interest. Unlike most previous research that only considers the demand prediction in origin regions, this task aims to predict the origin-destination demand between all-region pairs. Its main challenges come from effectively capturing the direction, weight, and temporal information of links in dynamic traffic networks. To confront these challenges, we treat the dynamic traffic networks as multiple weighted directed network snapshots and propose a graph-based deep learning framework, Temporal Graph Autoencoder (TGAE). Specifically, TGAE encodes the fundamentally asymmetric nature of a directed graph via directed neighborhood aggregation and learns a pair of vector representations for each node. Meanwhile, we use the graph attention mechanism to capture the weight information of links. Next, TGAE preserves the temporal dependencies by independently reconstructing the existence and weight of links over two consecutive time steps. Furthermore, we employ the Long Short-Term Memory network (LSTM) to capture the evolution patterns of traffic networks and predict both the direction and weight of links based on the historical data. Experimental results demonstrate that TGAE outperforms several baseline methods on the travel forecasting task, which can help traffic management, resource preallocation, and services optimization. |
|---|---|
| AbstractList | With the development of intelligent transportation systems, timely and accurate travel forecasting task has witnessed growing interest. Unlike most previous research that only considers the demand prediction in origin regions, this task aims to predict the origin-destination demand between all-region pairs. Its main challenges come from effectively capturing the direction, weight, and temporal information of links in dynamic traffic networks. To confront these challenges, we treat the dynamic traffic networks as multiple weighted directed network snapshots and propose a graph-based deep learning framework, Temporal Graph Autoencoder (TGAE). Specifically, TGAE encodes the fundamentally asymmetric nature of a directed graph via directed neighborhood aggregation and learns a pair of vector representations for each node. Meanwhile, we use the graph attention mechanism to capture the weight information of links. Next, TGAE preserves the temporal dependencies by independently reconstructing the existence and weight of links over two consecutive time steps. Furthermore, we employ the Long Short-Term Memory network (LSTM) to capture the evolution patterns of traffic networks and predict both the direction and weight of links based on the historical data. Experimental results demonstrate that TGAE outperforms several baseline methods on the travel forecasting task, which can help traffic management, resource preallocation, and services optimization. |
| Author | Qiu, Meikang Liu, Yifeng Wang, Qiang Ye, Dongsheng Jiang, Hao |
| Author_xml | – sequence: 1 givenname: Qiang orcidid: 0000-0002-1489-5621 surname: Wang fullname: Wang, Qiang organization: Electronic Information School, Wuhan University, Wuhan, China – sequence: 2 givenname: Hao orcidid: 0000-0002-8533-1612 surname: Jiang fullname: Jiang, Hao organization: Electronic Information School and the Geospatial Information Technology Cooperative Innovation Center, Wuhan University, Wuhan, China – sequence: 3 givenname: Meikang orcidid: 0000-0002-1004-0140 surname: Qiu fullname: Qiu, Meikang organization: Department of Computer Science, Texas A and M University-Commerce, Commerce, TX, USA – sequence: 4 givenname: Yifeng surname: Liu fullname: Liu, Yifeng organization: National Engineering Laboratory for Risk Perception and Prevention (NELRPP), China Academy of Electronics and Information Technology, Beijing, China – sequence: 5 givenname: Dongsheng surname: Ye fullname: Ye, Dongsheng organization: Electronic Information School, Wuhan University, Wuhan, China |
| BookMark | eNp9kMFKw0AQhhepYFt9APES8Jw6s9lsst5KaWuh4MF4Xrabiaak2bhJBd--CS0ePHjZWYb_m2G-CRvVribG7hFmiKCesk32NuPA-SzqX0jVFRtjHKchAMrR8OciVBDDDZu07b7vihhxzJJsPV8-BxkdGudNFay9aT6D-bFzVFuXkw8K54PMm2-qgpXzZE3blfXHLbsuTNXS3aVO2ftqmS1ewu3rerOYb0PLVdSFCUdCJWUuc1CgdiaKczQ5gbFcUpwnIES6sxjJAlLKeUxCJJBgwY2yZItoyh7Pcxvvvo7Udnrvjr7uV2qeCqH6O0D2qeScst61radC27IzXenqzpuy0gh6sKQHS3qwpC-WehL_kI0vD8b__Ms8nJmSiH7zKk0Vyig6AWQ_cx4 |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_3390_ijgi12030100 crossref_primary_10_1016_j_jtte_2025_03_001 crossref_primary_10_1007_s00202_024_02520_7 |
| Cites_doi | 10.24963/ijcai.2019/274 10.1109/TITS.2020.2973365 10.1109/TITS.2013.2247040 10.1109/TKDE.2020.3008774 10.1609/aaai.v32i1.11257 10.1109/TITS.2017.2755684 10.1109/TITS.2019.2915525 10.1109/TKDE.2016.2591009 10.1609/aaai.v34i01.5470 10.1016/j.tra.2020.02.001 10.1016/j.patcog.2017.06.025 10.1148/radiology.143.1.7063747 10.1145/3018661.3018669 10.1016/j.physa.2017.12.092 10.1109/WI.2007.52 10.1109/TITS.2013.2262376 10.1109/TITS.2018.2815678 10.1016/j.inffus.2018.07.007 10.1109/TITS.2019.2950416 10.1016/j.aap.2018.04.030 10.1609/aaai.v34i04.5993 10.1109/TITS.2019.2935152 10.1016/j.physa.2019.122774 10.1016/j.eswa.2022.117921 10.1016/j.trb.2013.03.004 10.1145/3184558.3191526 10.1109/TKDE.2018.2849727 10.1016/j.trc.2020.102665 10.1145/3178876.3186058 10.1109/INFOCOM.2019.8737631 10.1145/3041658 10.1016/j.trc.2013.10.010 10.1016/j.trc.2018.07.013 10.1109/TCYB.2019.2920268 10.1162/089976600300015015 10.1609/aaai.v33i01.3301890 10.24963/ijcai.2019/640 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2022.3202089 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TITS_2022_3202089 9889163 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Special Fund for Science and Technology of Guangdong Province grantid: 2019SDR002 – fundername: National Natural Science Foundation of China grantid: U19B2004 funderid: 10.13039/501100001809 – fundername: Open Funding Projects of the State Key Laboratory of Communication Content Cognition grantid: 20K05; A02107 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD AARMG ABAZT FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-721e1966d6d0909ba35d1ade0ac26e5d70448bc136f08ed25e447071f2a9cecf3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000854541700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sun Jun 29 15:34:15 EDT 2025 Tue Nov 18 22:35:26 EST 2025 Sat Nov 29 06:35:01 EST 2025 Tue Nov 25 14:44:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-721e1966d6d0909ba35d1ade0ac26e5d70448bc136f08ed25e447071f2a9cecf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1004-0140 0000-0002-8533-1612 0000-0002-1489-5621 |
| PQID | 2844901406 |
| PQPubID | 75735 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2844901406 crossref_citationtrail_10_1109_TITS_2022_3202089 crossref_primary_10_1109_TITS_2022_3202089 ieee_primary_9889163 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref15 ref37 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 jiao (ref13) 2021 ref17 ref16 ref38 zhao (ref43) 2018 ref19 ref18 arjovsky (ref39) 2017; 70 yu (ref6) 2017 ref24 ref46 ref23 ref26 ref25 ref20 ref22 ref44 ref21 zhu (ref45) 2018; 31 veli?kovi? (ref42) 2017 ref28 ref27 zhao (ref34) 2015; 5 ref29 jiang (ref12) 2022; 207 ref8 ref7 ref9 ref4 ref3 brody (ref41) 2021 ref5 ref40 kazemi (ref14) 2020; 21 |
| References_xml | – ident: ref11 doi: 10.24963/ijcai.2019/274 – ident: ref23 doi: 10.1109/TITS.2020.2973365 – year: 2021 ident: ref41 article-title: How attentive are graph attention networks? publication-title: arXiv 2105 14491 – ident: ref17 doi: 10.1109/TITS.2013.2247040 – ident: ref24 doi: 10.1109/TKDE.2020.3008774 – ident: ref30 doi: 10.1609/aaai.v32i1.11257 – ident: ref27 doi: 10.1109/TITS.2017.2755684 – ident: ref8 doi: 10.1109/TITS.2019.2915525 – ident: ref16 doi: 10.1109/TKDE.2016.2591009 – ident: ref9 doi: 10.1609/aaai.v34i01.5470 – ident: ref5 doi: 10.1016/j.tra.2020.02.001 – year: 2021 ident: ref13 article-title: Temporal network embedding for link prediction via VAE joint attention mechanism publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref36 doi: 10.1016/j.patcog.2017.06.025 – ident: ref46 doi: 10.1148/radiology.143.1.7063747 – ident: ref35 doi: 10.1145/3018661.3018669 – ident: ref37 doi: 10.1016/j.physa.2017.12.092 – ident: ref33 doi: 10.1109/WI.2007.52 – ident: ref18 doi: 10.1109/TITS.2013.2262376 – year: 2017 ident: ref42 article-title: Graph attention networks publication-title: arXiv 1710 10903 – ident: ref22 doi: 10.1109/TITS.2018.2815678 – year: 2018 ident: ref43 article-title: Where to go next: A spatio-temporal LSTM model for next POI recommendation publication-title: arXiv 1806 06671 – year: 2017 ident: ref6 article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting publication-title: arXiv 1709 04875 – ident: ref28 doi: 10.1016/j.inffus.2018.07.007 – ident: ref25 doi: 10.1109/TITS.2019.2950416 – ident: ref21 doi: 10.1016/j.aap.2018.04.030 – ident: ref32 doi: 10.1609/aaai.v34i04.5993 – volume: 5 start-page: 1 year: 2015 ident: ref34 article-title: Prediction of links and weights in networks by reliable routes publication-title: Sci Rep – ident: ref26 doi: 10.1109/TITS.2019.2935152 – volume: 31 start-page: 5160 year: 2018 ident: ref45 article-title: Dropping symmetry for fast symmetric nonnegative matrix factorization publication-title: Proc Adv Neural Inf Process Syst – ident: ref3 doi: 10.1016/j.physa.2019.122774 – volume: 207 year: 2022 ident: ref12 article-title: Graph neural network for traffic forecasting: A survey publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117921 – ident: ref20 doi: 10.1016/j.trb.2013.03.004 – ident: ref29 doi: 10.1145/3184558.3191526 – ident: ref15 doi: 10.1109/TKDE.2018.2849727 – ident: ref10 doi: 10.1016/j.trc.2020.102665 – ident: ref1 doi: 10.1145/3178876.3186058 – volume: 70 start-page: 214 year: 2017 ident: ref39 article-title: Wasserstein generative adversarial networks publication-title: Proc 34th Int Conf Mach Learn – volume: 21 start-page: 1 year: 2020 ident: ref14 article-title: Representation learning for dynamic graphs: A survey publication-title: J Mach Learn Res – ident: ref38 doi: 10.1109/INFOCOM.2019.8737631 – ident: ref2 doi: 10.1145/3041658 – ident: ref19 doi: 10.1016/j.trc.2013.10.010 – ident: ref4 doi: 10.1016/j.trc.2018.07.013 – ident: ref40 doi: 10.1109/TCYB.2019.2920268 – ident: ref44 doi: 10.1162/089976600300015015 – ident: ref7 doi: 10.1609/aaai.v33i01.3301890 – ident: ref31 doi: 10.24963/ijcai.2019/640 |
| SSID | ssj0014511 |
| Score | 2.4437513 |
| Snippet | With the development of intelligent transportation systems, timely and accurate travel forecasting task has witnessed growing interest. Unlike most previous... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | demand prediction Forecasting Graph neural networks Graph theory Heuristic algorithms Intelligent transportation systems Links Optimization origin-destination Peer-to-peer computing Predictive models Task analysis temporal graph autoencoder temporal networks Traffic information Traffic management Transportation Transportation networks Travel forecasting Vehicle dynamics |
| Title | TGAE: Temporal Graph Autoencoder for Travel Forecasting |
| URI | https://ieeexplore.ieee.org/document/9889163 https://www.proquest.com/docview/2844901406 |
| Volume | 24 |
| WOSCitedRecordID | wos000854541700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4UEP_pridEoPnsRsadomjbch2_QyBCvsVtLkDYSxydb595uk3RgogrccEijfS_Le63v5PoC7lEbGmjUhrAgTEpuCEskLRngRcaG1JxzxYhNiPE4nE_nagIftWxhE9M1n2HVDX8s3C712v8p6Mk1tNBPtwZ4QvHqrta0YOJ4tz43KYiJpsqlghlT2spfszWaCjHWdWDh1iu47PsiLqvy4ib17GR7_78NO4KgOI4N-ZfdTaOD8DA53yAVbILJRf_AYZBX31CwYOWrqoL8uF4670uAysPFqkDn5oVngFDq1Wrke6HN4Hw6yp2dSyyQQbX11SWwOh_YcccMNlVQWKkpMqAxSpRnHxAhqU7BChxGf0hQNSzCOhY0spkxJjXoaXUBzvpjjJQRM8TBVOkJtwySTKMVVKCiTqBiqVMdtoBvgcl1ziDspi1nucwkqc4d17rDOa6zbcL9d8lkRaPw1ueXA3U6scW1DZ2OdvD5iq9z61djVgCm_-n3VNRw4bfiqW68DzXK5xhvY11_lx2p563fPN8PVv64 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFNQHf4vTqX3wSeyWpm3a-DZkv3AOwQp7K2lyA2FssnX-_SZpNwaK4FseEijfJbm73uX7AO5i4itt1tClmRe6gcqIy1lGXZb5LJLSEo5YsYloOIxHI_5agYf1WxhEtM1n2DBDW8tXM7k0v8qaPI51NONvwXYYBJQUr7XWNQPDtGXZUWngchKuapge4c2kn7zpXJDShpELJ0bTfcMLWVmVH3exdTCdw_992hEclIGk0yosfwwVnJ7A_ga94ClESbfVfnSSgn1q4nQNObXTWuYzw16pcO7oiNVJjADRxDEanVIsTBf0Gbx32slTzy2FElypvXXu6iwO9UliiinCCc-EHypPKCRCUoahiohOwjLp-WxMYlQ0xCCIdGwxpoJLlGP_HKrT2RQvwKGCebGQPkodKKlQCCa8iFCOgqKIZVADsgIulSWLuBGzmKQ2myA8NVinBuu0xLoG9-slnwWFxl-TTw2464klrjWor6yTlodskWrPGpgqMGGXv6-6hd1e8jJIB_3h8xXsGaX4onevDtV8vsRr2JFf-cdifmN30jfp0cL1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TGAE%3A+Temporal+Graph+Autoencoder+for+Travel+Forecasting&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Wang%2C+Qiang&rft.au=Jiang%2C+Hao&rft.au=Qiu%2C+Meikang&rft.au=Liu%2C+Yifeng&rft.date=2023-08-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=8&rft.spage=8529&rft.epage=8541&rft_id=info:doi/10.1109%2FTITS.2022.3202089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3202089 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |