TGAE: Temporal Graph Autoencoder for Travel Forecasting

With the development of intelligent transportation systems, timely and accurate travel forecasting task has witnessed growing interest. Unlike most previous research that only considers the demand prediction in origin regions, this task aims to predict the origin-destination demand between all-regio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on intelligent transportation systems Ročník 24; číslo 8; s. 1 - 13
Hlavní autoři: Wang, Qiang, Jiang, Hao, Qiu, Meikang, Liu, Yifeng, Ye, Dongsheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1524-9050, 1558-0016
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the development of intelligent transportation systems, timely and accurate travel forecasting task has witnessed growing interest. Unlike most previous research that only considers the demand prediction in origin regions, this task aims to predict the origin-destination demand between all-region pairs. Its main challenges come from effectively capturing the direction, weight, and temporal information of links in dynamic traffic networks. To confront these challenges, we treat the dynamic traffic networks as multiple weighted directed network snapshots and propose a graph-based deep learning framework, Temporal Graph Autoencoder (TGAE). Specifically, TGAE encodes the fundamentally asymmetric nature of a directed graph via directed neighborhood aggregation and learns a pair of vector representations for each node. Meanwhile, we use the graph attention mechanism to capture the weight information of links. Next, TGAE preserves the temporal dependencies by independently reconstructing the existence and weight of links over two consecutive time steps. Furthermore, we employ the Long Short-Term Memory network (LSTM) to capture the evolution patterns of traffic networks and predict both the direction and weight of links based on the historical data. Experimental results demonstrate that TGAE outperforms several baseline methods on the travel forecasting task, which can help traffic management, resource preallocation, and services optimization.
AbstractList With the development of intelligent transportation systems, timely and accurate travel forecasting task has witnessed growing interest. Unlike most previous research that only considers the demand prediction in origin regions, this task aims to predict the origin-destination demand between all-region pairs. Its main challenges come from effectively capturing the direction, weight, and temporal information of links in dynamic traffic networks. To confront these challenges, we treat the dynamic traffic networks as multiple weighted directed network snapshots and propose a graph-based deep learning framework, Temporal Graph Autoencoder (TGAE). Specifically, TGAE encodes the fundamentally asymmetric nature of a directed graph via directed neighborhood aggregation and learns a pair of vector representations for each node. Meanwhile, we use the graph attention mechanism to capture the weight information of links. Next, TGAE preserves the temporal dependencies by independently reconstructing the existence and weight of links over two consecutive time steps. Furthermore, we employ the Long Short-Term Memory network (LSTM) to capture the evolution patterns of traffic networks and predict both the direction and weight of links based on the historical data. Experimental results demonstrate that TGAE outperforms several baseline methods on the travel forecasting task, which can help traffic management, resource preallocation, and services optimization.
Author Qiu, Meikang
Liu, Yifeng
Wang, Qiang
Ye, Dongsheng
Jiang, Hao
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0002-1489-5621
  surname: Wang
  fullname: Wang, Qiang
  organization: Electronic Information School, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Hao
  orcidid: 0000-0002-8533-1612
  surname: Jiang
  fullname: Jiang, Hao
  organization: Electronic Information School and the Geospatial Information Technology Cooperative Innovation Center, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Meikang
  orcidid: 0000-0002-1004-0140
  surname: Qiu
  fullname: Qiu, Meikang
  organization: Department of Computer Science, Texas A and M University-Commerce, Commerce, TX, USA
– sequence: 4
  givenname: Yifeng
  surname: Liu
  fullname: Liu, Yifeng
  organization: National Engineering Laboratory for Risk Perception and Prevention (NELRPP), China Academy of Electronics and Information Technology, Beijing, China
– sequence: 5
  givenname: Dongsheng
  surname: Ye
  fullname: Ye, Dongsheng
  organization: Electronic Information School, Wuhan University, Wuhan, China
BookMark eNp9kMFKw0AQhhepYFt9APES8Jw6s9lsst5KaWuh4MF4Xrabiaak2bhJBd--CS0ePHjZWYb_m2G-CRvVribG7hFmiKCesk32NuPA-SzqX0jVFRtjHKchAMrR8OciVBDDDZu07b7vihhxzJJsPV8-BxkdGudNFay9aT6D-bFzVFuXkw8K54PMm2-qgpXzZE3blfXHLbsuTNXS3aVO2ftqmS1ewu3rerOYb0PLVdSFCUdCJWUuc1CgdiaKczQ5gbFcUpwnIES6sxjJAlLKeUxCJJBgwY2yZItoyh7Pcxvvvo7Udnrvjr7uV2qeCqH6O0D2qeScst61radC27IzXenqzpuy0gh6sKQHS3qwpC-WehL_kI0vD8b__Ms8nJmSiH7zKk0Vyig6AWQ_cx4
CODEN ITISFG
CitedBy_id crossref_primary_10_3390_ijgi12030100
crossref_primary_10_1016_j_jtte_2025_03_001
crossref_primary_10_1007_s00202_024_02520_7
Cites_doi 10.24963/ijcai.2019/274
10.1109/TITS.2020.2973365
10.1109/TITS.2013.2247040
10.1109/TKDE.2020.3008774
10.1609/aaai.v32i1.11257
10.1109/TITS.2017.2755684
10.1109/TITS.2019.2915525
10.1109/TKDE.2016.2591009
10.1609/aaai.v34i01.5470
10.1016/j.tra.2020.02.001
10.1016/j.patcog.2017.06.025
10.1148/radiology.143.1.7063747
10.1145/3018661.3018669
10.1016/j.physa.2017.12.092
10.1109/WI.2007.52
10.1109/TITS.2013.2262376
10.1109/TITS.2018.2815678
10.1016/j.inffus.2018.07.007
10.1109/TITS.2019.2950416
10.1016/j.aap.2018.04.030
10.1609/aaai.v34i04.5993
10.1109/TITS.2019.2935152
10.1016/j.physa.2019.122774
10.1016/j.eswa.2022.117921
10.1016/j.trb.2013.03.004
10.1145/3184558.3191526
10.1109/TKDE.2018.2849727
10.1016/j.trc.2020.102665
10.1145/3178876.3186058
10.1109/INFOCOM.2019.8737631
10.1145/3041658
10.1016/j.trc.2013.10.010
10.1016/j.trc.2018.07.013
10.1109/TCYB.2019.2920268
10.1162/089976600300015015
10.1609/aaai.v33i01.3301890
10.24963/ijcai.2019/640
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3202089
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 13
ExternalDocumentID 10_1109_TITS_2022_3202089
9889163
Genre orig-research
GrantInformation_xml – fundername: Special Fund for Science and Technology of Guangdong Province
  grantid: 2019SDR002
– fundername: National Natural Science Foundation of China
  grantid: U19B2004
  funderid: 10.13039/501100001809
– fundername: Open Funding Projects of the State Key Laboratory of Communication Content Cognition
  grantid: 20K05; A02107
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
AARMG
ABAZT
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-721e1966d6d0909ba35d1ade0ac26e5d70448bc136f08ed25e447071f2a9cecf3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000854541700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Jun 29 15:34:15 EDT 2025
Tue Nov 18 22:35:26 EST 2025
Sat Nov 29 06:35:01 EST 2025
Tue Nov 25 14:44:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-721e1966d6d0909ba35d1ade0ac26e5d70448bc136f08ed25e447071f2a9cecf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1004-0140
0000-0002-8533-1612
0000-0002-1489-5621
PQID 2844901406
PQPubID 75735
PageCount 13
ParticipantIDs proquest_journals_2844901406
crossref_citationtrail_10_1109_TITS_2022_3202089
crossref_primary_10_1109_TITS_2022_3202089
ieee_primary_9889163
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref15
ref37
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
jiao (ref13) 2021
ref17
ref16
ref38
zhao (ref43) 2018
ref19
ref18
arjovsky (ref39) 2017; 70
yu (ref6) 2017
ref24
ref46
ref23
ref26
ref25
ref20
ref22
ref44
ref21
zhu (ref45) 2018; 31
veli?kovi? (ref42) 2017
ref28
ref27
zhao (ref34) 2015; 5
ref29
jiang (ref12) 2022; 207
ref8
ref7
ref9
ref4
ref3
brody (ref41) 2021
ref5
ref40
kazemi (ref14) 2020; 21
References_xml – ident: ref11
  doi: 10.24963/ijcai.2019/274
– ident: ref23
  doi: 10.1109/TITS.2020.2973365
– year: 2021
  ident: ref41
  article-title: How attentive are graph attention networks?
  publication-title: arXiv 2105 14491
– ident: ref17
  doi: 10.1109/TITS.2013.2247040
– ident: ref24
  doi: 10.1109/TKDE.2020.3008774
– ident: ref30
  doi: 10.1609/aaai.v32i1.11257
– ident: ref27
  doi: 10.1109/TITS.2017.2755684
– ident: ref8
  doi: 10.1109/TITS.2019.2915525
– ident: ref16
  doi: 10.1109/TKDE.2016.2591009
– ident: ref9
  doi: 10.1609/aaai.v34i01.5470
– ident: ref5
  doi: 10.1016/j.tra.2020.02.001
– year: 2021
  ident: ref13
  article-title: Temporal network embedding for link prediction via VAE joint attention mechanism
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref36
  doi: 10.1016/j.patcog.2017.06.025
– ident: ref46
  doi: 10.1148/radiology.143.1.7063747
– ident: ref35
  doi: 10.1145/3018661.3018669
– ident: ref37
  doi: 10.1016/j.physa.2017.12.092
– ident: ref33
  doi: 10.1109/WI.2007.52
– ident: ref18
  doi: 10.1109/TITS.2013.2262376
– year: 2017
  ident: ref42
  article-title: Graph attention networks
  publication-title: arXiv 1710 10903
– ident: ref22
  doi: 10.1109/TITS.2018.2815678
– year: 2018
  ident: ref43
  article-title: Where to go next: A spatio-temporal LSTM model for next POI recommendation
  publication-title: arXiv 1806 06671
– year: 2017
  ident: ref6
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
  publication-title: arXiv 1709 04875
– ident: ref28
  doi: 10.1016/j.inffus.2018.07.007
– ident: ref25
  doi: 10.1109/TITS.2019.2950416
– ident: ref21
  doi: 10.1016/j.aap.2018.04.030
– ident: ref32
  doi: 10.1609/aaai.v34i04.5993
– volume: 5
  start-page: 1
  year: 2015
  ident: ref34
  article-title: Prediction of links and weights in networks by reliable routes
  publication-title: Sci Rep
– ident: ref26
  doi: 10.1109/TITS.2019.2935152
– volume: 31
  start-page: 5160
  year: 2018
  ident: ref45
  article-title: Dropping symmetry for fast symmetric nonnegative matrix factorization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref3
  doi: 10.1016/j.physa.2019.122774
– volume: 207
  year: 2022
  ident: ref12
  article-title: Graph neural network for traffic forecasting: A survey
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117921
– ident: ref20
  doi: 10.1016/j.trb.2013.03.004
– ident: ref29
  doi: 10.1145/3184558.3191526
– ident: ref15
  doi: 10.1109/TKDE.2018.2849727
– ident: ref10
  doi: 10.1016/j.trc.2020.102665
– ident: ref1
  doi: 10.1145/3178876.3186058
– volume: 70
  start-page: 214
  year: 2017
  ident: ref39
  article-title: Wasserstein generative adversarial networks
  publication-title: Proc 34th Int Conf Mach Learn
– volume: 21
  start-page: 1
  year: 2020
  ident: ref14
  article-title: Representation learning for dynamic graphs: A survey
  publication-title: J Mach Learn Res
– ident: ref38
  doi: 10.1109/INFOCOM.2019.8737631
– ident: ref2
  doi: 10.1145/3041658
– ident: ref19
  doi: 10.1016/j.trc.2013.10.010
– ident: ref4
  doi: 10.1016/j.trc.2018.07.013
– ident: ref40
  doi: 10.1109/TCYB.2019.2920268
– ident: ref44
  doi: 10.1162/089976600300015015
– ident: ref7
  doi: 10.1609/aaai.v33i01.3301890
– ident: ref31
  doi: 10.24963/ijcai.2019/640
SSID ssj0014511
Score 2.4437513
Snippet With the development of intelligent transportation systems, timely and accurate travel forecasting task has witnessed growing interest. Unlike most previous...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms demand prediction
Forecasting
Graph neural networks
Graph theory
Heuristic algorithms
Intelligent transportation systems
Links
Optimization
origin-destination
Peer-to-peer computing
Predictive models
Task analysis
temporal graph autoencoder
temporal networks
Traffic information
Traffic management
Transportation
Transportation networks
Travel forecasting
Vehicle dynamics
Title TGAE: Temporal Graph Autoencoder for Travel Forecasting
URI https://ieeexplore.ieee.org/document/9889163
https://www.proquest.com/docview/2844901406
Volume 24
WOSCitedRecordID wos000854541700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4UEP_pridEoPnsRsadomjbch2_QyBCvsVtLkDYSxydb595uk3RgogrccEijfS_Le63v5PoC7lEbGmjUhrAgTEpuCEskLRngRcaG1JxzxYhNiPE4nE_nagIftWxhE9M1n2HVDX8s3C712v8p6Mk1tNBPtwZ4QvHqrta0YOJ4tz43KYiJpsqlghlT2spfszWaCjHWdWDh1iu47PsiLqvy4ib17GR7_78NO4KgOI4N-ZfdTaOD8DA53yAVbILJRf_AYZBX31CwYOWrqoL8uF4670uAysPFqkDn5oVngFDq1Wrke6HN4Hw6yp2dSyyQQbX11SWwOh_YcccMNlVQWKkpMqAxSpRnHxAhqU7BChxGf0hQNSzCOhY0spkxJjXoaXUBzvpjjJQRM8TBVOkJtwySTKMVVKCiTqBiqVMdtoBvgcl1ziDspi1nucwkqc4d17rDOa6zbcL9d8lkRaPw1ueXA3U6scW1DZ2OdvD5iq9z61djVgCm_-n3VNRw4bfiqW68DzXK5xhvY11_lx2p563fPN8PVv64
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFNQHf4vTqX3wSeyWpm3a-DZkv3AOwQp7K2lyA2FssnX-_SZpNwaK4FseEijfJbm73uX7AO5i4itt1tClmRe6gcqIy1lGXZb5LJLSEo5YsYloOIxHI_5agYf1WxhEtM1n2DBDW8tXM7k0v8qaPI51NONvwXYYBJQUr7XWNQPDtGXZUWngchKuapge4c2kn7zpXJDShpELJ0bTfcMLWVmVH3exdTCdw_992hEclIGk0yosfwwVnJ7A_ga94ClESbfVfnSSgn1q4nQNObXTWuYzw16pcO7oiNVJjADRxDEanVIsTBf0Gbx32slTzy2FElypvXXu6iwO9UliiinCCc-EHypPKCRCUoahiohOwjLp-WxMYlQ0xCCIdGwxpoJLlGP_HKrT2RQvwKGCebGQPkodKKlQCCa8iFCOgqKIZVADsgIulSWLuBGzmKQ2myA8NVinBuu0xLoG9-slnwWFxl-TTw2464klrjWor6yTlodskWrPGpgqMGGXv6-6hd1e8jJIB_3h8xXsGaX4onevDtV8vsRr2JFf-cdifmN30jfp0cL1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TGAE%3A+Temporal+Graph+Autoencoder+for+Travel+Forecasting&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Wang%2C+Qiang&rft.au=Jiang%2C+Hao&rft.au=Qiu%2C+Meikang&rft.au=Liu%2C+Yifeng&rft.date=2023-08-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=8&rft.spage=8529&rft.epage=8541&rft_id=info:doi/10.1109%2FTITS.2022.3202089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3202089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon