Minimum Manhattan Distance Approach to Multiple Criteria Decision Making in Multiobjective Optimization Problems
A minimum Manhattan distance (MMD) approach to multiple criteria decision making in multiobjective optimization problems (MOPs) is proposed. The approach selects the final solution corresponding with a vector that has the MMD from a normalized ideal vector. This procedure is equivalent to the knee s...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 20; H. 6; S. 972 - 985 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A minimum Manhattan distance (MMD) approach to multiple criteria decision making in multiobjective optimization problems (MOPs) is proposed. The approach selects the final solution corresponding with a vector that has the MMD from a normalized ideal vector. This procedure is equivalent to the knee selection described by a divide and conquer approach that involves iterations of pairwise comparisons. Being able to systematically assign weighting coefficients to multiple criteria, the MMD approach is equivalent to a weighted-sum (WS) approach. Because of the equivalence, the MMD approach possesses rich geometric interpretations that are considered essential in the field of evolutionary computation. The MMD approach is elegant because all evaluations can be performed by efficient matrix calculations without iterations of comparisons. While the WS approach may encounter an indeterminate situation in which a few solutions yield almost the same WS, the MMD approach is able to determine the final solution discriminately. Since existing multiobjective evolutionary algorithms aim for a posteriori decision making, i.e., determining the final solution after a set of Pareto optimal solutions is available, the proposed MMD approach can be combined with them to form a powerful solution method of solving MOPs. Furthermore, the approach enables scalable definitions of the knee and knee solutions. |
|---|---|
| AbstractList | A minimum Manhattan distance (MMD) approach to multiple criteria decision making in multiobjective optimization problems (MOPs) is proposed. The approach selects the final solution corresponding with a vector that has the MMD from a normalized ideal vector. This procedure is equivalent to the knee selection described by a divide and conquer approach that involves iterations of pairwise comparisons. Being able to systematically assign weighting coefficients to multiple criteria, the MMD approach is equivalent to a weighted-sum (WS) approach. Because of the equivalence, the MMD approach possesses rich geometric interpretations that are considered essential in the field of evolutionary computation. The MMD approach is elegant because all evaluations can be performed by efficient matrix calculations without iterations of comparisons. While the WS approach may encounter an indeterminate situation in which a few solutions yield almost the same WS, the MMD approach is able to determine the final solution discriminately. Since existing multiobjective evolutionary algorithms aim for a posteriori decision making, i.e., determining the final solution after a set of Pareto optimal solutions is available, the proposed MMD approach can be combined with them to form a powerful solution method of solving MOPs. Furthermore, the approach enables scalable definitions of the knee and knee solutions. |
| Author | Yen, Gary G. Wei-Yu Chiu Teng-Kuei Juan |
| Author_xml | – sequence: 1 surname: Wei-Yu Chiu fullname: Wei-Yu Chiu email: chiuweiyu@gmail.com organization: Dept. of Electr. Eng., Yuan Ze Univ., Taoyuan, Taiwan – sequence: 2 givenname: Gary G. surname: Yen fullname: Yen, Gary G. email: gyen@okstate.edu organization: Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA – sequence: 3 surname: Teng-Kuei Juan fullname: Teng-Kuei Juan email: s1034650@mail.yzu.edu.tw organization: Dept. of Electr. Eng., Yuan Ze Univ., Taoyuan, Taiwan |
| BookMark | eNp9kD1v2zAQhokiAZqP_oCiC4HOco-SKJFj4Hy0gI1kcIJsAkUdm3MkSiXpAOmvr1wHHTJ0uhue5z7eU3bkR4-MfRawEAL0t83Vw3KRg6gWuaxKIdUHdiJ0KTKAvDqae1A6q2v1-JGdxrgFEKUU-oRNa_I07Aa-Nv7JpGQ8v6Q4F4v8YprCaOwTTyNf7_pEU498GShhIMMv0VKk0c_mM_mfnPwBGtst2kQvyG-nRAP9NmlP3YWx7XGI5-zYmT7ip7d6xu6vrzbL79nq9ubH8mKV2VwXKauhwta1TlsNthC6UzaHzqmqE9gqLFtdO1AgHXYSXGVyV0DZqdIWnWyNNsUZ-3qYO__wa4cxNdtxF_y8shGqlIWotZYzVR8oG8YYA7rGUvp7cAqG-kZAs4-32cfb7ONt3uKdTfHOnAINJrz-1_lycAgR__F1WUkFRfEHZ82Kew |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_ins_2020_08_101 crossref_primary_10_1016_j_apenergy_2020_116415 crossref_primary_10_1016_j_asoc_2020_106857 crossref_primary_10_1016_j_ins_2019_09_016 crossref_primary_10_1109_TEVC_2022_3168836 crossref_primary_10_1016_j_ins_2020_11_009 crossref_primary_10_1109_ACCESS_2024_3418033 crossref_primary_10_1016_j_swevo_2024_101637 crossref_primary_10_1109_ACCESS_2021_3056427 crossref_primary_10_1109_JIOT_2018_2860592 crossref_primary_10_1109_TEVC_2018_2859638 crossref_primary_10_3389_fnbot_2019_00109 crossref_primary_10_1016_j_ins_2021_03_008 crossref_primary_10_1016_j_apenergy_2020_116145 crossref_primary_10_1109_TEVC_2021_3097937 crossref_primary_10_1016_j_jenvman_2023_119322 crossref_primary_10_1109_JBHI_2022_3199377 crossref_primary_10_1016_j_swevo_2023_101252 crossref_primary_10_1016_j_knosys_2023_110522 crossref_primary_10_1016_j_asoc_2022_108505 crossref_primary_10_1038_s41467_025_58503_0 crossref_primary_10_3390_s22020451 crossref_primary_10_1109_JSYST_2019_2933308 crossref_primary_10_1109_TSMC_2016_2571323 crossref_primary_10_1016_j_ins_2025_122531 crossref_primary_10_1145_3730435 crossref_primary_10_1016_j_ins_2025_122497 crossref_primary_10_1109_ACCESS_2024_3411872 crossref_primary_10_3390_math10162969 crossref_primary_10_1016_j_optlastec_2024_110769 crossref_primary_10_1109_TASE_2019_2958979 crossref_primary_10_1007_s12652_017_0572_7 crossref_primary_10_1109_TNNLS_2021_3059529 crossref_primary_10_1109_TVT_2023_3260876 crossref_primary_10_1016_j_epsr_2025_111552 crossref_primary_10_1007_s40747_024_01668_w crossref_primary_10_1016_j_eswa_2023_121538 crossref_primary_10_1016_j_matdes_2024_113053 crossref_primary_10_1109_TCYB_2019_2955573 crossref_primary_10_1016_j_buildenv_2019_01_035 crossref_primary_10_5194_hess_29_1429_2025 crossref_primary_10_1016_j_cie_2025_111506 crossref_primary_10_1007_s00500_022_07286_3 crossref_primary_10_3389_frobt_2025_1534346 crossref_primary_10_1109_TGRS_2024_3429350 crossref_primary_10_1007_s00521_022_07161_0 crossref_primary_10_1109_TCYB_2022_3231974 crossref_primary_10_1016_j_jtice_2024_105784 crossref_primary_10_1109_TASE_2024_3394715 crossref_primary_10_1016_j_energy_2022_124876 crossref_primary_10_1016_j_eswa_2023_122119 crossref_primary_10_1109_TCYB_2018_2789422 crossref_primary_10_1109_TCYB_2024_3377272 crossref_primary_10_1109_ACCESS_2018_2867066 crossref_primary_10_3390_fi16020055 crossref_primary_10_1109_TETCI_2024_3423472 crossref_primary_10_1007_s10586_025_05504_9 crossref_primary_10_1038_s41598_024_68052_z crossref_primary_10_1016_j_eswa_2025_126765 crossref_primary_10_1007_s11442_023_2098_6 crossref_primary_10_1016_j_neucom_2019_12_095 crossref_primary_10_3390_math10010133 crossref_primary_10_1016_j_mtcomm_2021_102314 crossref_primary_10_3390_math11122739 crossref_primary_10_1109_TEVC_2024_3364493 crossref_primary_10_1177_0142331220940110 crossref_primary_10_3390_electronics12030661 crossref_primary_10_1109_TCYB_2019_2928174 crossref_primary_10_3390_math11132815 crossref_primary_10_1016_j_epsr_2024_110929 crossref_primary_10_1016_j_ins_2020_12_086 crossref_primary_10_1109_TCYB_2019_2938895 crossref_primary_10_1098_rsos_231999 crossref_primary_10_1109_JSYST_2021_3061670 crossref_primary_10_1021_acs_jcim_5c00584 crossref_primary_10_1016_j_seta_2021_101682 crossref_primary_10_1016_j_ifacol_2022_07_607 crossref_primary_10_1109_TSMC_2023_3249123 crossref_primary_10_1016_j_ins_2020_07_057 crossref_primary_10_1016_j_buildenv_2022_109214 crossref_primary_10_3390_ijgi12040152 crossref_primary_10_3390_fermentation7020094 crossref_primary_10_1109_TNNLS_2019_2933879 crossref_primary_10_1109_TNNLS_2022_3187741 crossref_primary_10_3390_su12208467 crossref_primary_10_1109_TETCI_2021_3055232 crossref_primary_10_1109_TCSI_2020_2970759 crossref_primary_10_1109_TEVC_2022_3144880 crossref_primary_10_1109_TDSC_2023_3302284 crossref_primary_10_1016_j_ins_2024_121192 crossref_primary_10_1109_TASE_2024_3370615 crossref_primary_10_1109_TEVC_2023_3261135 crossref_primary_10_1016_j_neucom_2025_129897 crossref_primary_10_3390_su17115051 crossref_primary_10_1049_cth2_12437 crossref_primary_10_1109_TVT_2020_2982125 crossref_primary_10_1093_bib_bbae055 crossref_primary_10_3390_math13020265 crossref_primary_10_1109_JSYST_2018_2876345 crossref_primary_10_1109_TEVC_2021_3116121 crossref_primary_10_1109_TGRS_2024_3358303 crossref_primary_10_1109_JSYST_2019_2939824 crossref_primary_10_1109_TEVC_2020_3027620 crossref_primary_10_1016_j_asoc_2023_110661 crossref_primary_10_1016_j_future_2022_08_002 crossref_primary_10_3390_math9243187 crossref_primary_10_1109_TII_2019_2928520 crossref_primary_10_1016_j_ins_2024_120794 crossref_primary_10_1088_1742_6596_1413_1_012032 crossref_primary_10_3390_math10193420 crossref_primary_10_1109_TIM_2025_3597675 crossref_primary_10_1016_j_ins_2024_121406 |
| Cites_doi | 10.1109/TSG.2015.2399497 10.1109/VISUAL.1997.663916 10.1007/978-1-4757-5184-0 10.1016/j.cie.2007.12.002 10.1109/TR.2004.833312 10.1007/s00158-003-0368-6 10.1007/978-3-642-56927-2 10.1109/TEVC.2010.2098412 10.1109/CEC.2006.1688541 10.1109/TEVC.2013.2240688 10.1109/TEVC.2015.2472283 10.1109/TEVC.2009.2017515 10.1109/4235.996017 10.1007/978-0-387-68628-8 10.1162/106365600568158 10.1007/978-3-642-18965-4_10 10.1109/TEVC.2014.2313407 10.1109/CEC.2007.4425019 10.1016/j.cam.2009.02.102 10.1007/BF01197559 10.1109/CEC.1999.781913 10.1109/TEVC.2007.892759 10.1109/TEVC.2013.2281534 10.1016/S0377-2217(02)00251-5 10.1109/TEVC.2014.2378512 10.1007/978-3-540-70928-2_29 10.1080/0305215042000274942 10.1007/978-3-540-30217-9_73 10.1007/978-3-642-31054-6 10.1007/s001580050111 10.1049/iet-cta.2014.0026 10.1137/060677513 10.1007/3-540-45356-3_82 10.1109/5.58325 10.1126/science.290.5500.2319 10.1109/TEVC.2013.2281535 10.1016/j.rcim.2005.12.002 10.1109/TEVC.2014.2353672 10.1016/j.rser.2003.12.007 10.1109/4235.985691 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2016.2564158 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 985 |
| ExternalDocumentID | 10_1109_TEVC_2016_2564158 7465803 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and Technology of Taiwan grantid: 102-2218-E-155-004-MY3 funderid: 10.13039/501100004663 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c293t-706ebfbf9c90c319d8c20df86d1eb8e4b97f0805fed50f6a2f304d84c3d5ba9a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 142 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389872400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Jun 29 15:45:01 EDT 2025 Sat Nov 29 03:13:47 EST 2025 Tue Nov 18 21:19:29 EST 2025 Tue Aug 26 16:42:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-706ebfbf9c90c319d8c20df86d1eb8e4b97f0805fed50f6a2f304d84c3d5ba9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8851-5348 |
| PQID | 1845317995 |
| PQPubID | 85418 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_1845317995 crossref_citationtrail_10_1109_TEVC_2016_2564158 ieee_primary_7465803 crossref_primary_10_1109_TEVC_2016_2564158 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Dec. 2016-12-00 20161201 |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 fraleigh (ref44) 2003 ref11 ref10 velasquez (ref50) 2013; 10 ref17 ref16 miettinen (ref35) 1999 ref19 eiselt (ref4) 2012 ref18 pinter (ref43) 1971 zeleny (ref46) 1982 ref45 ref48 ref47 goh (ref23) 2009 ref41 inselberg (ref24) 2009 boyd (ref34) 1991 ref49 ref7 ref9 ref3 ref6 ref5 ref40 tenenbaum (ref33) 2000; 290 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 deb (ref42) 2001 zitzler (ref8) 2002 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref40 doi: 10.1109/TSG.2015.2399497 – ident: ref29 doi: 10.1109/VISUAL.1997.663916 – year: 1982 ident: ref46 publication-title: Multiple Criteria Decision Making – ident: ref41 doi: 10.1007/978-1-4757-5184-0 – ident: ref3 doi: 10.1016/j.cie.2007.12.002 – ident: ref20 doi: 10.1109/TR.2004.833312 – year: 1999 ident: ref35 publication-title: Nonlinear Multiobjective Optimization – ident: ref18 doi: 10.1007/s00158-003-0368-6 – ident: ref32 doi: 10.1007/978-3-642-56927-2 – ident: ref13 doi: 10.1109/TEVC.2010.2098412 – ident: ref12 doi: 10.1109/CEC.2006.1688541 – ident: ref2 doi: 10.1109/TEVC.2013.2240688 – ident: ref30 doi: 10.1109/TEVC.2015.2472283 – year: 1991 ident: ref34 publication-title: Linear Controller Design Limits of Performance – year: 2009 ident: ref23 publication-title: Evolutionary Multi-Objective Optimization in Uncertain Environments Issues and Algorithms – ident: ref16 doi: 10.1109/TEVC.2009.2017515 – ident: ref7 doi: 10.1109/4235.996017 – year: 2009 ident: ref24 publication-title: Parallel Coordinates Visual Multidimensional Geometry and Its Applications doi: 10.1007/978-0-387-68628-8 – ident: ref10 doi: 10.1162/106365600568158 – ident: ref37 doi: 10.1007/978-3-642-18965-4_10 – ident: ref21 doi: 10.1109/TEVC.2014.2313407 – ident: ref28 doi: 10.1109/CEC.2007.4425019 – ident: ref1 doi: 10.1016/j.cam.2009.02.102 – ident: ref19 doi: 10.1007/BF01197559 – ident: ref5 doi: 10.1109/CEC.1999.781913 – ident: ref9 doi: 10.1109/TEVC.2007.892759 – ident: ref26 doi: 10.1109/TEVC.2013.2281534 – ident: ref48 doi: 10.1016/S0377-2217(02)00251-5 – ident: ref17 doi: 10.1109/TEVC.2014.2378512 – ident: ref47 doi: 10.1016/j.cie.2007.12.002 – ident: ref27 doi: 10.1007/978-3-540-70928-2_29 – start-page: 95 year: 2002 ident: ref8 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm publication-title: Proc Evol Methods Design Optim Control Appl Ind Prob – year: 2003 ident: ref44 publication-title: A First Course in Abstract Algebra – ident: ref36 doi: 10.1080/0305215042000274942 – ident: ref14 doi: 10.1007/978-3-540-30217-9_73 – year: 2012 ident: ref4 publication-title: Operations Research A Model-Based Approach doi: 10.1007/978-3-642-31054-6 – ident: ref39 doi: 10.1007/s001580050111 – ident: ref38 doi: 10.1049/iet-cta.2014.0026 – year: 1971 ident: ref43 publication-title: Set Theory – year: 2001 ident: ref42 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref11 doi: 10.1137/060677513 – ident: ref6 doi: 10.1007/3-540-45356-3_82 – ident: ref31 doi: 10.1109/5.58325 – volume: 290 start-page: 2319 year: 2000 ident: ref33 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – ident: ref25 doi: 10.1109/TEVC.2013.2281535 – ident: ref49 doi: 10.1016/j.rcim.2005.12.002 – ident: ref22 doi: 10.1109/TEVC.2014.2353672 – volume: 10 start-page: 56 year: 2013 ident: ref50 article-title: An analysis of multi-criteria decision making methods publication-title: Int J Oper Res – ident: ref45 doi: 10.1016/j.rser.2003.12.007 – ident: ref15 doi: 10.1109/4235.985691 |
| SSID | ssj0014519 |
| Score | 2.5801115 |
| Snippet | A minimum Manhattan distance (MMD) approach to multiple criteria decision making in multiobjective optimization problems (MOPs) is proposed. The approach... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 972 |
| SubjectTerms | Decision making Divide and conquer (D&C) approach Electronic mail Evolutionary algorithms Evolutionary computation knee solutions Linear programming minimum Manhattan distance (MMD) approach multicriteria decision making (MCDM) multiobjective evolutionary algorithms (MOEAs) multiobjective optimization problems (MOPs) multiple attribute decision making (MADM) multiple criteria decision making (MCDM) Multiple criterion Optimization Pareto optimization Visualization |
| Title | Minimum Manhattan Distance Approach to Multiple Criteria Decision Making in Multiobjective Optimization Problems |
| URI | https://ieeexplore.ieee.org/document/7465803 https://www.proquest.com/docview/1845317995 |
| Volume | 20 |
| WOSCitedRecordID | wos000389872400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0VxAAD5VMUCvLAhEjrfNtjxYcYKHQoqFtkO7YoomlFU34_vsStQCAktgznKNKL753t83sA5xGTaRAo6lGhcOvGF54MeODZUkTwMFYsqbwBn-_Thwc2GvFBAy5Xd2G01lXzme7gY3WWn0_VArfKumlk-RKlPdfSNKnvaq1ODFAmpW6m57ZiZCN3gulT3h3ePF9hE1fSsfxuCYt946DKVOVHJq7o5bb5vw_bgW1XRpJejfsuNHSxB82lRQNxM3YPtr7oDe7DrD8uxpPFhPRF8SJKWxeSa6wfbSjpOXFxUk5J33UZEjRCwF-UXDsrHjsS99bJuKiDpvK1zpjk0eaeibvUSQa1Tc38AJ5ub4ZXd56zXPCU5f3SS2mipZGGK06VnZ05UwHNDUtyX0umI8lTY2vM2Og8piYRgQlplLNIhXksBRfhIawX00IfAYlRS5DlETW-jCwLyiSObbkhglAx4weiBXQJQqacHjnaYrxl1bqE8gxxyxC3zOHWgovVkFktxvFX8D4CtQp0GLWgvUQ6c9N1ntllrs1FqI13_PuoE9jEd9d9LG1YL98X-hQ21Ec5nr-fVX_iJ6EV3BY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB0hQNrlACzsivK1PnBCG3AcJ7GPiA-BaLscuqi3yHZsbRFNEU35_XgSt2LFColbDmMl0ovnje3xewBHXOicMUMjqgxu3cQq0kyyyJciSiapEVnjDXjfzft9MRzKuyX4tbgLY61tms_sCT42Z_nlxMxwq-w0554vUdpzJeWc0fa21uLMAIVS2nZ66WtGMQxnmDGVp4PL-3Ns48pOPMN7yhL_sFBjq_IuFzcEc7XxuU_bhPVQSJKzFvlvsGSrLdiYmzSQMGe3YO2N4uA2PPVG1Wg8G5Oeqv6q2leG5AIrSB9KzoK8OKknpBf6DAlaIeBPSi6CGY8fibvrZFS1QRP90OZM8ttnn3G41knuWqOa6Xf4c3U5OL-OgulCZDzz11FOM6uddtJIavz8LIVhtHQiK2OrheVa5s5XmamzZUpdpphLKC8FN0mZaiVV8gOWq0lld4CkqCYoSk5drLnnQZ2lqS84FEuMcDFTHaBzEAoTFMnRGOOxaFYmVBaIW4G4FQG3Dhwvhjy1chwfBW8jUIvAgFEH9udIF2HCTgu_0PXZCNXxdv8_6id8uR70ukX3pn-7B1_xPW1Xyz4s188zewCr5qUeTZ8Pm7_yFTev310 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+Manhattan+Distance+Approach+to+Multiple+Criteria+Decision+Making+in+Multiobjective+Optimization+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wei-Yu%2C+Chiu&rft.au=Yen%2C+Gary+G&rft.au=Teng-Kuei%2C+Juan&rft.date=2016-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=20&rft.issue=6&rft.spage=972&rft_id=info:doi/10.1109%2FTEVC.2016.2564158&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |