Minimum Manhattan Distance Approach to Multiple Criteria Decision Making in Multiobjective Optimization Problems

A minimum Manhattan distance (MMD) approach to multiple criteria decision making in multiobjective optimization problems (MOPs) is proposed. The approach selects the final solution corresponding with a vector that has the MMD from a normalized ideal vector. This procedure is equivalent to the knee s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 20; H. 6; S. 972 - 985
Hauptverfasser: Wei-Yu Chiu, Yen, Gary G., Teng-Kuei Juan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A minimum Manhattan distance (MMD) approach to multiple criteria decision making in multiobjective optimization problems (MOPs) is proposed. The approach selects the final solution corresponding with a vector that has the MMD from a normalized ideal vector. This procedure is equivalent to the knee selection described by a divide and conquer approach that involves iterations of pairwise comparisons. Being able to systematically assign weighting coefficients to multiple criteria, the MMD approach is equivalent to a weighted-sum (WS) approach. Because of the equivalence, the MMD approach possesses rich geometric interpretations that are considered essential in the field of evolutionary computation. The MMD approach is elegant because all evaluations can be performed by efficient matrix calculations without iterations of comparisons. While the WS approach may encounter an indeterminate situation in which a few solutions yield almost the same WS, the MMD approach is able to determine the final solution discriminately. Since existing multiobjective evolutionary algorithms aim for a posteriori decision making, i.e., determining the final solution after a set of Pareto optimal solutions is available, the proposed MMD approach can be combined with them to form a powerful solution method of solving MOPs. Furthermore, the approach enables scalable definitions of the knee and knee solutions.
AbstractList A minimum Manhattan distance (MMD) approach to multiple criteria decision making in multiobjective optimization problems (MOPs) is proposed. The approach selects the final solution corresponding with a vector that has the MMD from a normalized ideal vector. This procedure is equivalent to the knee selection described by a divide and conquer approach that involves iterations of pairwise comparisons. Being able to systematically assign weighting coefficients to multiple criteria, the MMD approach is equivalent to a weighted-sum (WS) approach. Because of the equivalence, the MMD approach possesses rich geometric interpretations that are considered essential in the field of evolutionary computation. The MMD approach is elegant because all evaluations can be performed by efficient matrix calculations without iterations of comparisons. While the WS approach may encounter an indeterminate situation in which a few solutions yield almost the same WS, the MMD approach is able to determine the final solution discriminately. Since existing multiobjective evolutionary algorithms aim for a posteriori decision making, i.e., determining the final solution after a set of Pareto optimal solutions is available, the proposed MMD approach can be combined with them to form a powerful solution method of solving MOPs. Furthermore, the approach enables scalable definitions of the knee and knee solutions.
Author Yen, Gary G.
Wei-Yu Chiu
Teng-Kuei Juan
Author_xml – sequence: 1
  surname: Wei-Yu Chiu
  fullname: Wei-Yu Chiu
  email: chiuweiyu@gmail.com
  organization: Dept. of Electr. Eng., Yuan Ze Univ., Taoyuan, Taiwan
– sequence: 2
  givenname: Gary G.
  surname: Yen
  fullname: Yen, Gary G.
  email: gyen@okstate.edu
  organization: Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA
– sequence: 3
  surname: Teng-Kuei Juan
  fullname: Teng-Kuei Juan
  email: s1034650@mail.yzu.edu.tw
  organization: Dept. of Electr. Eng., Yuan Ze Univ., Taoyuan, Taiwan
BookMark eNp9kD1v2zAQhokiAZqP_oCiC4HOco-SKJFj4Hy0gI1kcIJsAkUdm3MkSiXpAOmvr1wHHTJ0uhue5z7eU3bkR4-MfRawEAL0t83Vw3KRg6gWuaxKIdUHdiJ0KTKAvDqae1A6q2v1-JGdxrgFEKUU-oRNa_I07Aa-Nv7JpGQ8v6Q4F4v8YprCaOwTTyNf7_pEU498GShhIMMv0VKk0c_mM_mfnPwBGtst2kQvyG-nRAP9NmlP3YWx7XGI5-zYmT7ip7d6xu6vrzbL79nq9ubH8mKV2VwXKauhwta1TlsNthC6UzaHzqmqE9gqLFtdO1AgHXYSXGVyV0DZqdIWnWyNNsUZ-3qYO__wa4cxNdtxF_y8shGqlIWotZYzVR8oG8YYA7rGUvp7cAqG-kZAs4-32cfb7ONt3uKdTfHOnAINJrz-1_lycAgR__F1WUkFRfEHZ82Kew
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_ins_2020_08_101
crossref_primary_10_1016_j_apenergy_2020_116415
crossref_primary_10_1016_j_asoc_2020_106857
crossref_primary_10_1016_j_ins_2019_09_016
crossref_primary_10_1109_TEVC_2022_3168836
crossref_primary_10_1016_j_ins_2020_11_009
crossref_primary_10_1109_ACCESS_2024_3418033
crossref_primary_10_1016_j_swevo_2024_101637
crossref_primary_10_1109_ACCESS_2021_3056427
crossref_primary_10_1109_JIOT_2018_2860592
crossref_primary_10_1109_TEVC_2018_2859638
crossref_primary_10_3389_fnbot_2019_00109
crossref_primary_10_1016_j_ins_2021_03_008
crossref_primary_10_1016_j_apenergy_2020_116145
crossref_primary_10_1109_TEVC_2021_3097937
crossref_primary_10_1016_j_jenvman_2023_119322
crossref_primary_10_1109_JBHI_2022_3199377
crossref_primary_10_1016_j_swevo_2023_101252
crossref_primary_10_1016_j_knosys_2023_110522
crossref_primary_10_1016_j_asoc_2022_108505
crossref_primary_10_1038_s41467_025_58503_0
crossref_primary_10_3390_s22020451
crossref_primary_10_1109_JSYST_2019_2933308
crossref_primary_10_1109_TSMC_2016_2571323
crossref_primary_10_1016_j_ins_2025_122531
crossref_primary_10_1145_3730435
crossref_primary_10_1016_j_ins_2025_122497
crossref_primary_10_1109_ACCESS_2024_3411872
crossref_primary_10_3390_math10162969
crossref_primary_10_1016_j_optlastec_2024_110769
crossref_primary_10_1109_TASE_2019_2958979
crossref_primary_10_1007_s12652_017_0572_7
crossref_primary_10_1109_TNNLS_2021_3059529
crossref_primary_10_1109_TVT_2023_3260876
crossref_primary_10_1016_j_epsr_2025_111552
crossref_primary_10_1007_s40747_024_01668_w
crossref_primary_10_1016_j_eswa_2023_121538
crossref_primary_10_1016_j_matdes_2024_113053
crossref_primary_10_1109_TCYB_2019_2955573
crossref_primary_10_1016_j_buildenv_2019_01_035
crossref_primary_10_5194_hess_29_1429_2025
crossref_primary_10_1016_j_cie_2025_111506
crossref_primary_10_1007_s00500_022_07286_3
crossref_primary_10_3389_frobt_2025_1534346
crossref_primary_10_1109_TGRS_2024_3429350
crossref_primary_10_1007_s00521_022_07161_0
crossref_primary_10_1109_TCYB_2022_3231974
crossref_primary_10_1016_j_jtice_2024_105784
crossref_primary_10_1109_TASE_2024_3394715
crossref_primary_10_1016_j_energy_2022_124876
crossref_primary_10_1016_j_eswa_2023_122119
crossref_primary_10_1109_TCYB_2018_2789422
crossref_primary_10_1109_TCYB_2024_3377272
crossref_primary_10_1109_ACCESS_2018_2867066
crossref_primary_10_3390_fi16020055
crossref_primary_10_1109_TETCI_2024_3423472
crossref_primary_10_1007_s10586_025_05504_9
crossref_primary_10_1038_s41598_024_68052_z
crossref_primary_10_1016_j_eswa_2025_126765
crossref_primary_10_1007_s11442_023_2098_6
crossref_primary_10_1016_j_neucom_2019_12_095
crossref_primary_10_3390_math10010133
crossref_primary_10_1016_j_mtcomm_2021_102314
crossref_primary_10_3390_math11122739
crossref_primary_10_1109_TEVC_2024_3364493
crossref_primary_10_1177_0142331220940110
crossref_primary_10_3390_electronics12030661
crossref_primary_10_1109_TCYB_2019_2928174
crossref_primary_10_3390_math11132815
crossref_primary_10_1016_j_epsr_2024_110929
crossref_primary_10_1016_j_ins_2020_12_086
crossref_primary_10_1109_TCYB_2019_2938895
crossref_primary_10_1098_rsos_231999
crossref_primary_10_1109_JSYST_2021_3061670
crossref_primary_10_1021_acs_jcim_5c00584
crossref_primary_10_1016_j_seta_2021_101682
crossref_primary_10_1016_j_ifacol_2022_07_607
crossref_primary_10_1109_TSMC_2023_3249123
crossref_primary_10_1016_j_ins_2020_07_057
crossref_primary_10_1016_j_buildenv_2022_109214
crossref_primary_10_3390_ijgi12040152
crossref_primary_10_3390_fermentation7020094
crossref_primary_10_1109_TNNLS_2019_2933879
crossref_primary_10_1109_TNNLS_2022_3187741
crossref_primary_10_3390_su12208467
crossref_primary_10_1109_TETCI_2021_3055232
crossref_primary_10_1109_TCSI_2020_2970759
crossref_primary_10_1109_TEVC_2022_3144880
crossref_primary_10_1109_TDSC_2023_3302284
crossref_primary_10_1016_j_ins_2024_121192
crossref_primary_10_1109_TASE_2024_3370615
crossref_primary_10_1109_TEVC_2023_3261135
crossref_primary_10_1016_j_neucom_2025_129897
crossref_primary_10_3390_su17115051
crossref_primary_10_1049_cth2_12437
crossref_primary_10_1109_TVT_2020_2982125
crossref_primary_10_1093_bib_bbae055
crossref_primary_10_3390_math13020265
crossref_primary_10_1109_JSYST_2018_2876345
crossref_primary_10_1109_TEVC_2021_3116121
crossref_primary_10_1109_TGRS_2024_3358303
crossref_primary_10_1109_JSYST_2019_2939824
crossref_primary_10_1109_TEVC_2020_3027620
crossref_primary_10_1016_j_asoc_2023_110661
crossref_primary_10_1016_j_future_2022_08_002
crossref_primary_10_3390_math9243187
crossref_primary_10_1109_TII_2019_2928520
crossref_primary_10_1016_j_ins_2024_120794
crossref_primary_10_1088_1742_6596_1413_1_012032
crossref_primary_10_3390_math10193420
crossref_primary_10_1109_TIM_2025_3597675
crossref_primary_10_1016_j_ins_2024_121406
Cites_doi 10.1109/TSG.2015.2399497
10.1109/VISUAL.1997.663916
10.1007/978-1-4757-5184-0
10.1016/j.cie.2007.12.002
10.1109/TR.2004.833312
10.1007/s00158-003-0368-6
10.1007/978-3-642-56927-2
10.1109/TEVC.2010.2098412
10.1109/CEC.2006.1688541
10.1109/TEVC.2013.2240688
10.1109/TEVC.2015.2472283
10.1109/TEVC.2009.2017515
10.1109/4235.996017
10.1007/978-0-387-68628-8
10.1162/106365600568158
10.1007/978-3-642-18965-4_10
10.1109/TEVC.2014.2313407
10.1109/CEC.2007.4425019
10.1016/j.cam.2009.02.102
10.1007/BF01197559
10.1109/CEC.1999.781913
10.1109/TEVC.2007.892759
10.1109/TEVC.2013.2281534
10.1016/S0377-2217(02)00251-5
10.1109/TEVC.2014.2378512
10.1007/978-3-540-70928-2_29
10.1080/0305215042000274942
10.1007/978-3-540-30217-9_73
10.1007/978-3-642-31054-6
10.1007/s001580050111
10.1049/iet-cta.2014.0026
10.1137/060677513
10.1007/3-540-45356-3_82
10.1109/5.58325
10.1126/science.290.5500.2319
10.1109/TEVC.2013.2281535
10.1016/j.rcim.2005.12.002
10.1109/TEVC.2014.2353672
10.1016/j.rser.2003.12.007
10.1109/4235.985691
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2016.2564158
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 985
ExternalDocumentID 10_1109_TEVC_2016_2564158
7465803
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology of Taiwan
  grantid: 102-2218-E-155-004-MY3
  funderid: 10.13039/501100004663
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-706ebfbf9c90c319d8c20df86d1eb8e4b97f0805fed50f6a2f304d84c3d5ba9a3
IEDL.DBID RIE
ISICitedReferencesCount 142
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389872400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Jun 29 15:45:01 EDT 2025
Sat Nov 29 03:13:47 EST 2025
Tue Nov 18 21:19:29 EST 2025
Tue Aug 26 16:42:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-706ebfbf9c90c319d8c20df86d1eb8e4b97f0805fed50f6a2f304d84c3d5ba9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8851-5348
PQID 1845317995
PQPubID 85418
PageCount 14
ParticipantIDs proquest_journals_1845317995
crossref_citationtrail_10_1109_TEVC_2016_2564158
ieee_primary_7465803
crossref_primary_10_1109_TEVC_2016_2564158
PublicationCentury 2000
PublicationDate 2016-Dec.
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
fraleigh (ref44) 2003
ref11
ref10
velasquez (ref50) 2013; 10
ref17
ref16
miettinen (ref35) 1999
ref19
eiselt (ref4) 2012
ref18
pinter (ref43) 1971
zeleny (ref46) 1982
ref45
ref48
ref47
goh (ref23) 2009
ref41
inselberg (ref24) 2009
boyd (ref34) 1991
ref49
ref7
ref9
ref3
ref6
ref5
ref40
tenenbaum (ref33) 2000; 290
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
ref38
deb (ref42) 2001
zitzler (ref8) 2002
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref40
  doi: 10.1109/TSG.2015.2399497
– ident: ref29
  doi: 10.1109/VISUAL.1997.663916
– year: 1982
  ident: ref46
  publication-title: Multiple Criteria Decision Making
– ident: ref41
  doi: 10.1007/978-1-4757-5184-0
– ident: ref3
  doi: 10.1016/j.cie.2007.12.002
– ident: ref20
  doi: 10.1109/TR.2004.833312
– year: 1999
  ident: ref35
  publication-title: Nonlinear Multiobjective Optimization
– ident: ref18
  doi: 10.1007/s00158-003-0368-6
– ident: ref32
  doi: 10.1007/978-3-642-56927-2
– ident: ref13
  doi: 10.1109/TEVC.2010.2098412
– ident: ref12
  doi: 10.1109/CEC.2006.1688541
– ident: ref2
  doi: 10.1109/TEVC.2013.2240688
– ident: ref30
  doi: 10.1109/TEVC.2015.2472283
– year: 1991
  ident: ref34
  publication-title: Linear Controller Design Limits of Performance
– year: 2009
  ident: ref23
  publication-title: Evolutionary Multi-Objective Optimization in Uncertain Environments Issues and Algorithms
– ident: ref16
  doi: 10.1109/TEVC.2009.2017515
– ident: ref7
  doi: 10.1109/4235.996017
– year: 2009
  ident: ref24
  publication-title: Parallel Coordinates Visual Multidimensional Geometry and Its Applications
  doi: 10.1007/978-0-387-68628-8
– ident: ref10
  doi: 10.1162/106365600568158
– ident: ref37
  doi: 10.1007/978-3-642-18965-4_10
– ident: ref21
  doi: 10.1109/TEVC.2014.2313407
– ident: ref28
  doi: 10.1109/CEC.2007.4425019
– ident: ref1
  doi: 10.1016/j.cam.2009.02.102
– ident: ref19
  doi: 10.1007/BF01197559
– ident: ref5
  doi: 10.1109/CEC.1999.781913
– ident: ref9
  doi: 10.1109/TEVC.2007.892759
– ident: ref26
  doi: 10.1109/TEVC.2013.2281534
– ident: ref48
  doi: 10.1016/S0377-2217(02)00251-5
– ident: ref17
  doi: 10.1109/TEVC.2014.2378512
– ident: ref47
  doi: 10.1016/j.cie.2007.12.002
– ident: ref27
  doi: 10.1007/978-3-540-70928-2_29
– start-page: 95
  year: 2002
  ident: ref8
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: Proc Evol Methods Design Optim Control Appl Ind Prob
– year: 2003
  ident: ref44
  publication-title: A First Course in Abstract Algebra
– ident: ref36
  doi: 10.1080/0305215042000274942
– ident: ref14
  doi: 10.1007/978-3-540-30217-9_73
– year: 2012
  ident: ref4
  publication-title: Operations Research A Model-Based Approach
  doi: 10.1007/978-3-642-31054-6
– ident: ref39
  doi: 10.1007/s001580050111
– ident: ref38
  doi: 10.1049/iet-cta.2014.0026
– year: 1971
  ident: ref43
  publication-title: Set Theory
– year: 2001
  ident: ref42
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref11
  doi: 10.1137/060677513
– ident: ref6
  doi: 10.1007/3-540-45356-3_82
– ident: ref31
  doi: 10.1109/5.58325
– volume: 290
  start-page: 2319
  year: 2000
  ident: ref33
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– ident: ref25
  doi: 10.1109/TEVC.2013.2281535
– ident: ref49
  doi: 10.1016/j.rcim.2005.12.002
– ident: ref22
  doi: 10.1109/TEVC.2014.2353672
– volume: 10
  start-page: 56
  year: 2013
  ident: ref50
  article-title: An analysis of multi-criteria decision making methods
  publication-title: Int J Oper Res
– ident: ref45
  doi: 10.1016/j.rser.2003.12.007
– ident: ref15
  doi: 10.1109/4235.985691
SSID ssj0014519
Score 2.5801115
Snippet A minimum Manhattan distance (MMD) approach to multiple criteria decision making in multiobjective optimization problems (MOPs) is proposed. The approach...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 972
SubjectTerms Decision making
Divide and conquer (D&C) approach
Electronic mail
Evolutionary algorithms
Evolutionary computation
knee solutions
Linear programming
minimum Manhattan distance (MMD) approach
multicriteria decision making (MCDM)
multiobjective evolutionary algorithms (MOEAs)
multiobjective optimization problems (MOPs)
multiple attribute decision making (MADM)
multiple criteria decision making (MCDM)
Multiple criterion
Optimization
Pareto optimization
Visualization
Title Minimum Manhattan Distance Approach to Multiple Criteria Decision Making in Multiobjective Optimization Problems
URI https://ieeexplore.ieee.org/document/7465803
https://www.proquest.com/docview/1845317995
Volume 20
WOSCitedRecordID wos000389872400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0VxAAD5VMUCvLAhEjrfNtjxYcYKHQoqFtkO7YoomlFU34_vsStQCAktgznKNKL753t83sA5xGTaRAo6lGhcOvGF54MeODZUkTwMFYsqbwBn-_Thwc2GvFBAy5Xd2G01lXzme7gY3WWn0_VArfKumlk-RKlPdfSNKnvaq1ODFAmpW6m57ZiZCN3gulT3h3ePF9hE1fSsfxuCYt946DKVOVHJq7o5bb5vw_bgW1XRpJejfsuNHSxB82lRQNxM3YPtr7oDe7DrD8uxpPFhPRF8SJKWxeSa6wfbSjpOXFxUk5J33UZEjRCwF-UXDsrHjsS99bJuKiDpvK1zpjk0eaeibvUSQa1Tc38AJ5ub4ZXd56zXPCU5f3SS2mipZGGK06VnZ05UwHNDUtyX0umI8lTY2vM2Og8piYRgQlplLNIhXksBRfhIawX00IfAYlRS5DlETW-jCwLyiSObbkhglAx4weiBXQJQqacHjnaYrxl1bqE8gxxyxC3zOHWgovVkFktxvFX8D4CtQp0GLWgvUQ6c9N1ntllrs1FqI13_PuoE9jEd9d9LG1YL98X-hQ21Ec5nr-fVX_iJ6EV3BY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB0hQNrlACzsivK1PnBCG3AcJ7GPiA-BaLscuqi3yHZsbRFNEU35_XgSt2LFColbDmMl0ovnje3xewBHXOicMUMjqgxu3cQq0kyyyJciSiapEVnjDXjfzft9MRzKuyX4tbgLY61tms_sCT42Z_nlxMxwq-w0554vUdpzJeWc0fa21uLMAIVS2nZ66WtGMQxnmDGVp4PL-3Ns48pOPMN7yhL_sFBjq_IuFzcEc7XxuU_bhPVQSJKzFvlvsGSrLdiYmzSQMGe3YO2N4uA2PPVG1Wg8G5Oeqv6q2leG5AIrSB9KzoK8OKknpBf6DAlaIeBPSi6CGY8fibvrZFS1QRP90OZM8ttnn3G41knuWqOa6Xf4c3U5OL-OgulCZDzz11FOM6uddtJIavz8LIVhtHQiK2OrheVa5s5XmamzZUpdpphLKC8FN0mZaiVV8gOWq0lld4CkqCYoSk5drLnnQZ2lqS84FEuMcDFTHaBzEAoTFMnRGOOxaFYmVBaIW4G4FQG3Dhwvhjy1chwfBW8jUIvAgFEH9udIF2HCTgu_0PXZCNXxdv8_6id8uR70ukX3pn-7B1_xPW1Xyz4s188zewCr5qUeTZ8Pm7_yFTev310
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+Manhattan+Distance+Approach+to+Multiple+Criteria+Decision+Making+in+Multiobjective+Optimization+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wei-Yu%2C+Chiu&rft.au=Yen%2C+Gary+G&rft.au=Teng-Kuei%2C+Juan&rft.date=2016-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=20&rft.issue=6&rft.spage=972&rft_id=info:doi/10.1109%2FTEVC.2016.2564158&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon