Hyperspectral Endmember Extraction by (μ + λ) Multiobjective Differential Evolution Algorithm Based on Ranking Multiple Mutations
Endmember extraction (EE) plays a crucial part in the hyperspectral unmixing (HU) process. To obtain satisfactory EE results, the EE can be considered as the multiobjective optimization problem to optimize the volume maximization (VM) and root-mean-square error (RMSE) simultaneously. However, it is...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 59; číslo 3; s. 2352 - 2364 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Endmember extraction (EE) plays a crucial part in the hyperspectral unmixing (HU) process. To obtain satisfactory EE results, the EE can be considered as the multiobjective optimization problem to optimize the volume maximization (VM) and root-mean-square error (RMSE) simultaneously. However, it is often quite challenging to balance the conflict of these objectives. In order to tackle the challenges of multiobjective EE, we present a <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula> multiobjective differential evolution algorithm (<inline-formula> <tex-math notation="LaTeX">({\mu +\lambda }) </tex-math></inline-formula>-MODE) based on ranking multiple mutations. In the <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE algorithm, ranking multiple mutations are adopted to create the mutant vectors via the scaling factor pool to enhance the population diversity. Moreover, mutant vectors employ the binary crossover operator to generate the trial vectors through a crossover control parameter pool in <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE to take advantage of the good information of the population. In addition, <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE utilizes the fast nondominated sorting approach to sort the parent and trial vectors, and then selects the elitism offspring as the next population via the <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula> selection strategy. Eventually, experimental comparative results in three real HSIs reveal that our proposed <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE is superior to other EE methods. |
|---|---|
| AbstractList | Endmember extraction (EE) plays a crucial part in the hyperspectral unmixing (HU) process. To obtain satisfactory EE results, the EE can be considered as the multiobjective optimization problem to optimize the volume maximization (VM) and root-mean-square error (RMSE) simultaneously. However, it is often quite challenging to balance the conflict of these objectives. In order to tackle the challenges of multiobjective EE, we present a [Formula Omitted] multiobjective differential evolution algorithm ([Formula Omitted]-MODE) based on ranking multiple mutations. In the [Formula Omitted]-MODE algorithm, ranking multiple mutations are adopted to create the mutant vectors via the scaling factor pool to enhance the population diversity. Moreover, mutant vectors employ the binary crossover operator to generate the trial vectors through a crossover control parameter pool in [Formula Omitted]-MODE to take advantage of the good information of the population. In addition, [Formula Omitted]-MODE utilizes the fast nondominated sorting approach to sort the parent and trial vectors, and then selects the elitism offspring as the next population via the [Formula Omitted] selection strategy. Eventually, experimental comparative results in three real HSIs reveal that our proposed [Formula Omitted]-MODE is superior to other EE methods. Endmember extraction (EE) plays a crucial part in the hyperspectral unmixing (HU) process. To obtain satisfactory EE results, the EE can be considered as the multiobjective optimization problem to optimize the volume maximization (VM) and root-mean-square error (RMSE) simultaneously. However, it is often quite challenging to balance the conflict of these objectives. In order to tackle the challenges of multiobjective EE, we present a <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula> multiobjective differential evolution algorithm (<inline-formula> <tex-math notation="LaTeX">({\mu +\lambda }) </tex-math></inline-formula>-MODE) based on ranking multiple mutations. In the <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE algorithm, ranking multiple mutations are adopted to create the mutant vectors via the scaling factor pool to enhance the population diversity. Moreover, mutant vectors employ the binary crossover operator to generate the trial vectors through a crossover control parameter pool in <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE to take advantage of the good information of the population. In addition, <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE utilizes the fast nondominated sorting approach to sort the parent and trial vectors, and then selects the elitism offspring as the next population via the <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula> selection strategy. Eventually, experimental comparative results in three real HSIs reveal that our proposed <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE is superior to other EE methods. |
| Author | Tan, Kay Chen Zhang, Liangpei Du, Bo Tong, Lyuyang Liu, Rong |
| Author_xml | – sequence: 1 givenname: Lyuyang orcidid: 0000-0001-7148-3618 surname: Tong fullname: Tong, Lyuyang email: lyuyangtong@outlook.com organization: School of Computer Science, Wuhan University, Wuhan, China – sequence: 2 givenname: Bo orcidid: 0000-0002-0059-8458 surname: Du fullname: Du, Bo email: dubo@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan, China – sequence: 3 givenname: Rong orcidid: 0000-0002-4642-9086 surname: Liu fullname: Liu, Rong email: rong.liu@dlr.de organization: Germany Aerospace Center (DLR), Weßling, Germany – sequence: 4 givenname: Liangpei orcidid: 0000-0001-6890-3650 surname: Zhang fullname: Zhang, Liangpei email: zlp62@whu.edu.cn organization: State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China – sequence: 5 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen email: kaytan@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong |
| BookMark | eNp9kMtO3DAUhi00SB0uD1CxsdRNEcpwbCdOvKQwXCQQEp2uI09yPPU0k6R2BjFrHguegWfCIaMuumB1rF__d4717ZFR3dRIyFcGE8ZAnc6uHn5OOHCYCIBYQLpDxixJsghkHI_IGJiSEc8U_0L2vF8CsDhh6Zg8X29adL7FonO6otO6XOFqjo5On0JQdLap6XxDv7-90hP69nJM79ZVCOfLANhHpBfWGHRYd7anH5tq_YGcVYvG2e73iv7QHksaogdd_7H1YljQVhgene7L_oDsGl15PNzOffLrcjo7v45u769uzs9uo4Ir0UWyZFDMjRBlJjJEIwtTSpYaU2iRAE9YpkwCmZSYaAUpV4qpWKYcDC91Gpdin3wb9rau-btG3-XLZu3qcDLnsRISgMdJaKVDq3CN9w5NXtjho0GIrXIGeW88743nvfF8azyQ7D-ydXal3eZT5mhgLCL-6ysmQHEh3gG03ZDY |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2023_3314079 crossref_primary_10_7717_peerj_cs_1007 crossref_primary_10_1007_s00521_020_05592_1 crossref_primary_10_1109_JSTARS_2023_3333955 crossref_primary_10_3390_rs14040892 crossref_primary_10_1109_MGRS_2022_3145854 crossref_primary_10_1109_TGRS_2023_3242364 |
| Cites_doi | 10.1016/j.swevo.2011.03.001 10.1109/LGRS.2013.2285476 10.1109/TGRS.2019.2917001 10.1109/TGRS.2005.844293 10.1109/TIP.2018.2878958 10.1109/JSTSP.2018.2877497 10.1016/j.isprsjprs.2013.11.014 10.1109/79.974727 10.1109/JSTARS.2014.2373491 10.1162/EVCO_a_00024 10.1109/TIP.2014.2363423 10.1109/JSTARS.2015.2427656 10.1109/TCYB.2013.2239988 10.1109/TGRS.2011.2131145 10.1109/TGRS.2010.2098413 10.1109/JSTSP.2015.2419184 10.1109/TCYB.2014.2334692 10.1109/NAFIPS.1996.534790 10.1109/JSTARS.2014.2371615 10.1137/17M114145X 10.1109/JSTARS.2016.2640274 10.1109/JSTARS.2012.2194696 10.1109/TEVC.2010.2059031 10.1109/MGRS.2013.2244672 10.1109/TEVC.2010.2087271 10.1117/12.366289 10.1109/TGRS.2016.2580702 10.1109/JSTARS.2013.2242255 10.1016/j.neucom.2018.02.038 10.1109/JSTARS.2013.2267204 10.1109/TGRS.2011.2108305 10.3390/rs9030197 10.3390/rs9060558 10.1109/4235.996017 10.1016/j.swevo.2016.01.004 10.1109/TGRS.2019.2899826 10.1126/science.228.4704.1147 10.1109/NAFIPS.1996.534789 10.1109/TCYB.2015.2493239 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.3.CO;2-C 10.1023/A:1008202821328 10.1109/ACCESS.2018.2856832 10.1016/j.ins.2012.01.017 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2020.3004307 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Physics |
| EISSN | 1558-0644 |
| EndPage | 2364 |
| ExternalDocumentID | 10_1109_TGRS_2020_3004307 9130923 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Key Project of Science and Technology Innovation 2030 – fundername: Science and Technology Major Project of Hubei Province (Next-Generation AI Technologies) grantid: 2019AEA170 – fundername: Ministry of Science and Technology of China grantid: 2018AAA0101301 funderid: 10.13039/501100002855 – fundername: National Natural Science Foundation of China grantid: 41871243; 61822113 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-6d10cbf33d838eef6cfd617ffca35025189f50866e5a9072991946720f2da74d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000622319000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:09:29 EDT 2025 Tue Nov 18 22:16:49 EST 2025 Sat Nov 29 02:50:06 EST 2025 Wed Aug 27 02:43:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-6d10cbf33d838eef6cfd617ffca35025189f50866e5a9072991946720f2da74d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7148-3618 0000-0002-4642-9086 0000-0001-6890-3650 0000-0002-0059-8458 0000-0002-6802-2463 |
| PQID | 2493600245 |
| PQPubID | 85465 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2020_3004307 proquest_journals_2493600245 crossref_citationtrail_10_1109_TGRS_2020_3004307 ieee_primary_9130923 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref32 ref10 winter (ref11) 1999; 3753 boardman (ref12) 1995; 95 ref2 ref1 ref39 chen (ref35) 2010 ref17 ref38 ref16 ref19 ref18 zhu (ref44) 2014 ref46 ref24 ref45 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref31 doi: 10.1016/j.swevo.2011.03.001 – ident: ref24 doi: 10.1109/LGRS.2013.2285476 – ident: ref26 doi: 10.1109/TGRS.2019.2917001 – ident: ref13 doi: 10.1109/TGRS.2005.844293 – year: 2014 ident: ref44 article-title: Effective spectral unmixing via robust representation and learning-based sparsity publication-title: arXiv 1409 0685 – ident: ref6 doi: 10.1109/TIP.2018.2878958 – ident: ref7 doi: 10.1109/JSTSP.2018.2877497 – ident: ref43 doi: 10.1016/j.isprsjprs.2013.11.014 – ident: ref27 doi: 10.1109/79.974727 – ident: ref9 doi: 10.1109/JSTARS.2014.2373491 – ident: ref40 doi: 10.1162/EVCO_a_00024 – ident: ref42 doi: 10.1109/TIP.2014.2363423 – ident: ref5 doi: 10.1109/JSTARS.2015.2427656 – ident: ref36 doi: 10.1109/TCYB.2013.2239988 – ident: ref17 doi: 10.1109/TGRS.2011.2131145 – ident: ref10 doi: 10.1109/TGRS.2010.2098413 – ident: ref46 doi: 10.1109/JSTSP.2015.2419184 – ident: ref37 doi: 10.1109/TCYB.2014.2334692 – ident: ref21 doi: 10.1109/NAFIPS.1996.534790 – ident: ref16 doi: 10.1109/JSTARS.2014.2371615 – ident: ref15 doi: 10.1137/17M114145X – ident: ref19 doi: 10.1109/JSTARS.2016.2640274 – volume: 95 start-page: 23 year: 1995 ident: ref12 article-title: Mapping target signatures via partial unmixing of AVIRIS data publication-title: Proc Summaries 5th Annu JPL Airborne Earth Sci Workshop – ident: ref4 doi: 10.1109/JSTARS.2012.2194696 – ident: ref28 doi: 10.1109/TEVC.2010.2059031 – ident: ref3 doi: 10.1109/MGRS.2013.2244672 – ident: ref38 doi: 10.1109/TEVC.2010.2087271 – volume: 3753 start-page: 266 year: 1999 ident: ref11 article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data publication-title: Proc SPIE doi: 10.1117/12.366289 – ident: ref14 doi: 10.1109/TGRS.2016.2580702 – ident: ref45 doi: 10.1109/JSTARS.2013.2242255 – ident: ref30 doi: 10.1016/j.neucom.2018.02.038 – ident: ref2 doi: 10.1109/JSTARS.2013.2267204 – ident: ref18 doi: 10.1109/TGRS.2011.2108305 – ident: ref20 doi: 10.3390/rs9030197 – ident: ref25 doi: 10.3390/rs9060558 – ident: ref33 doi: 10.1109/4235.996017 – ident: ref29 doi: 10.1016/j.swevo.2016.01.004 – ident: ref8 doi: 10.1109/TGRS.2019.2899826 – ident: ref1 doi: 10.1126/science.228.4704.1147 – ident: ref22 doi: 10.1109/NAFIPS.1996.534789 – ident: ref39 doi: 10.1109/TCYB.2015.2493239 – ident: ref34 doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.3.CO;2-C – ident: ref23 doi: 10.1023/A:1008202821328 – start-page: 109 year: 2010 ident: ref35 article-title: Nonnegativity constraints in numerical analysis publication-title: The Birth Of Numerical Analysis – ident: ref32 doi: 10.1109/ACCESS.2018.2856832 – ident: ref41 doi: 10.1016/j.ins.2012.01.017 |
| SSID | ssj0014517 |
| Score | 2.3830767 |
| Snippet | Endmember extraction (EE) plays a crucial part in the hyperspectral unmixing (HU) process. To obtain satisfactory EE results, the EE can be considered as the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2352 |
| SubjectTerms | (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">μ + <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">λ ) selection strategy Algorithms Crossovers Endmember extraction (EE) Evolutionary algorithms Evolutionary computation Genetic crosses Hyperspectral imaging Indexes multiobjective differential evolution (DE) Multiple objective analysis Mutants Mutation Offspring Operators (mathematics) Optimization Ranking ranking multiple mutations Root-mean-square errors Scaling Scaling factors Sociology Sorting Statistics Vectors |
| Title | Hyperspectral Endmember Extraction by (μ + λ) Multiobjective Differential Evolution Algorithm Based on Ranking Multiple Mutations |
| URI | https://ieeexplore.ieee.org/document/9130923 https://www.proquest.com/docview/2493600245 |
| Volume | 59 |
| WOSCitedRecordID | wos000622319000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFL1KKpDSBYW0qIEUzYIFj7qxPc7Ys0xLQlcVKkHqzhrPo4DykpNUsOaz4BvyTb3zaEQFQmI3smZGls74zj2-jwPwMhVFnmkuIkVFFmWVpFGV5CZSecaKWGSJ5MKJTeQXF8XVFf_QgONtLYzW2iWf6RM7dLF8NZdr-6usx9HgokPShGaeM1-rtY0YZP0klEazCElEGiKYScx74_eXH5EJpkhQXYur_N4d5ERV_rDE7noZ7f3fiz2GR8GNJAOP-xNo6Fkbdn9rLtiGhy65Uy7b0LIepW_IvA8_zpF5-gLLGncYztRUW1EQMvy2qn2VA6m-k1ebX-Qt2fx8TVyJ7rz66i0jeRcUVdAy4OqbcHLJYHI9r7-sPk_JKd6LiuCjS-FkGfwGi4nGgY_7Lw_g02g4PjuPghJDJNEdWEVMJbGsDKWqoIXWhkmj0PUxRgratyyl4AY9PcZ0X3Dbi5wnHC1wGptUiTxT9CnszOYzfQgksZTSaNtWP0F7oXiRUpqKmAmu0BljHYjvsCllaFNu1TImpaMrMS8tnKWFswxwduDNdsnC9-j41-R9i992YoCuA927A1CGr3hZIjWlzAWnn_191XNopTbHxeWkdWFnVa_1ETyQNwhq_cId0FuG-uPb |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD7qOibYwwYFtA62-WEPY1sgiVMnfgRWVgSrECsSb5HjCxf1gtKCxjM_a_sN_CaOHbca2jRpb1ZkW5E-5_h8OZcP4H0ssjTRXASKiiRICkmDIkpNoNKEZaFIIsmFE5tIu93s9JQf1eDzrBZGa-2Sz_SmHbpYvhrJa_urbIujwUWH5Ak8tcpZvlprFjNIWpEvjmYB0ojYxzCjkG_1vh5_Ry4YI0V1Ta7SR7eQk1X5wxa7C2bv5f-92iK88I4k2a6QX4KaHjbg-W_tBRvwzKV3ynEDFqxPWbVkXoa7DnLPqsSyxB3aQzXQVhaEtH9MyqrOgRS35MP9L_KJ3P_cIK5Id1RcVraRfPGaKmgbcPWNP7tku382Ki8m5wOygzejIvjoWDhhhmqDq77GQRX5H6_AyV67t9sJvBZDINEhmARMRaEsDKUqo5nWhkmj0PkxRgrasjwl4wZ9PcZ0S3DbjZxHHG1wHJpYiTRRdBXqw9FQvwISWVJptG2sH6HFUDyLKY1FyARX6I6xJoRTbHLpG5VbvYx-7ghLyHMLZ27hzD2cTfg4W3JVden41-Rli99sooeuCevTA5D773icIzmlzIWnX_991TuY7_S-HeaH-92DNViIbcaLy1Bbh_qkvNZvYE7eIMDlW3dYHwCKlOck |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Endmember+Extraction+by+%28%CE%BC+%2B+%CE%BB%29+Multiobjective+Differential+Evolution+Algorithm+Based+on+Ranking+Multiple+Mutations&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Tong%2C+Lyuyang&rft.au=Du%2C+Bo&rft.au=Liu%2C+Rong&rft.au=Zhang%2C+Liangpei&rft.date=2021-03-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=59&rft.issue=3&rft.spage=2352&rft.epage=2364&rft_id=info:doi/10.1109%2FTGRS.2020.3004307&rft.externalDocID=9130923 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |