Hyperspectral Endmember Extraction by (μ + λ) Multiobjective Differential Evolution Algorithm Based on Ranking Multiple Mutations

Endmember extraction (EE) plays a crucial part in the hyperspectral unmixing (HU) process. To obtain satisfactory EE results, the EE can be considered as the multiobjective optimization problem to optimize the volume maximization (VM) and root-mean-square error (RMSE) simultaneously. However, it is...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 59; číslo 3; s. 2352 - 2364
Hlavní autori: Tong, Lyuyang, Du, Bo, Liu, Rong, Zhang, Liangpei, Tan, Kay Chen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Endmember extraction (EE) plays a crucial part in the hyperspectral unmixing (HU) process. To obtain satisfactory EE results, the EE can be considered as the multiobjective optimization problem to optimize the volume maximization (VM) and root-mean-square error (RMSE) simultaneously. However, it is often quite challenging to balance the conflict of these objectives. In order to tackle the challenges of multiobjective EE, we present a <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula> multiobjective differential evolution algorithm (<inline-formula> <tex-math notation="LaTeX">({\mu +\lambda }) </tex-math></inline-formula>-MODE) based on ranking multiple mutations. In the <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE algorithm, ranking multiple mutations are adopted to create the mutant vectors via the scaling factor pool to enhance the population diversity. Moreover, mutant vectors employ the binary crossover operator to generate the trial vectors through a crossover control parameter pool in <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE to take advantage of the good information of the population. In addition, <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE utilizes the fast nondominated sorting approach to sort the parent and trial vectors, and then selects the elitism offspring as the next population via the <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula> selection strategy. Eventually, experimental comparative results in three real HSIs reveal that our proposed <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE is superior to other EE methods.
AbstractList Endmember extraction (EE) plays a crucial part in the hyperspectral unmixing (HU) process. To obtain satisfactory EE results, the EE can be considered as the multiobjective optimization problem to optimize the volume maximization (VM) and root-mean-square error (RMSE) simultaneously. However, it is often quite challenging to balance the conflict of these objectives. In order to tackle the challenges of multiobjective EE, we present a [Formula Omitted] multiobjective differential evolution algorithm ([Formula Omitted]-MODE) based on ranking multiple mutations. In the [Formula Omitted]-MODE algorithm, ranking multiple mutations are adopted to create the mutant vectors via the scaling factor pool to enhance the population diversity. Moreover, mutant vectors employ the binary crossover operator to generate the trial vectors through a crossover control parameter pool in [Formula Omitted]-MODE to take advantage of the good information of the population. In addition, [Formula Omitted]-MODE utilizes the fast nondominated sorting approach to sort the parent and trial vectors, and then selects the elitism offspring as the next population via the [Formula Omitted] selection strategy. Eventually, experimental comparative results in three real HSIs reveal that our proposed [Formula Omitted]-MODE is superior to other EE methods.
Endmember extraction (EE) plays a crucial part in the hyperspectral unmixing (HU) process. To obtain satisfactory EE results, the EE can be considered as the multiobjective optimization problem to optimize the volume maximization (VM) and root-mean-square error (RMSE) simultaneously. However, it is often quite challenging to balance the conflict of these objectives. In order to tackle the challenges of multiobjective EE, we present a <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula> multiobjective differential evolution algorithm (<inline-formula> <tex-math notation="LaTeX">({\mu +\lambda }) </tex-math></inline-formula>-MODE) based on ranking multiple mutations. In the <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE algorithm, ranking multiple mutations are adopted to create the mutant vectors via the scaling factor pool to enhance the population diversity. Moreover, mutant vectors employ the binary crossover operator to generate the trial vectors through a crossover control parameter pool in <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE to take advantage of the good information of the population. In addition, <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE utilizes the fast nondominated sorting approach to sort the parent and trial vectors, and then selects the elitism offspring as the next population via the <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula> selection strategy. Eventually, experimental comparative results in three real HSIs reveal that our proposed <inline-formula> <tex-math notation="LaTeX">({\mu + \lambda }) </tex-math></inline-formula>-MODE is superior to other EE methods.
Author Tan, Kay Chen
Zhang, Liangpei
Du, Bo
Tong, Lyuyang
Liu, Rong
Author_xml – sequence: 1
  givenname: Lyuyang
  orcidid: 0000-0001-7148-3618
  surname: Tong
  fullname: Tong, Lyuyang
  email: lyuyangtong@outlook.com
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Bo
  orcidid: 0000-0002-0059-8458
  surname: Du
  fullname: Du, Bo
  email: dubo@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Rong
  orcidid: 0000-0002-4642-9086
  surname: Liu
  fullname: Liu, Rong
  email: rong.liu@dlr.de
  organization: Germany Aerospace Center (DLR), Weßling, Germany
– sequence: 4
  givenname: Liangpei
  orcidid: 0000-0001-6890-3650
  surname: Zhang
  fullname: Zhang, Liangpei
  email: zlp62@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China
– sequence: 5
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  email: kaytan@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
BookMark eNp9kMtO3DAUhi00SB0uD1CxsdRNEcpwbCdOvKQwXCQQEp2uI09yPPU0k6R2BjFrHguegWfCIaMuumB1rF__d4717ZFR3dRIyFcGE8ZAnc6uHn5OOHCYCIBYQLpDxixJsghkHI_IGJiSEc8U_0L2vF8CsDhh6Zg8X29adL7FonO6otO6XOFqjo5On0JQdLap6XxDv7-90hP69nJM79ZVCOfLANhHpBfWGHRYd7anH5tq_YGcVYvG2e73iv7QHksaogdd_7H1YljQVhgene7L_oDsGl15PNzOffLrcjo7v45u769uzs9uo4Ir0UWyZFDMjRBlJjJEIwtTSpYaU2iRAE9YpkwCmZSYaAUpV4qpWKYcDC91Gpdin3wb9rau-btG3-XLZu3qcDLnsRISgMdJaKVDq3CN9w5NXtjho0GIrXIGeW88743nvfF8azyQ7D-ydXal3eZT5mhgLCL-6ysmQHEh3gG03ZDY
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2023_3314079
crossref_primary_10_7717_peerj_cs_1007
crossref_primary_10_1007_s00521_020_05592_1
crossref_primary_10_1109_JSTARS_2023_3333955
crossref_primary_10_3390_rs14040892
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_1109_TGRS_2023_3242364
Cites_doi 10.1016/j.swevo.2011.03.001
10.1109/LGRS.2013.2285476
10.1109/TGRS.2019.2917001
10.1109/TGRS.2005.844293
10.1109/TIP.2018.2878958
10.1109/JSTSP.2018.2877497
10.1016/j.isprsjprs.2013.11.014
10.1109/79.974727
10.1109/JSTARS.2014.2373491
10.1162/EVCO_a_00024
10.1109/TIP.2014.2363423
10.1109/JSTARS.2015.2427656
10.1109/TCYB.2013.2239988
10.1109/TGRS.2011.2131145
10.1109/TGRS.2010.2098413
10.1109/JSTSP.2015.2419184
10.1109/TCYB.2014.2334692
10.1109/NAFIPS.1996.534790
10.1109/JSTARS.2014.2371615
10.1137/17M114145X
10.1109/JSTARS.2016.2640274
10.1109/JSTARS.2012.2194696
10.1109/TEVC.2010.2059031
10.1109/MGRS.2013.2244672
10.1109/TEVC.2010.2087271
10.1117/12.366289
10.1109/TGRS.2016.2580702
10.1109/JSTARS.2013.2242255
10.1016/j.neucom.2018.02.038
10.1109/JSTARS.2013.2267204
10.1109/TGRS.2011.2108305
10.3390/rs9030197
10.3390/rs9060558
10.1109/4235.996017
10.1016/j.swevo.2016.01.004
10.1109/TGRS.2019.2899826
10.1126/science.228.4704.1147
10.1109/NAFIPS.1996.534789
10.1109/TCYB.2015.2493239
10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.3.CO;2-C
10.1023/A:1008202821328
10.1109/ACCESS.2018.2856832
10.1016/j.ins.2012.01.017
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.3004307
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Physics
EISSN 1558-0644
EndPage 2364
ExternalDocumentID 10_1109_TGRS_2020_3004307
9130923
Genre orig-research
GrantInformation_xml – fundername: Key Project of Science and Technology Innovation 2030
– fundername: Science and Technology Major Project of Hubei Province (Next-Generation AI Technologies)
  grantid: 2019AEA170
– fundername: Ministry of Science and Technology of China
  grantid: 2018AAA0101301
  funderid: 10.13039/501100002855
– fundername: National Natural Science Foundation of China
  grantid: 41871243; 61822113
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-6d10cbf33d838eef6cfd617ffca35025189f50866e5a9072991946720f2da74d3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000622319000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:09:29 EDT 2025
Tue Nov 18 22:16:49 EST 2025
Sat Nov 29 02:50:06 EST 2025
Wed Aug 27 02:43:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-6d10cbf33d838eef6cfd617ffca35025189f50866e5a9072991946720f2da74d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7148-3618
0000-0002-4642-9086
0000-0001-6890-3650
0000-0002-0059-8458
0000-0002-6802-2463
PQID 2493600245
PQPubID 85465
PageCount 13
ParticipantIDs crossref_primary_10_1109_TGRS_2020_3004307
proquest_journals_2493600245
crossref_citationtrail_10_1109_TGRS_2020_3004307
ieee_primary_9130923
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref32
ref10
winter (ref11) 1999; 3753
boardman (ref12) 1995; 95
ref2
ref1
ref39
chen (ref35) 2010
ref17
ref38
ref16
ref19
ref18
zhu (ref44) 2014
ref46
ref24
ref45
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref31
  doi: 10.1016/j.swevo.2011.03.001
– ident: ref24
  doi: 10.1109/LGRS.2013.2285476
– ident: ref26
  doi: 10.1109/TGRS.2019.2917001
– ident: ref13
  doi: 10.1109/TGRS.2005.844293
– year: 2014
  ident: ref44
  article-title: Effective spectral unmixing via robust representation and learning-based sparsity
  publication-title: arXiv 1409 0685
– ident: ref6
  doi: 10.1109/TIP.2018.2878958
– ident: ref7
  doi: 10.1109/JSTSP.2018.2877497
– ident: ref43
  doi: 10.1016/j.isprsjprs.2013.11.014
– ident: ref27
  doi: 10.1109/79.974727
– ident: ref9
  doi: 10.1109/JSTARS.2014.2373491
– ident: ref40
  doi: 10.1162/EVCO_a_00024
– ident: ref42
  doi: 10.1109/TIP.2014.2363423
– ident: ref5
  doi: 10.1109/JSTARS.2015.2427656
– ident: ref36
  doi: 10.1109/TCYB.2013.2239988
– ident: ref17
  doi: 10.1109/TGRS.2011.2131145
– ident: ref10
  doi: 10.1109/TGRS.2010.2098413
– ident: ref46
  doi: 10.1109/JSTSP.2015.2419184
– ident: ref37
  doi: 10.1109/TCYB.2014.2334692
– ident: ref21
  doi: 10.1109/NAFIPS.1996.534790
– ident: ref16
  doi: 10.1109/JSTARS.2014.2371615
– ident: ref15
  doi: 10.1137/17M114145X
– ident: ref19
  doi: 10.1109/JSTARS.2016.2640274
– volume: 95
  start-page: 23
  year: 1995
  ident: ref12
  article-title: Mapping target signatures via partial unmixing of AVIRIS data
  publication-title: Proc Summaries 5th Annu JPL Airborne Earth Sci Workshop
– ident: ref4
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref28
  doi: 10.1109/TEVC.2010.2059031
– ident: ref3
  doi: 10.1109/MGRS.2013.2244672
– ident: ref38
  doi: 10.1109/TEVC.2010.2087271
– volume: 3753
  start-page: 266
  year: 1999
  ident: ref11
  article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
  publication-title: Proc SPIE
  doi: 10.1117/12.366289
– ident: ref14
  doi: 10.1109/TGRS.2016.2580702
– ident: ref45
  doi: 10.1109/JSTARS.2013.2242255
– ident: ref30
  doi: 10.1016/j.neucom.2018.02.038
– ident: ref2
  doi: 10.1109/JSTARS.2013.2267204
– ident: ref18
  doi: 10.1109/TGRS.2011.2108305
– ident: ref20
  doi: 10.3390/rs9030197
– ident: ref25
  doi: 10.3390/rs9060558
– ident: ref33
  doi: 10.1109/4235.996017
– ident: ref29
  doi: 10.1016/j.swevo.2016.01.004
– ident: ref8
  doi: 10.1109/TGRS.2019.2899826
– ident: ref1
  doi: 10.1126/science.228.4704.1147
– ident: ref22
  doi: 10.1109/NAFIPS.1996.534789
– ident: ref39
  doi: 10.1109/TCYB.2015.2493239
– ident: ref34
  doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.3.CO;2-C
– ident: ref23
  doi: 10.1023/A:1008202821328
– start-page: 109
  year: 2010
  ident: ref35
  article-title: Nonnegativity constraints in numerical analysis
  publication-title: The Birth Of Numerical Analysis
– ident: ref32
  doi: 10.1109/ACCESS.2018.2856832
– ident: ref41
  doi: 10.1016/j.ins.2012.01.017
SSID ssj0014517
Score 2.3830767
Snippet Endmember extraction (EE) plays a crucial part in the hyperspectral unmixing (HU) process. To obtain satisfactory EE results, the EE can be considered as the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2352
SubjectTerms (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">μ + <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">λ ) selection strategy
Algorithms
Crossovers
Endmember extraction (EE)
Evolutionary algorithms
Evolutionary computation
Genetic crosses
Hyperspectral imaging
Indexes
multiobjective differential evolution (DE)
Multiple objective analysis
Mutants
Mutation
Offspring
Operators (mathematics)
Optimization
Ranking
ranking multiple mutations
Root-mean-square errors
Scaling
Scaling factors
Sociology
Sorting
Statistics
Vectors
Title Hyperspectral Endmember Extraction by (μ + λ) Multiobjective Differential Evolution Algorithm Based on Ranking Multiple Mutations
URI https://ieeexplore.ieee.org/document/9130923
https://www.proquest.com/docview/2493600245
Volume 59
WOSCitedRecordID wos000622319000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFL1KKpDSBYW0qIEUzYIFj7qxPc7Ys0xLQlcVKkHqzhrPo4DykpNUsOaz4BvyTb3zaEQFQmI3smZGls74zj2-jwPwMhVFnmkuIkVFFmWVpFGV5CZSecaKWGSJ5MKJTeQXF8XVFf_QgONtLYzW2iWf6RM7dLF8NZdr-6usx9HgokPShGaeM1-rtY0YZP0klEazCElEGiKYScx74_eXH5EJpkhQXYur_N4d5ERV_rDE7noZ7f3fiz2GR8GNJAOP-xNo6Fkbdn9rLtiGhy65Uy7b0LIepW_IvA8_zpF5-gLLGncYztRUW1EQMvy2qn2VA6m-k1ebX-Qt2fx8TVyJ7rz66i0jeRcUVdAy4OqbcHLJYHI9r7-sPk_JKd6LiuCjS-FkGfwGi4nGgY_7Lw_g02g4PjuPghJDJNEdWEVMJbGsDKWqoIXWhkmj0PUxRgratyyl4AY9PcZ0X3Dbi5wnHC1wGptUiTxT9CnszOYzfQgksZTSaNtWP0F7oXiRUpqKmAmu0BljHYjvsCllaFNu1TImpaMrMS8tnKWFswxwduDNdsnC9-j41-R9i992YoCuA927A1CGr3hZIjWlzAWnn_191XNopTbHxeWkdWFnVa_1ETyQNwhq_cId0FuG-uPb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD7qOibYwwYFtA62-WEPY1sgiVMnfgRWVgSrECsSb5HjCxf1gtKCxjM_a_sN_CaOHbca2jRpb1ZkW5E-5_h8OZcP4H0ssjTRXASKiiRICkmDIkpNoNKEZaFIIsmFE5tIu93s9JQf1eDzrBZGa-2Sz_SmHbpYvhrJa_urbIujwUWH5Ak8tcpZvlprFjNIWpEvjmYB0ojYxzCjkG_1vh5_Ry4YI0V1Ta7SR7eQk1X5wxa7C2bv5f-92iK88I4k2a6QX4KaHjbg-W_tBRvwzKV3ynEDFqxPWbVkXoa7DnLPqsSyxB3aQzXQVhaEtH9MyqrOgRS35MP9L_KJ3P_cIK5Id1RcVraRfPGaKmgbcPWNP7tku382Ki8m5wOygzejIvjoWDhhhmqDq77GQRX5H6_AyV67t9sJvBZDINEhmARMRaEsDKUqo5nWhkmj0PkxRgrasjwl4wZ9PcZ0S3DbjZxHHG1wHJpYiTRRdBXqw9FQvwISWVJptG2sH6HFUDyLKY1FyARX6I6xJoRTbHLpG5VbvYx-7ghLyHMLZ27hzD2cTfg4W3JVden41-Rli99sooeuCevTA5D773icIzmlzIWnX_991TuY7_S-HeaH-92DNViIbcaLy1Bbh_qkvNZvYE7eIMDlW3dYHwCKlOck
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Endmember+Extraction+by+%28%CE%BC+%2B+%CE%BB%29+Multiobjective+Differential+Evolution+Algorithm+Based+on+Ranking+Multiple+Mutations&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Tong%2C+Lyuyang&rft.au=Du%2C+Bo&rft.au=Liu%2C+Rong&rft.au=Zhang%2C+Liangpei&rft.date=2021-03-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=59&rft.issue=3&rft.spage=2352&rft.epage=2364&rft_id=info:doi/10.1109%2FTGRS.2020.3004307&rft.externalDocID=9130923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon