Mining Summaries for Knowledge Graph Search

Querying heterogeneous and large-scale knowledge graphs is expensive. This paper studies a graph summarization framework to facilitate knowledge graph search. (1) We introduce a class of reduced summaries . Characterized by approximate graph pattern matching, these summaries are capable of summarizi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 30; no. 10; pp. 1887 - 1900
Main Authors: Song, Qi, Wu, Yinghui, Lin, Peng, Dong, Luna Xin, Sun, Hui
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Querying heterogeneous and large-scale knowledge graphs is expensive. This paper studies a graph summarization framework to facilitate knowledge graph search. (1) We introduce a class of reduced summaries . Characterized by approximate graph pattern matching, these summaries are capable of summarizing entities in terms of their neighborhood similarity up to a certain hop, using small and informative graph patterns. (2) We study a diversified graph summarization problem. Given a knowledge graph, it is to discover top-<inline-formula> <tex-math notation="LaTeX">k</tex-math> <inline-graphic xlink:href="song-ieq1-2807442.gif"/> </inline-formula> summaries that maximize a bi-criteria function, characterized by both informativeness and diversity. We show that diversified summarization is feasible for large graphs, by developing both sequential and parallel summarization algorithms. (a) We show that there exists a 2-approximation algorithm to discover diversified summaries. We further develop an anytime sequential algorithm which discovers summaries under resource constraints. (b) We present a new parallel algorithm with quality guarantees. The algorithm is parallel scalable, which ensures its feasibility in distributed graphs. (3) We also develop a summary-based query evaluation scheme, which only refers to a small number of summaries. Using real-world knowledge graphs, we experimentally verify the effectiveness and efficiency of our summarization algorithms, and query processing using summaries.
AbstractList Querying heterogeneous and large-scale knowledge graphs is expensive. This paper studies a graph summarization framework to facilitate knowledge graph search. (1) We introduce a class of reduced summaries. Characterized by approximate graph pattern matching, these summaries are capable of summarizing entities in terms of their neighborhood similarity up to a certain hop, using small and informative graph patterns. (2) We study a diversified graph summarization problem. Given a knowledge graph, it is to discover top-k summaries that maximize a bi-criteria function, characterized by both informativeness and diversity. We show that diversified summarization is feasible for large graphs, by developing both sequential and parallel summarization algorithms. (a) We show that there exists a 2-approximation algorithm to discover diversified summaries. We further develop an anytime sequential algorithm which discovers summaries under resource constraints. (b) We present a new parallel algorithm with quality guarantees. The algorithm is parallel scalable, which ensures its feasibility in distributed graphs. (3) We also develop a summary-based query evaluation scheme, which only refers to a small number of summaries. Using real-world knowledge graphs, we experimentally verify the effectiveness and efficiency of our summarization algorithms, and query processing using summaries.
Querying heterogeneous and large-scale knowledge graphs is expensive. This paper studies a graph summarization framework to facilitate knowledge graph search. (1) We introduce a class of reduced summaries . Characterized by approximate graph pattern matching, these summaries are capable of summarizing entities in terms of their neighborhood similarity up to a certain hop, using small and informative graph patterns. (2) We study a diversified graph summarization problem. Given a knowledge graph, it is to discover top-<inline-formula> <tex-math notation="LaTeX">k</tex-math> <inline-graphic xlink:href="song-ieq1-2807442.gif"/> </inline-formula> summaries that maximize a bi-criteria function, characterized by both informativeness and diversity. We show that diversified summarization is feasible for large graphs, by developing both sequential and parallel summarization algorithms. (a) We show that there exists a 2-approximation algorithm to discover diversified summaries. We further develop an anytime sequential algorithm which discovers summaries under resource constraints. (b) We present a new parallel algorithm with quality guarantees. The algorithm is parallel scalable, which ensures its feasibility in distributed graphs. (3) We also develop a summary-based query evaluation scheme, which only refers to a small number of summaries. Using real-world knowledge graphs, we experimentally verify the effectiveness and efficiency of our summarization algorithms, and query processing using summaries.
Author Wu, Yinghui
Song, Qi
Lin, Peng
Dong, Luna Xin
Sun, Hui
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0002-1726-7858
  surname: Song
  fullname: Song, Qi
  email: qsong@eecs.wsu.eduk
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA
– sequence: 2
  givenname: Yinghui
  surname: Wu
  fullname: Wu, Yinghui
  email: yinghui@eecs.wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA
– sequence: 3
  givenname: Peng
  surname: Lin
  fullname: Lin, Peng
  email: plin1@eecs.wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA
– sequence: 4
  givenname: Luna Xin
  surname: Dong
  fullname: Dong, Luna Xin
  email: lunadong@amazon.com
  organization: Amazon. Inc., Seattle, WA
– sequence: 5
  givenname: Hui
  surname: Sun
  fullname: Sun, Hui
  email: sun_h@ruc.edu.cn
  organization: Renmin University, Beijing, China
BookMark eNp9kE1PAjEQhhuDiYD-AONlE49msdPvPRpENGA8gOemdFsogV1slxD_vUsgHjx4mjm8zzuZp4c6VV05hG4BDwBw8TifPI8GBIMaEIUlY-QCdYFzlRMooNPumEHOKJNXqJfSGmOspIIuengPVaiW2Wy_3ZoYXMp8HbNJVR82rly6bBzNbpXNnIl2dY0uvdkkd3OeffT5MpoPX_Ppx_ht-DTNLSlokwvrF5ZQ7IiwHLggDotFaSllJS0lI6xgJSm8FIWypbQSc-o9K-1CcADFDe2j-1PvLtZfe5cava73sWpPagIgQTApZJuSp5SNdUrReW1DY5pQV000YaMB66MZfTSjj2b02UxLwh9yF0P7_fe_zN2JCc6537yiGAtW0B88TW59
CODEN ITKEEH
CitedBy_id crossref_primary_10_1049_gtd2_12040
crossref_primary_10_1109_TKDE_2020_3024099
crossref_primary_10_3233_SW_223181
crossref_primary_10_1007_s10845_020_01646_2
crossref_primary_10_3390_make3040040
crossref_primary_10_1016_j_eswa_2021_115768
crossref_primary_10_1109_TNSM_2023_3247831
crossref_primary_10_1111_exsy_13456
crossref_primary_10_3390_app13095748
crossref_primary_10_1109_ACCESS_2020_3008688
crossref_primary_10_1007_s11277_024_11605_2
crossref_primary_10_1109_ACCESS_2020_3004448
crossref_primary_10_1109_TKDE_2021_3095309
crossref_primary_10_1016_j_ins_2022_05_015
crossref_primary_10_1016_j_gsf_2022_101521
crossref_primary_10_1145_3735650
crossref_primary_10_1016_j_knosys_2023_110900
crossref_primary_10_14778_3407790_3407795
crossref_primary_10_14778_3725688_3725717
crossref_primary_10_1007_s41019_018_0082_4
crossref_primary_10_1016_j_eswa_2021_114921
crossref_primary_10_1007_s10844_022_00717_5
crossref_primary_10_1145_3286488
crossref_primary_10_1016_j_patcog_2020_107331
crossref_primary_10_1109_TKDE_2020_3046436
crossref_primary_10_1109_TKDE_2022_3233594
crossref_primary_10_1016_j_jvcir_2022_103629
crossref_primary_10_1145_3654943
crossref_primary_10_1016_j_ifacol_2022_05_018
crossref_primary_10_1142_S0218194025300039
crossref_primary_10_1016_j_future_2025_108063
crossref_primary_10_1007_s10844_024_00856_x
crossref_primary_10_1111_tgis_12547
crossref_primary_10_1162_dint_a_00118
crossref_primary_10_1109_ACCESS_2021_3133666
crossref_primary_10_1145_3639295
crossref_primary_10_1007_s00778_021_00704_2
crossref_primary_10_1016_j_scico_2025_103298
crossref_primary_10_3233_JIFS_189332
crossref_primary_10_1016_j_asoc_2019_105525
crossref_primary_10_1109_TKDE_2020_3038654
crossref_primary_10_14778_3749646_3749648
crossref_primary_10_1016_j_ipm_2024_103646
crossref_primary_10_1007_s10115_023_01866_x
Cites_doi 10.1109/TKDE.2014.2302294
10.1007/BF01585178
10.18653/v1/D17-1060
10.1145/2339530.2339722
10.1145/1526709.1526761
10.3115/v1/P15-1016
10.1145/1376616.1376675
10.1145/2623330.2623623
10.14778/2556549.2556561
10.1006/jpdc.2000.1696
10.14778/2732286.2732289
10.1145/1150402.1150452
10.14778/2732977.2732983
10.18653/v1/D15-1173
10.1007/978-3-662-04565-7
10.1145/1963405.1963497
10.1145/1133905.1133915
10.1007/978-3-642-21916-0_53
10.1007/978-1-4419-6045-0_9
10.14778/2735479.2735493
10.1145/2815400.2815410
10.14778/2732286.2732293
10.1002/sam.11267
10.1007/978-3-540-68234-9_39
10.1145/872757.872776
10.1145/1376616.1376661
10.1109/ICDM.2014.56
10.1109/TKDE.2007.1011
10.1145/2009916.2009996
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2018.2807442
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1900
ExternalDocumentID 10_1109_TKDE_2018_2807442
8300649
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: IIS-1633629
– fundername: Google Faculty Research Award
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-6cfbc230e26c51562e06bdc334d3d742494d29f7698cd7c7053ff4dcb651185a3
IEDL.DBID RIE
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444603900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 09 05:44:16 EST 2025
Sat Nov 29 04:46:44 EST 2025
Tue Nov 18 22:18:27 EST 2025
Wed Aug 27 02:54:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-6cfbc230e26c51562e06bdc334d3d742494d29f7698cd7c7053ff4dcb651185a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1726-7858
PQID 2117164767
PQPubID 85438
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2018_2807442
ieee_primary_8300649
crossref_primary_10_1109_TKDE_2018_2807442
proquest_journals_2117164767
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref15
ref36
aggarwal (ref32) 2010
ref31
ref30
ref11
karypis (ref24) 1995
ref10
ref1
ref17
ref38
ref19
sydow (ref14) 2011
fan (ref8) 2014
fan (ref6) 2014
cook (ref34) 2001; 61
koutra (ref9) 2014; 8
song (ref12) 2016
pennerath (ref13) 2009
ref23
ref26
ref20
ref22
xin (ref33) 2006
ref21
ref28
kasneci (ref2) 2008
lao (ref25) 2011
ref27
ref29
ref7
arai (ref16) 2007
ref4
ref5
das (ref37) 2017; 1
quilitz (ref3) 2008
fan (ref18) 2014; 7
References_xml – ident: ref4
  doi: 10.1109/TKDE.2014.2302294
– start-page: 113
  year: 1995
  ident: ref24
  article-title: Multilevel graph partitioning schemes
  publication-title: Proc ICPP (3)
– ident: ref20
  doi: 10.1007/BF01585178
– ident: ref38
  doi: 10.18653/v1/D17-1060
– ident: ref19
  doi: 10.1145/2339530.2339722
– ident: ref15
  doi: 10.1145/1526709.1526761
– start-page: 301
  year: 2014
  ident: ref6
  article-title: Querying big graphs within bounded resources
  publication-title: Proc ACM SIGMOD Int Conf Manage Data
– ident: ref36
  doi: 10.3115/v1/P15-1016
– ident: ref28
  doi: 10.1145/1376616.1376675
– start-page: 529
  year: 2011
  ident: ref25
  article-title: Random walk inference and learning in a large scale knowledge base
  publication-title: Proc Conf Empirical Methods Natural Lang Process
– start-page: 1215
  year: 2016
  ident: ref12
  article-title: Mining summaries for knowledge graph search
  publication-title: IEEE 16th Int Conf Data Mining
– start-page: 184
  year: 2014
  ident: ref8
  article-title: Answering graph pattern queries using views
  publication-title: IEEE 30th Int Conf on Data Engineering
– ident: ref1
  doi: 10.1145/2623330.2623623
– start-page: 914
  year: 2007
  ident: ref16
  article-title: Anytime measures for top-k algorithms
  publication-title: Proc Int Conf On Very Large Data Bases
– ident: ref30
  doi: 10.14778/2556549.2556561
– volume: 61
  start-page: 427
  year: 2001
  ident: ref34
  article-title: Approaches to parallel graph-based knowledge discovery
  publication-title: J Parall Distrib Comput
  doi: 10.1006/jpdc.2000.1696
– ident: ref10
  doi: 10.14778/2732286.2732289
– start-page: 444
  year: 2006
  ident: ref33
  article-title: Extracting redundancy-aware top-k patterns
  publication-title: Proc 12th ACM SIGKDD Int Conf Knowl Discovery Data Mining
  doi: 10.1145/1150402.1150452
– volume: 1
  start-page: 132
  year: 2017
  ident: ref37
  article-title: Chains of reasoning over entities, relations, and text using recurrent neural networks
  publication-title: Proc 15th Conf Eur Chapter Assoc Comput
– volume: 7
  year: 2014
  ident: ref18
  article-title: Distributed graph simulation: Impossibility and possibility
  publication-title: Proc VLDB Endowment
  doi: 10.14778/2732977.2732983
– ident: ref26
  doi: 10.18653/v1/D15-1173
– ident: ref22
  doi: 10.1007/978-3-662-04565-7
– ident: ref7
  doi: 10.1145/1963405.1963497
– ident: ref11
  doi: 10.1145/1133905.1133915
– start-page: 490
  year: 2011
  ident: ref14
  article-title: To diversify or not to diversify entity summaries on RDF knowledge graphs?
  publication-title: Proc Found Intell Syst
  doi: 10.1007/978-3-642-21916-0_53
– start-page: 275
  year: 2010
  ident: ref32
  article-title: A survey of clustering algorithms for graph data
  publication-title: Proc Manag Mining Graph Data
  doi: 10.1007/978-1-4419-6045-0_9
– start-page: 953
  year: 2008
  ident: ref2
  article-title: Naga: Searching and ranking knowledge
  publication-title: Proc IEEE 24th Int Conf Data Eng
– ident: ref21
  doi: 10.14778/2735479.2735493
– ident: ref35
  doi: 10.1145/2815400.2815410
– ident: ref5
  doi: 10.14778/2732286.2732293
– volume: 8
  start-page: 183
  year: 2014
  ident: ref9
  article-title: VOG: Summarizing and understanding large graphs
  publication-title: Stat Anal Data Mining
  doi: 10.1002/sam.11267
– start-page: 524
  year: 2008
  ident: ref3
  article-title: Querying distributed RDF data sources with SPARQL
  publication-title: Proc Semantic Web Res Appl 4th Eur Semantic Web Conf
  doi: 10.1007/978-3-540-68234-9_39
– ident: ref31
  doi: 10.1145/872757.872776
– ident: ref27
  doi: 10.1145/1376616.1376661
– ident: ref29
  doi: 10.1109/ICDM.2014.56
– start-page: 205
  year: 2009
  ident: ref13
  article-title: The model of most informative patterns and its application to knowledge extraction from graph databases
  publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases
– ident: ref17
  doi: 10.1109/TKDE.2007.1011
– ident: ref23
  doi: 10.1145/2009916.2009996
SSID ssj0008781
Score 2.5374033
Snippet Querying heterogeneous and large-scale knowledge graphs is expensive. This paper studies a graph summarization framework to facilitate knowledge graph search....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1887
SubjectTerms Algorithms
Data mining
Feasibility studies
Graph matching
Graph summarization
Graphs
Knowledge based systems
Motion pictures
parallel algorithm
Parallel algorithms
Pattern matching
pattern mining
Query processing
Scalability
Summaries
Time factors
Title Mining Summaries for Knowledge Graph Search
URI https://ieeexplore.ieee.org/document/8300649
https://www.proquest.com/docview/2117164767
Volume 30
WOSCitedRecordID wos000444603900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPTjfF6ZQcPKnduiZtmqPopjAdglN2K22SgiCb7MO_35c0LYoieOshCeWX9_LeL3kfAGe5YCi7qEiRDKTHUqq9LOQKZVmYWiMh0zba4uWej8fxdCoea3BZ5cJorW3wme6aT_uWr-Zyba7KejE1FlRswAbnvMjVqk7dmNuGpMgukBNRxt0LZt8XvcnoZmCCuOKuLf3Cgm82yDZV-XESW_MybPzvx3Zhx7mR5KrY9z2o6VkTGmWLBuI0tgnbX-oNtuDiwbaDIE82Yw05MkGXlYzKazVya6pXkyICeR-eh4PJ9Z3nuiV4Ek32CsHOM4mEQgeRRCclCrQfZUpSyhRVSICZYCoQOY9ELBWXHLUvz5mSWWRIRpjSA6jP5jN9CMSnMuvnaZyifWchy2Km-tbVUoFWmRZt8Ev8EulKiZuOFm-JpRS-SAzkiYE8cZC34bya8l7U0fhrcMtgXA108LahU25S4jRtmSCBNZSPR_zo91nHsGXWLgLwOlBfLdb6BDblx-p1uTi1QvQJjhbA3w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSDj1axWjUHT-q2u5vsZnMUba30gWCV3sJukgVBWunD32-SfaAogrc9JGT5MpOZL5kHwEXKiJZdrUih8IVDYqycJKBSyzIztUYComy0xcuAjkbRZMIeK3Bd5sIopWzwmWqZT_uWL2diZa7K2hE2FpStwXpAiO9l2VrluRtR25JU8wvNijCh-Rum57L2uH_XMWFcUcsWfyH-Nytk26r8OIutgenu_u_X9mAndyTRTbbz-1BR0xrsFk0aUK6zNdj-UnGwDldD2xACPdmcNc2SkXZaUb-4WEP3pn41ymKQD-C52xnf9py8X4IjtNFearjTRGhKofxQaDcl9JUbJlJgTCSWmgITRqTPUhqySEgqqNa_NCVSJKGhGUGMD6E6nU3VESAXi8RL4yjWFp4EJImI9KyzJX0lE8Ua4Bb4cZEXEzc9Ld64JRUu4wZybiDnOeQNuCynvGeVNP4aXDcYlwNzeBvQLDaJ57q24JrCGtJHQ3r8-6xz2OyNhwM-eBj1T2DLrJOF4zWhupyv1ClsiI_l62J-ZgXqE8UZxCY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+Summaries+for+Knowledge+Graph+Search&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Song%2C+Qi&rft.au=Wu%2C+Yinghui&rft.au=Lin%2C+Peng&rft.au=Dong%2C+Luna+Xin&rft.date=2018-10-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=30&rft.issue=10&rft.spage=1887&rft.epage=1900&rft_id=info:doi/10.1109%2FTKDE.2018.2807442&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2018_2807442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon