Mining Summaries for Knowledge Graph Search
Querying heterogeneous and large-scale knowledge graphs is expensive. This paper studies a graph summarization framework to facilitate knowledge graph search. (1) We introduce a class of reduced summaries . Characterized by approximate graph pattern matching, these summaries are capable of summarizi...
Saved in:
| Published in: | IEEE transactions on knowledge and data engineering Vol. 30; no. 10; pp. 1887 - 1900 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Querying heterogeneous and large-scale knowledge graphs is expensive. This paper studies a graph summarization framework to facilitate knowledge graph search. (1) We introduce a class of reduced summaries . Characterized by approximate graph pattern matching, these summaries are capable of summarizing entities in terms of their neighborhood similarity up to a certain hop, using small and informative graph patterns. (2) We study a diversified graph summarization problem. Given a knowledge graph, it is to discover top-<inline-formula> <tex-math notation="LaTeX">k</tex-math> <inline-graphic xlink:href="song-ieq1-2807442.gif"/> </inline-formula> summaries that maximize a bi-criteria function, characterized by both informativeness and diversity. We show that diversified summarization is feasible for large graphs, by developing both sequential and parallel summarization algorithms. (a) We show that there exists a 2-approximation algorithm to discover diversified summaries. We further develop an anytime sequential algorithm which discovers summaries under resource constraints. (b) We present a new parallel algorithm with quality guarantees. The algorithm is parallel scalable, which ensures its feasibility in distributed graphs. (3) We also develop a summary-based query evaluation scheme, which only refers to a small number of summaries. Using real-world knowledge graphs, we experimentally verify the effectiveness and efficiency of our summarization algorithms, and query processing using summaries. |
|---|---|
| AbstractList | Querying heterogeneous and large-scale knowledge graphs is expensive. This paper studies a graph summarization framework to facilitate knowledge graph search. (1) We introduce a class of reduced summaries. Characterized by approximate graph pattern matching, these summaries are capable of summarizing entities in terms of their neighborhood similarity up to a certain hop, using small and informative graph patterns. (2) We study a diversified graph summarization problem. Given a knowledge graph, it is to discover top-k summaries that maximize a bi-criteria function, characterized by both informativeness and diversity. We show that diversified summarization is feasible for large graphs, by developing both sequential and parallel summarization algorithms. (a) We show that there exists a 2-approximation algorithm to discover diversified summaries. We further develop an anytime sequential algorithm which discovers summaries under resource constraints. (b) We present a new parallel algorithm with quality guarantees. The algorithm is parallel scalable, which ensures its feasibility in distributed graphs. (3) We also develop a summary-based query evaluation scheme, which only refers to a small number of summaries. Using real-world knowledge graphs, we experimentally verify the effectiveness and efficiency of our summarization algorithms, and query processing using summaries. Querying heterogeneous and large-scale knowledge graphs is expensive. This paper studies a graph summarization framework to facilitate knowledge graph search. (1) We introduce a class of reduced summaries . Characterized by approximate graph pattern matching, these summaries are capable of summarizing entities in terms of their neighborhood similarity up to a certain hop, using small and informative graph patterns. (2) We study a diversified graph summarization problem. Given a knowledge graph, it is to discover top-<inline-formula> <tex-math notation="LaTeX">k</tex-math> <inline-graphic xlink:href="song-ieq1-2807442.gif"/> </inline-formula> summaries that maximize a bi-criteria function, characterized by both informativeness and diversity. We show that diversified summarization is feasible for large graphs, by developing both sequential and parallel summarization algorithms. (a) We show that there exists a 2-approximation algorithm to discover diversified summaries. We further develop an anytime sequential algorithm which discovers summaries under resource constraints. (b) We present a new parallel algorithm with quality guarantees. The algorithm is parallel scalable, which ensures its feasibility in distributed graphs. (3) We also develop a summary-based query evaluation scheme, which only refers to a small number of summaries. Using real-world knowledge graphs, we experimentally verify the effectiveness and efficiency of our summarization algorithms, and query processing using summaries. |
| Author | Wu, Yinghui Song, Qi Lin, Peng Dong, Luna Xin Sun, Hui |
| Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0002-1726-7858 surname: Song fullname: Song, Qi email: qsong@eecs.wsu.eduk organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA – sequence: 2 givenname: Yinghui surname: Wu fullname: Wu, Yinghui email: yinghui@eecs.wsu.edu organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA – sequence: 3 givenname: Peng surname: Lin fullname: Lin, Peng email: plin1@eecs.wsu.edu organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA – sequence: 4 givenname: Luna Xin surname: Dong fullname: Dong, Luna Xin email: lunadong@amazon.com organization: Amazon. Inc., Seattle, WA – sequence: 5 givenname: Hui surname: Sun fullname: Sun, Hui email: sun_h@ruc.edu.cn organization: Renmin University, Beijing, China |
| BookMark | eNp9kE1PAjEQhhuDiYD-AONlE49msdPvPRpENGA8gOemdFsogV1slxD_vUsgHjx4mjm8zzuZp4c6VV05hG4BDwBw8TifPI8GBIMaEIUlY-QCdYFzlRMooNPumEHOKJNXqJfSGmOspIIuengPVaiW2Wy_3ZoYXMp8HbNJVR82rly6bBzNbpXNnIl2dY0uvdkkd3OeffT5MpoPX_Ppx_ht-DTNLSlokwvrF5ZQ7IiwHLggDotFaSllJS0lI6xgJSm8FIWypbQSc-o9K-1CcADFDe2j-1PvLtZfe5cava73sWpPagIgQTApZJuSp5SNdUrReW1DY5pQV000YaMB66MZfTSjj2b02UxLwh9yF0P7_fe_zN2JCc6537yiGAtW0B88TW59 |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1049_gtd2_12040 crossref_primary_10_1109_TKDE_2020_3024099 crossref_primary_10_3233_SW_223181 crossref_primary_10_1007_s10845_020_01646_2 crossref_primary_10_3390_make3040040 crossref_primary_10_1016_j_eswa_2021_115768 crossref_primary_10_1109_TNSM_2023_3247831 crossref_primary_10_1111_exsy_13456 crossref_primary_10_3390_app13095748 crossref_primary_10_1109_ACCESS_2020_3008688 crossref_primary_10_1007_s11277_024_11605_2 crossref_primary_10_1109_ACCESS_2020_3004448 crossref_primary_10_1109_TKDE_2021_3095309 crossref_primary_10_1016_j_ins_2022_05_015 crossref_primary_10_1016_j_gsf_2022_101521 crossref_primary_10_1145_3735650 crossref_primary_10_1016_j_knosys_2023_110900 crossref_primary_10_14778_3407790_3407795 crossref_primary_10_14778_3725688_3725717 crossref_primary_10_1007_s41019_018_0082_4 crossref_primary_10_1016_j_eswa_2021_114921 crossref_primary_10_1007_s10844_022_00717_5 crossref_primary_10_1145_3286488 crossref_primary_10_1016_j_patcog_2020_107331 crossref_primary_10_1109_TKDE_2020_3046436 crossref_primary_10_1109_TKDE_2022_3233594 crossref_primary_10_1016_j_jvcir_2022_103629 crossref_primary_10_1145_3654943 crossref_primary_10_1016_j_ifacol_2022_05_018 crossref_primary_10_1142_S0218194025300039 crossref_primary_10_1016_j_future_2025_108063 crossref_primary_10_1007_s10844_024_00856_x crossref_primary_10_1111_tgis_12547 crossref_primary_10_1162_dint_a_00118 crossref_primary_10_1109_ACCESS_2021_3133666 crossref_primary_10_1145_3639295 crossref_primary_10_1007_s00778_021_00704_2 crossref_primary_10_1016_j_scico_2025_103298 crossref_primary_10_3233_JIFS_189332 crossref_primary_10_1016_j_asoc_2019_105525 crossref_primary_10_1109_TKDE_2020_3038654 crossref_primary_10_14778_3749646_3749648 crossref_primary_10_1016_j_ipm_2024_103646 crossref_primary_10_1007_s10115_023_01866_x |
| Cites_doi | 10.1109/TKDE.2014.2302294 10.1007/BF01585178 10.18653/v1/D17-1060 10.1145/2339530.2339722 10.1145/1526709.1526761 10.3115/v1/P15-1016 10.1145/1376616.1376675 10.1145/2623330.2623623 10.14778/2556549.2556561 10.1006/jpdc.2000.1696 10.14778/2732286.2732289 10.1145/1150402.1150452 10.14778/2732977.2732983 10.18653/v1/D15-1173 10.1007/978-3-662-04565-7 10.1145/1963405.1963497 10.1145/1133905.1133915 10.1007/978-3-642-21916-0_53 10.1007/978-1-4419-6045-0_9 10.14778/2735479.2735493 10.1145/2815400.2815410 10.14778/2732286.2732293 10.1002/sam.11267 10.1007/978-3-540-68234-9_39 10.1145/872757.872776 10.1145/1376616.1376661 10.1109/ICDM.2014.56 10.1109/TKDE.2007.1011 10.1145/2009916.2009996 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2018.2807442 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 1900 |
| ExternalDocumentID | 10_1109_TKDE_2018_2807442 8300649 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: IIS-1633629 – fundername: Google Faculty Research Award |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-6cfbc230e26c51562e06bdc334d3d742494d29f7698cd7c7053ff4dcb651185a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444603900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Nov 09 05:44:16 EST 2025 Sat Nov 29 04:46:44 EST 2025 Tue Nov 18 22:18:27 EST 2025 Wed Aug 27 02:54:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-6cfbc230e26c51562e06bdc334d3d742494d29f7698cd7c7053ff4dcb651185a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1726-7858 |
| PQID | 2117164767 |
| PQPubID | 85438 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2018_2807442 ieee_primary_8300649 crossref_primary_10_1109_TKDE_2018_2807442 proquest_journals_2117164767 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref15 ref36 aggarwal (ref32) 2010 ref31 ref30 ref11 karypis (ref24) 1995 ref10 ref1 ref17 ref38 ref19 sydow (ref14) 2011 fan (ref8) 2014 fan (ref6) 2014 cook (ref34) 2001; 61 koutra (ref9) 2014; 8 song (ref12) 2016 pennerath (ref13) 2009 ref23 ref26 ref20 ref22 xin (ref33) 2006 ref21 ref28 kasneci (ref2) 2008 lao (ref25) 2011 ref27 ref29 ref7 arai (ref16) 2007 ref4 ref5 das (ref37) 2017; 1 quilitz (ref3) 2008 fan (ref18) 2014; 7 |
| References_xml | – ident: ref4 doi: 10.1109/TKDE.2014.2302294 – start-page: 113 year: 1995 ident: ref24 article-title: Multilevel graph partitioning schemes publication-title: Proc ICPP (3) – ident: ref20 doi: 10.1007/BF01585178 – ident: ref38 doi: 10.18653/v1/D17-1060 – ident: ref19 doi: 10.1145/2339530.2339722 – ident: ref15 doi: 10.1145/1526709.1526761 – start-page: 301 year: 2014 ident: ref6 article-title: Querying big graphs within bounded resources publication-title: Proc ACM SIGMOD Int Conf Manage Data – ident: ref36 doi: 10.3115/v1/P15-1016 – ident: ref28 doi: 10.1145/1376616.1376675 – start-page: 529 year: 2011 ident: ref25 article-title: Random walk inference and learning in a large scale knowledge base publication-title: Proc Conf Empirical Methods Natural Lang Process – start-page: 1215 year: 2016 ident: ref12 article-title: Mining summaries for knowledge graph search publication-title: IEEE 16th Int Conf Data Mining – start-page: 184 year: 2014 ident: ref8 article-title: Answering graph pattern queries using views publication-title: IEEE 30th Int Conf on Data Engineering – ident: ref1 doi: 10.1145/2623330.2623623 – start-page: 914 year: 2007 ident: ref16 article-title: Anytime measures for top-k algorithms publication-title: Proc Int Conf On Very Large Data Bases – ident: ref30 doi: 10.14778/2556549.2556561 – volume: 61 start-page: 427 year: 2001 ident: ref34 article-title: Approaches to parallel graph-based knowledge discovery publication-title: J Parall Distrib Comput doi: 10.1006/jpdc.2000.1696 – ident: ref10 doi: 10.14778/2732286.2732289 – start-page: 444 year: 2006 ident: ref33 article-title: Extracting redundancy-aware top-k patterns publication-title: Proc 12th ACM SIGKDD Int Conf Knowl Discovery Data Mining doi: 10.1145/1150402.1150452 – volume: 1 start-page: 132 year: 2017 ident: ref37 article-title: Chains of reasoning over entities, relations, and text using recurrent neural networks publication-title: Proc 15th Conf Eur Chapter Assoc Comput – volume: 7 year: 2014 ident: ref18 article-title: Distributed graph simulation: Impossibility and possibility publication-title: Proc VLDB Endowment doi: 10.14778/2732977.2732983 – ident: ref26 doi: 10.18653/v1/D15-1173 – ident: ref22 doi: 10.1007/978-3-662-04565-7 – ident: ref7 doi: 10.1145/1963405.1963497 – ident: ref11 doi: 10.1145/1133905.1133915 – start-page: 490 year: 2011 ident: ref14 article-title: To diversify or not to diversify entity summaries on RDF knowledge graphs? publication-title: Proc Found Intell Syst doi: 10.1007/978-3-642-21916-0_53 – start-page: 275 year: 2010 ident: ref32 article-title: A survey of clustering algorithms for graph data publication-title: Proc Manag Mining Graph Data doi: 10.1007/978-1-4419-6045-0_9 – start-page: 953 year: 2008 ident: ref2 article-title: Naga: Searching and ranking knowledge publication-title: Proc IEEE 24th Int Conf Data Eng – ident: ref21 doi: 10.14778/2735479.2735493 – ident: ref35 doi: 10.1145/2815400.2815410 – ident: ref5 doi: 10.14778/2732286.2732293 – volume: 8 start-page: 183 year: 2014 ident: ref9 article-title: VOG: Summarizing and understanding large graphs publication-title: Stat Anal Data Mining doi: 10.1002/sam.11267 – start-page: 524 year: 2008 ident: ref3 article-title: Querying distributed RDF data sources with SPARQL publication-title: Proc Semantic Web Res Appl 4th Eur Semantic Web Conf doi: 10.1007/978-3-540-68234-9_39 – ident: ref31 doi: 10.1145/872757.872776 – ident: ref27 doi: 10.1145/1376616.1376661 – ident: ref29 doi: 10.1109/ICDM.2014.56 – start-page: 205 year: 2009 ident: ref13 article-title: The model of most informative patterns and its application to knowledge extraction from graph databases publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases – ident: ref17 doi: 10.1109/TKDE.2007.1011 – ident: ref23 doi: 10.1145/2009916.2009996 |
| SSID | ssj0008781 |
| Score | 2.5374033 |
| Snippet | Querying heterogeneous and large-scale knowledge graphs is expensive. This paper studies a graph summarization framework to facilitate knowledge graph search.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1887 |
| SubjectTerms | Algorithms Data mining Feasibility studies Graph matching Graph summarization Graphs Knowledge based systems Motion pictures parallel algorithm Parallel algorithms Pattern matching pattern mining Query processing Scalability Summaries Time factors |
| Title | Mining Summaries for Knowledge Graph Search |
| URI | https://ieeexplore.ieee.org/document/8300649 https://www.proquest.com/docview/2117164767 |
| Volume | 30 |
| WOSCitedRecordID | wos000444603900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPTjfF6ZQcPKnduiZtmqPopjAdglN2K22SgiCb7MO_35c0LYoieOshCeWX9_LeL3kfAGe5YCi7qEiRDKTHUqq9LOQKZVmYWiMh0zba4uWej8fxdCoea3BZ5cJorW3wme6aT_uWr-Zyba7KejE1FlRswAbnvMjVqk7dmNuGpMgukBNRxt0LZt8XvcnoZmCCuOKuLf3Cgm82yDZV-XESW_MybPzvx3Zhx7mR5KrY9z2o6VkTGmWLBuI0tgnbX-oNtuDiwbaDIE82Yw05MkGXlYzKazVya6pXkyICeR-eh4PJ9Z3nuiV4Ek32CsHOM4mEQgeRRCclCrQfZUpSyhRVSICZYCoQOY9ELBWXHLUvz5mSWWRIRpjSA6jP5jN9CMSnMuvnaZyifWchy2Km-tbVUoFWmRZt8Ev8EulKiZuOFm-JpRS-SAzkiYE8cZC34bya8l7U0fhrcMtgXA108LahU25S4jRtmSCBNZSPR_zo91nHsGXWLgLwOlBfLdb6BDblx-p1uTi1QvQJjhbA3w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSDj1axWjUHT-q2u5vsZnMUba30gWCV3sJukgVBWunD32-SfaAogrc9JGT5MpOZL5kHwEXKiJZdrUih8IVDYqycJKBSyzIztUYComy0xcuAjkbRZMIeK3Bd5sIopWzwmWqZT_uWL2diZa7K2hE2FpStwXpAiO9l2VrluRtR25JU8wvNijCh-Rum57L2uH_XMWFcUcsWfyH-Nytk26r8OIutgenu_u_X9mAndyTRTbbz-1BR0xrsFk0aUK6zNdj-UnGwDldD2xACPdmcNc2SkXZaUb-4WEP3pn41ymKQD-C52xnf9py8X4IjtNFearjTRGhKofxQaDcl9JUbJlJgTCSWmgITRqTPUhqySEgqqNa_NCVSJKGhGUGMD6E6nU3VESAXi8RL4yjWFp4EJImI9KyzJX0lE8Ua4Bb4cZEXEzc9Ld64JRUu4wZybiDnOeQNuCynvGeVNP4aXDcYlwNzeBvQLDaJ57q24JrCGtJHQ3r8-6xz2OyNhwM-eBj1T2DLrJOF4zWhupyv1ClsiI_l62J-ZgXqE8UZxCY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+Summaries+for+Knowledge+Graph+Search&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Song%2C+Qi&rft.au=Wu%2C+Yinghui&rft.au=Lin%2C+Peng&rft.au=Dong%2C+Luna+Xin&rft.date=2018-10-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=30&rft.issue=10&rft.spage=1887&rft.epage=1900&rft_id=info:doi/10.1109%2FTKDE.2018.2807442&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2018_2807442 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |