AUCTION: Automated and Quality-Aware Client Selection Framework for Efficient Federated Learning
The emergency of federated learning (FL) enables distributed data owners to collaboratively build a global model without sharing their raw data, which creates a new business chance for building data market. However, in practical FL scenarios, the hardware conditions and data resources of the partici...
Uloženo v:
| Vydáno v: | IEEE transactions on parallel and distributed systems Ročník 33; číslo 8; s. 1996 - 2009 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1045-9219, 1558-2183 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The emergency of federated learning (FL) enables distributed data owners to collaboratively build a global model without sharing their raw data, which creates a new business chance for building data market. However, in practical FL scenarios, the hardware conditions and data resources of the participant clients can vary significantly, leading to different positive/negative effects on the FL performance, where the client selection problem becomes crucial. To this end, we propose AUCTION , an A utomated and q U ality-aware C lient selec TION framework for efficient FL, which can evaluate the learning quality of clients and select them automatically with quality-awareness for a given FL task within a limited budget. To design AUCTION , multiple factors such as data size, data quality, and learning budget that can affect the learning performance should be properly balanced. It is nontrivial since their impacts on the FL model are intricate and unquantifiable. Therefore, AUCTION is designed to encode the client selection policy into a neural network and employ reinforcement learning to automatically learn client selection policies based on the observed client status and feedback rewards quantified by the federated learning performance. In particular, the policy network is built upon an encoder-decoder deep neural network with an attention mechanism, which can adapt to dynamic changes of the number of candidate clients and make sequential client selection actions to reduce the learning space significantly. Extensive experiments are carried out based on real-world datasets and well-known learning models to demonstrate the efficiency, robustness, and scalability of AUCTION . |
|---|---|
| AbstractList | The emergency of federated learning (FL) enables distributed data owners to collaboratively build a global model without sharing their raw data, which creates a new business chance for building data market. However, in practical FL scenarios, the hardware conditions and data resources of the participant clients can vary significantly, leading to different positive/negative effects on the FL performance, where the client selection problem becomes crucial. To this end, we propose AUCTION , an A utomated and q U ality-aware C lient selec TION framework for efficient FL, which can evaluate the learning quality of clients and select them automatically with quality-awareness for a given FL task within a limited budget. To design AUCTION , multiple factors such as data size, data quality, and learning budget that can affect the learning performance should be properly balanced. It is nontrivial since their impacts on the FL model are intricate and unquantifiable. Therefore, AUCTION is designed to encode the client selection policy into a neural network and employ reinforcement learning to automatically learn client selection policies based on the observed client status and feedback rewards quantified by the federated learning performance. In particular, the policy network is built upon an encoder-decoder deep neural network with an attention mechanism, which can adapt to dynamic changes of the number of candidate clients and make sequential client selection actions to reduce the learning space significantly. Extensive experiments are carried out based on real-world datasets and well-known learning models to demonstrate the efficiency, robustness, and scalability of AUCTION . |
| Author | Ren, Ju Zhang, Yaoxue Shen, Xuemin Lyu, Feng Wu, Huaqing Deng, Yongheng Zhou, Yuezhi |
| Author_xml | – sequence: 1 givenname: Yongheng orcidid: 0000-0003-3010-3812 surname: Deng fullname: Deng, Yongheng email: dyh19@mails.tsinghua.edu.cn organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, P.R. China – sequence: 2 givenname: Feng orcidid: 0000-0002-2990-5415 surname: Lyu fullname: Lyu, Feng email: fenglyu@csu.edu.cn organization: School of Computer Science and Engineering, Central South University, Changsha, P.R. China – sequence: 3 givenname: Ju orcidid: 0000-0003-2782-183X surname: Ren fullname: Ren, Ju email: renju@tsinghua.edu.cn organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, P.R. China – sequence: 4 givenname: Huaqing orcidid: 0000-0002-3497-6437 surname: Wu fullname: Wu, Huaqing email: h272wu@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 5 givenname: Yuezhi orcidid: 0000-0002-1850-3007 surname: Zhou fullname: Zhou, Yuezhi email: zhouyz@mail.tsinghua.edu.cn organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, P.R. China – sequence: 6 givenname: Yaoxue surname: Zhang fullname: Zhang, Yaoxue email: zhangyx@tsinghua.edu.cn organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, P.R. China – sequence: 7 givenname: Xuemin orcidid: 0000-0002-4140-287X surname: Shen fullname: Shen, Xuemin email: sshen@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada |
| BookMark | eNp9kE9PwkAQxTcGEwH9AMZLE8_Fnd1u2XojCEpCRAOc63Y7axZLi9slhG9v-RMPHrzMTDLvzcv8OqRVViUScgu0B0CTh8Xb07zHKIMeBx7FUf-CtEEIGTKQvNXMNBJhwiC5Ip26XlEKkaBRm3wMlsPFZPb6GAy2vlorj3mgyjx436rC-n042CmHwbCwWPpgjgVqb6syGDu1xl3lvgJTuWBkjNVHxRhzdMcjU1SutOXnNbk0qqjx5ty7ZDkeLYYv4XT2PBkOpqFmCfdhrEALAwyEEZjzOItzSrWQUvY5KJ6xLNNa5tJInUDGTK5lBnlfRk2JIsp5l9yf7m5c9b3F2qerauvKJjJlcUMCmhjWqPonlXZVXTs0qbZeHV7yTtkiBZoecKYHnOkBZ3rG2Tjhj3Pj7Fq5_b-eu5PHIuKvPmlWCRP8B28NgfI |
| CODEN | ITDSEO |
| CitedBy_id | crossref_primary_10_1109_TCSS_2022_3227270 crossref_primary_10_1109_TMC_2025_3541191 crossref_primary_10_1016_j_pmcj_2025_102091 crossref_primary_10_1007_s12083_024_01639_5 crossref_primary_10_1109_MNET_128_2200344 crossref_primary_10_1109_TCE_2024_3411674 crossref_primary_10_1109_TSC_2024_3489437 crossref_primary_10_1109_TVT_2022_3229277 crossref_primary_10_1016_j_sysarc_2024_103280 crossref_primary_10_1109_TMC_2023_3309633 crossref_primary_10_1016_j_ins_2024_120368 crossref_primary_10_1109_TNNLS_2024_3486028 crossref_primary_10_1109_TPDS_2023_3250513 crossref_primary_10_1007_s42979_024_03137_0 crossref_primary_10_1109_JIOT_2022_3224239 crossref_primary_10_1109_TIFS_2024_3449116 crossref_primary_10_1109_ACCESS_2024_3396279 crossref_primary_10_1109_TSC_2023_3332102 crossref_primary_10_1109_JSAC_2025_3560013 crossref_primary_10_1109_TVT_2024_3364515 crossref_primary_10_1109_TVT_2024_3359860 crossref_primary_10_1109_JSAC_2025_3560010 crossref_primary_10_1109_TMLCN_2025_3534754 crossref_primary_10_3390_electronics14091750 crossref_primary_10_1109_TWC_2025_3528408 crossref_primary_10_1109_TC_2022_3230904 crossref_primary_10_1109_ACCESS_2025_3573933 crossref_primary_10_1109_MNET_121_2200089 crossref_primary_10_3390_s23167235 crossref_primary_10_1109_TMC_2023_3283295 crossref_primary_10_1007_s13042_022_01647_y crossref_primary_10_1016_j_comnet_2025_111502 crossref_primary_10_1109_ACCESS_2024_3482388 crossref_primary_10_1109_TPDS_2025_3594694 crossref_primary_10_1109_JIOT_2022_3175997 crossref_primary_10_1007_s00500_025_10508_z crossref_primary_10_1109_ACCESS_2024_3511430 crossref_primary_10_1109_TMC_2024_3423399 crossref_primary_10_1007_s12083_024_01817_5 crossref_primary_10_1109_TMLCN_2025_3567370 crossref_primary_10_1016_j_iot_2025_101687 crossref_primary_10_1109_JSAC_2022_3213341 crossref_primary_10_1109_TNET_2024_3363916 crossref_primary_10_1186_s13677_023_00515_6 crossref_primary_10_1016_j_ins_2024_120344 crossref_primary_10_1109_TMC_2025_3579748 crossref_primary_10_3390_s23146443 crossref_primary_10_1109_MNET_2023_3321519 crossref_primary_10_1109_JIOT_2023_3325443 crossref_primary_10_1007_s12083_025_02003_x crossref_primary_10_1007_s11704_024_40065_x crossref_primary_10_1109_TC_2023_3337317 crossref_primary_10_3390_app15010026 crossref_primary_10_1016_j_csi_2025_104019 crossref_primary_10_1109_TNSE_2023_3292805 crossref_primary_10_1109_MNET_2025_3580618 crossref_primary_10_1109_TCC_2024_3372814 crossref_primary_10_1109_TMC_2023_3241206 crossref_primary_10_1109_TMC_2024_3449129 crossref_primary_10_1016_j_jnca_2024_104029 crossref_primary_10_3390_app14125245 crossref_primary_10_1109_ACCESS_2024_3421652 crossref_primary_10_1109_TSMC_2023_3320680 crossref_primary_10_3390_app14156664 crossref_primary_10_1109_JIOT_2024_3417315 crossref_primary_10_1109_JSTSP_2022_3223498 crossref_primary_10_1109_JIOT_2023_3329061 crossref_primary_10_1109_TKDE_2024_3390238 crossref_primary_10_1109_TSC_2024_3350050 crossref_primary_10_1109_TMC_2024_3376636 crossref_primary_10_1109_JIOT_2024_3448204 crossref_primary_10_1109_TMC_2024_3429228 crossref_primary_10_1109_JIOT_2023_3265434 crossref_primary_10_1109_JIOT_2024_3524389 crossref_primary_10_1109_MWC_018_2300534 crossref_primary_10_1109_COMST_2022_3218527 crossref_primary_10_3390_s23177358 crossref_primary_10_1007_s11227_023_05810_2 crossref_primary_10_1109_TNNLS_2024_3349400 crossref_primary_10_1109_TSC_2023_3331520 crossref_primary_10_1007_s12083_025_01991_0 crossref_primary_10_1109_JIOT_2025_3558910 crossref_primary_10_1109_TCCN_2023_3330065 crossref_primary_10_3390_math12203229 crossref_primary_10_1109_TC_2024_3355777 crossref_primary_10_1109_TMC_2022_3201622 crossref_primary_10_1016_j_icte_2023_01_007 crossref_primary_10_1145_3716870 crossref_primary_10_1016_j_comnet_2024_110849 crossref_primary_10_1360_SSI_2024_0304 crossref_primary_10_1109_TMC_2022_3199812 crossref_primary_10_1109_TMC_2024_3450549 crossref_primary_10_1109_TSC_2024_3387734 crossref_primary_10_1007_s11831_023_10011_4 crossref_primary_10_1109_TPDS_2024_3453607 crossref_primary_10_1109_TVT_2022_3184026 crossref_primary_10_1109_TPDS_2023_3240883 crossref_primary_10_1109_ACCESS_2024_3469956 crossref_primary_10_1109_JIOT_2023_3234422 crossref_primary_10_1109_TPDS_2023_3240767 crossref_primary_10_3390_app14020833 crossref_primary_10_1109_TPAMI_2023_3322785 crossref_primary_10_1109_JIOT_2024_3431555 crossref_primary_10_1109_TIFS_2024_3484946 |
| Cites_doi | 10.1145/3372224.3419188 10.1023/A:1022672621406 10.1109/CVPR.2016.90 10.1109/TMC.2020.2984261 10.1145/2640087.2644155 10.1109/MNET.2018.1700460 10.1109/ICDCS.2019.00099 10.1109/TPDS.2020.3009406 10.1109/INFOCOM41043.2020.9155494 10.1109/TWC.2020.3031503 10.1109/5.726791 10.1109/TMC.2020.2994639 10.1145/3355369.3355577 10.1109/MNET.2019.1800286 10.1109/INFOCOM.2019.8737416 10.1109/TPDS.2017.2775232 10.1145/3381006 10.1109/TPDS.2020.3040887 10.1109/TWC.2020.3008091 10.1145/3362031 10.1109/JIOT.2019.2940820 10.1109/JSAC.2019.2904348 10.1109/CVPR.2018.00474 10.1109/JIOT.2020.3036157 10.1109/TII.2020.3046028 10.1109/TPDS.2020.2975189 10.1109/JPROC.2019.2951169 10.1109/ICDCS51616.2021.00012 10.1109/ICC.2019.8761315 10.1109/INFOCOM.2018.8486422 10.1109/TWC.2017.2686085 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TPDS.2021.3134647 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2183 |
| EndPage | 2009 |
| ExternalDocumentID | 10_1109_TPDS_2021_3134647 9647925 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Young Elite Scientists Sponsorship Program by Tianjin grantid: YESS20200238 funderid: 10.13039/501100019005 – fundername: National Natural Science Foundation of China grantid: 62002389; 62122095; 62072472; U19A2067 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2019YFA0706403 funderid: 10.13039/501100012166 – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2019B010137005 – fundername: Natural Science Foundation of Hunan Province, China grantid: 2020JJ2050; 2021JJ20079 – fundername: 111 Project grantid: B18059 – fundername: Young Talents Plan of Hunan Province of China grantid: 2019RS2001; 2021RC3004 |
| GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-6a1c5f1215f5ed36b6d00c5888731a3b2bbcc8d8f8c91b2fdc8b1d7841d744033 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 157 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000736739000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9219 |
| IngestDate | Sun Nov 09 06:33:42 EST 2025 Sat Nov 29 06:06:49 EST 2025 Tue Nov 18 22:26:35 EST 2025 Wed Aug 27 02:36:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-6a1c5f1215f5ed36b6d00c5888731a3b2bbcc8d8f8c91b2fdc8b1d7841d744033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1850-3007 0000-0002-3497-6437 0000-0002-2990-5415 0000-0003-2782-183X 0000-0003-3010-3812 0000-0002-4140-287X |
| PQID | 2615512932 |
| PQPubID | 85437 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2615512932 ieee_primary_9647925 crossref_primary_10_1109_TPDS_2021_3134647 crossref_citationtrail_10_1109_TPDS_2021_3134647 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on parallel and distributed systems |
| PublicationTitleAbbrev | TPDS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 karimireddy (ref28) 2020 ref12 ref15 ref14 kool (ref20) 2018 ref11 ref10 cho (ref27) 2020 bagdasaryan (ref44) 2020 ref50 mcmahan (ref7) 2017 ref46 ref48 ref47 zhao (ref32) 2018 ref49 ref8 ref9 lecun (ref16) 1998 ref4 ref3 ref6 ref5 vaswani (ref21) 2017 reddi (ref41) 2020 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref2 ref1 blanchard (ref45) 2017 ref39 li (ref40) 2018 ref24 ref26 krizhevsky (ref18) 0 ref25 ref22 bello (ref19) 2016 kingma (ref23) 2014 xiao (ref17) 2017 li (ref42) 2020 nguyen (ref38) 2019 li (ref29) 2019 fung (ref43) 2018 |
| References_xml | – start-page: 5998 year: 2017 ident: ref21 article-title: Attention is all you need publication-title: Proc Int Conf Neural Inf Process – ident: ref33 doi: 10.1145/3372224.3419188 – ident: ref22 doi: 10.1023/A:1022672621406 – year: 2018 ident: ref32 article-title: Federated learning with non-IID data – ident: ref15 doi: 10.1109/CVPR.2016.90 – year: 2018 ident: ref40 article-title: Federated optimization in heterogeneous networks – year: 2018 ident: ref20 article-title: Attention, learn to solve routing problems! – ident: ref4 doi: 10.1109/TMC.2020.2984261 – start-page: 2938 year: 2020 ident: ref44 article-title: How to backdoor federated learning publication-title: Proc Int Conf Artif Intell Statist – ident: ref8 doi: 10.1145/2640087.2644155 – ident: ref1 doi: 10.1109/MNET.2018.1700460 – year: 2016 ident: ref19 article-title: Neural combinatorial optimization with reinforcement learning – start-page: 1273 year: 2017 ident: ref7 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc 20th Int Conf Artif Intell Statist – ident: ref11 doi: 10.1109/ICDCS.2019.00099 – ident: ref31 doi: 10.1109/TPDS.2020.3009406 – ident: ref12 doi: 10.1109/INFOCOM41043.2020.9155494 – ident: ref49 doi: 10.1109/TWC.2020.3031503 – start-page: 118 year: 2017 ident: ref45 article-title: Machine learning with adversaries: Byzantine tolerant gradient descent publication-title: Proc Int Conf Neural Inf Process – year: 2020 ident: ref42 article-title: Learning to detect malicious clients for robust federated learning – year: 2019 ident: ref29 article-title: On the convergence of FedAvg on non-IID data – ident: ref14 doi: 10.1109/5.726791 – ident: ref50 doi: 10.1109/TMC.2020.2994639 – ident: ref5 doi: 10.1145/3355369.3355577 – ident: ref2 doi: 10.1109/MNET.2019.1800286 – start-page: 756 year: 2019 ident: ref38 article-title: DÏoT: A federated self-learning anomaly detection system for IoT publication-title: Proc IEEE 39th Int Conf Distrib Comput Syst – ident: ref34 doi: 10.1109/INFOCOM.2019.8737416 – year: 2020 ident: ref27 article-title: Client selection in federated learning: Convergence analysis and power-of-choice selection strategies – ident: ref25 doi: 10.1109/TPDS.2017.2775232 – ident: ref37 doi: 10.1145/3381006 – ident: ref48 doi: 10.1109/TPDS.2020.3040887 – year: 2020 ident: ref41 article-title: Adaptive federated optimization – ident: ref47 doi: 10.1109/TWC.2020.3008091 – year: 2018 ident: ref43 article-title: Mitigating sybils in federated learning poisoning – ident: ref6 doi: 10.1145/3362031 – ident: ref36 doi: 10.1109/JIOT.2019.2940820 – ident: ref46 doi: 10.1109/JSAC.2019.2904348 – ident: ref24 doi: 10.1109/CVPR.2018.00474 – ident: ref13 doi: 10.1109/JIOT.2020.3036157 – year: 2014 ident: ref23 article-title: Adam: A method for stochastic optimization – ident: ref35 doi: 10.1109/TII.2020.3046028 – ident: ref39 doi: 10.1109/TPDS.2020.2975189 – ident: ref3 doi: 10.1109/JPROC.2019.2951169 – year: 2017 ident: ref17 article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms – year: 1998 ident: ref16 article-title: The MNIST database of handwritten digits – start-page: 5132 year: 2020 ident: ref28 article-title: SCAFFOLD: Stochastic controlled averaging for federated learning publication-title: Proc Int Conf Mach Learn – ident: ref30 doi: 10.1109/ICDCS51616.2021.00012 – ident: ref10 doi: 10.1109/ICC.2019.8761315 – ident: ref9 doi: 10.1109/INFOCOM.2018.8486422 – ident: ref26 doi: 10.1109/TWC.2017.2686085 – year: 0 ident: ref18 article-title: Learning multiple layers of features from tiny images |
| SSID | ssj0014504 |
| Score | 2.6803088 |
| Snippet | The emergency of federated learning (FL) enables distributed data owners to collaboratively build a global model without sharing their raw data, which creates... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1996 |
| SubjectTerms | Artificial neural networks Budgets client selection Clients Coders Collaborative work Data integrity Data models Data privacy data quality Design factors Distributed databases distributed system Encoders-Decoders Federated learning Machine learning Neural networks reinforcement learning Task analysis Training |
| Title | AUCTION: Automated and Quality-Aware Client Selection Framework for Efficient Federated Learning |
| URI | https://ieeexplore.ieee.org/document/9647925 https://www.proquest.com/docview/2615512932 |
| Volume | 33 |
| WOSCitedRecordID | wos000736739000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-2183 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014504 issn: 1045-9219 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20eNCDH1WxWiUHT2J0N9tkN96KWjyICG3F25qvFaG0UlvFf28mTYugCN5ySJZl32bzZmfmPYDjlDGrPBWgOq8EbeXO0ELZlIpccG0El62gU_Bwm9_dFY-P8n4JThe9MM65UHzmznAYcvl2ZKb4q-wcuyYl48uwnOdi1qu1yBi0eLAK9NEFp9Jvw5jBTBN53ru_6vpIkKU-QM1aAp1Uvp1BwVTlx5c4HC-djf_d2CasRxpJ2jPct2DJDeuwMbdoIHHH1mHtm97gNjy1-6Fm5IK0p5OR56rOEjW0ZCak8UnbH2rsyOUAeyRJNzjkeNhIZ17ARTzDJddBdAJndFCIIlwkqrQ-70C_c927vKHRYoEaf85PqFCp4RUqTFTc2UxoYZPEcB8W51mqMs20NqawRVUYmWpWWVPo1GKu0qKyYJbtQm04Gro9IEpIzWReGWU8p6k8EfLBlFZa-HGmFW9AMn_opYn642iDMShDHJLIEnEqEacy4tSAk8WS15n4xl-TtxGYxcSISQOac2TLuD3fSobZWGQ6bP_3VQewyrDPIVT6NaE2GU_dIayY98nL2_govHlfqjrVIg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xWAn2ACwPUZ4-7GmFIXFiJ-ZWARWIboVEWXELfgUhoRaVdhH_Ho_rVkggJG4-2FGUL46_ycx8H8DvlDGrPBWguqgFzQtnaKlsSkUhuDaCyzzoFPxrF51OeXsrr2bgYNoL45wLxWfuEIchl2_7ZoS_yo6wa1IyPgvzPM9ZMu7WmuYMch7MAn18wan0GzHmMNNEHnWvTq99LMhSH6JmuUAvlXenULBV-fAtDgdMa_l7t7YCS5FIkuYY-V8w43qrsDwxaSBxz67Cz3eKg2tw17wJVSPHpDka9j1bdZaoniVjKY1X2nxRA0dOHrFLklwHjxwPHGlNSriI57jkLMhO4IwWSlGEi0Sd1vt1uGmddU_OaTRZoMaf9EMqVGp4jRoTNXc2E1rYJDHcB8ZFlqpMM62NKW1Zl0ammtXWlDq1mK20qC2YZRsw1-v33CYQJaRmsqiNMp7V1J4K-XBKKy38ONOKNyCZPPTKRAVyNMJ4rEIkksgKcaoQpyri1IA_0yVPY_mNryavITDTiRGTBuxMkK3iBn2uGOZjkeuwrc9X7cPCefdvu2pfdC63YZFh10Oo-9uBueFg5Hbhh_k_fHge7IW38A3oX9hp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AUCTION%3A+Automated+and+Quality-Aware+Client+Selection+Framework+for+Efficient+Federated+Learning&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Deng%2C+Yongheng&rft.au=Lyu%2C+Feng&rft.au=Ren%2C+Ju&rft.au=Wu%2C+Huaqing&rft.date=2022-08-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=33&rft.issue=8&rft.spage=1996&rft.epage=2009&rft_id=info:doi/10.1109%2FTPDS.2021.3134647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2021_3134647 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |