AUCTION: Automated and Quality-Aware Client Selection Framework for Efficient Federated Learning

The emergency of federated learning (FL) enables distributed data owners to collaboratively build a global model without sharing their raw data, which creates a new business chance for building data market. However, in practical FL scenarios, the hardware conditions and data resources of the partici...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on parallel and distributed systems Ročník 33; číslo 8; s. 1996 - 2009
Hlavní autoři: Deng, Yongheng, Lyu, Feng, Ren, Ju, Wu, Huaqing, Zhou, Yuezhi, Zhang, Yaoxue, Shen, Xuemin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1045-9219, 1558-2183
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The emergency of federated learning (FL) enables distributed data owners to collaboratively build a global model without sharing their raw data, which creates a new business chance for building data market. However, in practical FL scenarios, the hardware conditions and data resources of the participant clients can vary significantly, leading to different positive/negative effects on the FL performance, where the client selection problem becomes crucial. To this end, we propose AUCTION , an A utomated and q U ality-aware C lient selec TION framework for efficient FL, which can evaluate the learning quality of clients and select them automatically with quality-awareness for a given FL task within a limited budget. To design AUCTION , multiple factors such as data size, data quality, and learning budget that can affect the learning performance should be properly balanced. It is nontrivial since their impacts on the FL model are intricate and unquantifiable. Therefore, AUCTION is designed to encode the client selection policy into a neural network and employ reinforcement learning to automatically learn client selection policies based on the observed client status and feedback rewards quantified by the federated learning performance. In particular, the policy network is built upon an encoder-decoder deep neural network with an attention mechanism, which can adapt to dynamic changes of the number of candidate clients and make sequential client selection actions to reduce the learning space significantly. Extensive experiments are carried out based on real-world datasets and well-known learning models to demonstrate the efficiency, robustness, and scalability of AUCTION .
AbstractList The emergency of federated learning (FL) enables distributed data owners to collaboratively build a global model without sharing their raw data, which creates a new business chance for building data market. However, in practical FL scenarios, the hardware conditions and data resources of the participant clients can vary significantly, leading to different positive/negative effects on the FL performance, where the client selection problem becomes crucial. To this end, we propose AUCTION , an A utomated and q U ality-aware C lient selec TION framework for efficient FL, which can evaluate the learning quality of clients and select them automatically with quality-awareness for a given FL task within a limited budget. To design AUCTION , multiple factors such as data size, data quality, and learning budget that can affect the learning performance should be properly balanced. It is nontrivial since their impacts on the FL model are intricate and unquantifiable. Therefore, AUCTION is designed to encode the client selection policy into a neural network and employ reinforcement learning to automatically learn client selection policies based on the observed client status and feedback rewards quantified by the federated learning performance. In particular, the policy network is built upon an encoder-decoder deep neural network with an attention mechanism, which can adapt to dynamic changes of the number of candidate clients and make sequential client selection actions to reduce the learning space significantly. Extensive experiments are carried out based on real-world datasets and well-known learning models to demonstrate the efficiency, robustness, and scalability of AUCTION .
Author Ren, Ju
Zhang, Yaoxue
Shen, Xuemin
Lyu, Feng
Wu, Huaqing
Deng, Yongheng
Zhou, Yuezhi
Author_xml – sequence: 1
  givenname: Yongheng
  orcidid: 0000-0003-3010-3812
  surname: Deng
  fullname: Deng, Yongheng
  email: dyh19@mails.tsinghua.edu.cn
  organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, P.R. China
– sequence: 2
  givenname: Feng
  orcidid: 0000-0002-2990-5415
  surname: Lyu
  fullname: Lyu, Feng
  email: fenglyu@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha, P.R. China
– sequence: 3
  givenname: Ju
  orcidid: 0000-0003-2782-183X
  surname: Ren
  fullname: Ren, Ju
  email: renju@tsinghua.edu.cn
  organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, P.R. China
– sequence: 4
  givenname: Huaqing
  orcidid: 0000-0002-3497-6437
  surname: Wu
  fullname: Wu, Huaqing
  email: h272wu@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 5
  givenname: Yuezhi
  orcidid: 0000-0002-1850-3007
  surname: Zhou
  fullname: Zhou, Yuezhi
  email: zhouyz@mail.tsinghua.edu.cn
  organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, P.R. China
– sequence: 6
  givenname: Yaoxue
  surname: Zhang
  fullname: Zhang, Yaoxue
  email: zhangyx@tsinghua.edu.cn
  organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, P.R. China
– sequence: 7
  givenname: Xuemin
  orcidid: 0000-0002-4140-287X
  surname: Shen
  fullname: Shen, Xuemin
  email: sshen@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
BookMark eNp9kE9PwkAQxTcGEwH9AMZLE8_Fnd1u2XojCEpCRAOc63Y7axZLi9slhG9v-RMPHrzMTDLvzcv8OqRVViUScgu0B0CTh8Xb07zHKIMeBx7FUf-CtEEIGTKQvNXMNBJhwiC5Ip26XlEKkaBRm3wMlsPFZPb6GAy2vlorj3mgyjx436rC-n042CmHwbCwWPpgjgVqb6syGDu1xl3lvgJTuWBkjNVHxRhzdMcjU1SutOXnNbk0qqjx5ty7ZDkeLYYv4XT2PBkOpqFmCfdhrEALAwyEEZjzOItzSrWQUvY5KJ6xLNNa5tJInUDGTK5lBnlfRk2JIsp5l9yf7m5c9b3F2qerauvKJjJlcUMCmhjWqPonlXZVXTs0qbZeHV7yTtkiBZoecKYHnOkBZ3rG2Tjhj3Pj7Fq5_b-eu5PHIuKvPmlWCRP8B28NgfI
CODEN ITDSEO
CitedBy_id crossref_primary_10_1109_TCSS_2022_3227270
crossref_primary_10_1109_TMC_2025_3541191
crossref_primary_10_1016_j_pmcj_2025_102091
crossref_primary_10_1007_s12083_024_01639_5
crossref_primary_10_1109_MNET_128_2200344
crossref_primary_10_1109_TCE_2024_3411674
crossref_primary_10_1109_TSC_2024_3489437
crossref_primary_10_1109_TVT_2022_3229277
crossref_primary_10_1016_j_sysarc_2024_103280
crossref_primary_10_1109_TMC_2023_3309633
crossref_primary_10_1016_j_ins_2024_120368
crossref_primary_10_1109_TNNLS_2024_3486028
crossref_primary_10_1109_TPDS_2023_3250513
crossref_primary_10_1007_s42979_024_03137_0
crossref_primary_10_1109_JIOT_2022_3224239
crossref_primary_10_1109_TIFS_2024_3449116
crossref_primary_10_1109_ACCESS_2024_3396279
crossref_primary_10_1109_TSC_2023_3332102
crossref_primary_10_1109_JSAC_2025_3560013
crossref_primary_10_1109_TVT_2024_3364515
crossref_primary_10_1109_TVT_2024_3359860
crossref_primary_10_1109_JSAC_2025_3560010
crossref_primary_10_1109_TMLCN_2025_3534754
crossref_primary_10_3390_electronics14091750
crossref_primary_10_1109_TWC_2025_3528408
crossref_primary_10_1109_TC_2022_3230904
crossref_primary_10_1109_ACCESS_2025_3573933
crossref_primary_10_1109_MNET_121_2200089
crossref_primary_10_3390_s23167235
crossref_primary_10_1109_TMC_2023_3283295
crossref_primary_10_1007_s13042_022_01647_y
crossref_primary_10_1016_j_comnet_2025_111502
crossref_primary_10_1109_ACCESS_2024_3482388
crossref_primary_10_1109_TPDS_2025_3594694
crossref_primary_10_1109_JIOT_2022_3175997
crossref_primary_10_1007_s00500_025_10508_z
crossref_primary_10_1109_ACCESS_2024_3511430
crossref_primary_10_1109_TMC_2024_3423399
crossref_primary_10_1007_s12083_024_01817_5
crossref_primary_10_1109_TMLCN_2025_3567370
crossref_primary_10_1016_j_iot_2025_101687
crossref_primary_10_1109_JSAC_2022_3213341
crossref_primary_10_1109_TNET_2024_3363916
crossref_primary_10_1186_s13677_023_00515_6
crossref_primary_10_1016_j_ins_2024_120344
crossref_primary_10_1109_TMC_2025_3579748
crossref_primary_10_3390_s23146443
crossref_primary_10_1109_MNET_2023_3321519
crossref_primary_10_1109_JIOT_2023_3325443
crossref_primary_10_1007_s12083_025_02003_x
crossref_primary_10_1007_s11704_024_40065_x
crossref_primary_10_1109_TC_2023_3337317
crossref_primary_10_3390_app15010026
crossref_primary_10_1016_j_csi_2025_104019
crossref_primary_10_1109_TNSE_2023_3292805
crossref_primary_10_1109_MNET_2025_3580618
crossref_primary_10_1109_TCC_2024_3372814
crossref_primary_10_1109_TMC_2023_3241206
crossref_primary_10_1109_TMC_2024_3449129
crossref_primary_10_1016_j_jnca_2024_104029
crossref_primary_10_3390_app14125245
crossref_primary_10_1109_ACCESS_2024_3421652
crossref_primary_10_1109_TSMC_2023_3320680
crossref_primary_10_3390_app14156664
crossref_primary_10_1109_JIOT_2024_3417315
crossref_primary_10_1109_JSTSP_2022_3223498
crossref_primary_10_1109_JIOT_2023_3329061
crossref_primary_10_1109_TKDE_2024_3390238
crossref_primary_10_1109_TSC_2024_3350050
crossref_primary_10_1109_TMC_2024_3376636
crossref_primary_10_1109_JIOT_2024_3448204
crossref_primary_10_1109_TMC_2024_3429228
crossref_primary_10_1109_JIOT_2023_3265434
crossref_primary_10_1109_JIOT_2024_3524389
crossref_primary_10_1109_MWC_018_2300534
crossref_primary_10_1109_COMST_2022_3218527
crossref_primary_10_3390_s23177358
crossref_primary_10_1007_s11227_023_05810_2
crossref_primary_10_1109_TNNLS_2024_3349400
crossref_primary_10_1109_TSC_2023_3331520
crossref_primary_10_1007_s12083_025_01991_0
crossref_primary_10_1109_JIOT_2025_3558910
crossref_primary_10_1109_TCCN_2023_3330065
crossref_primary_10_3390_math12203229
crossref_primary_10_1109_TC_2024_3355777
crossref_primary_10_1109_TMC_2022_3201622
crossref_primary_10_1016_j_icte_2023_01_007
crossref_primary_10_1145_3716870
crossref_primary_10_1016_j_comnet_2024_110849
crossref_primary_10_1360_SSI_2024_0304
crossref_primary_10_1109_TMC_2022_3199812
crossref_primary_10_1109_TMC_2024_3450549
crossref_primary_10_1109_TSC_2024_3387734
crossref_primary_10_1007_s11831_023_10011_4
crossref_primary_10_1109_TPDS_2024_3453607
crossref_primary_10_1109_TVT_2022_3184026
crossref_primary_10_1109_TPDS_2023_3240883
crossref_primary_10_1109_ACCESS_2024_3469956
crossref_primary_10_1109_JIOT_2023_3234422
crossref_primary_10_1109_TPDS_2023_3240767
crossref_primary_10_3390_app14020833
crossref_primary_10_1109_TPAMI_2023_3322785
crossref_primary_10_1109_JIOT_2024_3431555
crossref_primary_10_1109_TIFS_2024_3484946
Cites_doi 10.1145/3372224.3419188
10.1023/A:1022672621406
10.1109/CVPR.2016.90
10.1109/TMC.2020.2984261
10.1145/2640087.2644155
10.1109/MNET.2018.1700460
10.1109/ICDCS.2019.00099
10.1109/TPDS.2020.3009406
10.1109/INFOCOM41043.2020.9155494
10.1109/TWC.2020.3031503
10.1109/5.726791
10.1109/TMC.2020.2994639
10.1145/3355369.3355577
10.1109/MNET.2019.1800286
10.1109/INFOCOM.2019.8737416
10.1109/TPDS.2017.2775232
10.1145/3381006
10.1109/TPDS.2020.3040887
10.1109/TWC.2020.3008091
10.1145/3362031
10.1109/JIOT.2019.2940820
10.1109/JSAC.2019.2904348
10.1109/CVPR.2018.00474
10.1109/JIOT.2020.3036157
10.1109/TII.2020.3046028
10.1109/TPDS.2020.2975189
10.1109/JPROC.2019.2951169
10.1109/ICDCS51616.2021.00012
10.1109/ICC.2019.8761315
10.1109/INFOCOM.2018.8486422
10.1109/TWC.2017.2686085
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2021.3134647
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 2009
ExternalDocumentID 10_1109_TPDS_2021_3134647
9647925
Genre orig-research
GrantInformation_xml – fundername: Young Elite Scientists Sponsorship Program by Tianjin
  grantid: YESS20200238
  funderid: 10.13039/501100019005
– fundername: National Natural Science Foundation of China
  grantid: 62002389; 62122095; 62072472; U19A2067
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA0706403
  funderid: 10.13039/501100012166
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2019B010137005
– fundername: Natural Science Foundation of Hunan Province, China
  grantid: 2020JJ2050; 2021JJ20079
– fundername: 111 Project
  grantid: B18059
– fundername: Young Talents Plan of Hunan Province of China
  grantid: 2019RS2001; 2021RC3004
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-6a1c5f1215f5ed36b6d00c5888731a3b2bbcc8d8f8c91b2fdc8b1d7841d744033
IEDL.DBID RIE
ISICitedReferencesCount 157
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000736739000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9219
IngestDate Sun Nov 09 06:33:42 EST 2025
Sat Nov 29 06:06:49 EST 2025
Tue Nov 18 22:26:35 EST 2025
Wed Aug 27 02:36:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-6a1c5f1215f5ed36b6d00c5888731a3b2bbcc8d8f8c91b2fdc8b1d7841d744033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1850-3007
0000-0002-3497-6437
0000-0002-2990-5415
0000-0003-2782-183X
0000-0003-3010-3812
0000-0002-4140-287X
PQID 2615512932
PQPubID 85437
PageCount 14
ParticipantIDs proquest_journals_2615512932
ieee_primary_9647925
crossref_primary_10_1109_TPDS_2021_3134647
crossref_citationtrail_10_1109_TPDS_2021_3134647
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
karimireddy (ref28) 2020
ref12
ref15
ref14
kool (ref20) 2018
ref11
ref10
cho (ref27) 2020
bagdasaryan (ref44) 2020
ref50
mcmahan (ref7) 2017
ref46
ref48
ref47
zhao (ref32) 2018
ref49
ref8
ref9
lecun (ref16) 1998
ref4
ref3
ref6
ref5
vaswani (ref21) 2017
reddi (ref41) 2020
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
blanchard (ref45) 2017
ref39
li (ref40) 2018
ref24
ref26
krizhevsky (ref18) 0
ref25
ref22
bello (ref19) 2016
kingma (ref23) 2014
xiao (ref17) 2017
li (ref42) 2020
nguyen (ref38) 2019
li (ref29) 2019
fung (ref43) 2018
References_xml – start-page: 5998
  year: 2017
  ident: ref21
  article-title: Attention is all you need
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref33
  doi: 10.1145/3372224.3419188
– ident: ref22
  doi: 10.1023/A:1022672621406
– year: 2018
  ident: ref32
  article-title: Federated learning with non-IID data
– ident: ref15
  doi: 10.1109/CVPR.2016.90
– year: 2018
  ident: ref40
  article-title: Federated optimization in heterogeneous networks
– year: 2018
  ident: ref20
  article-title: Attention, learn to solve routing problems!
– ident: ref4
  doi: 10.1109/TMC.2020.2984261
– start-page: 2938
  year: 2020
  ident: ref44
  article-title: How to backdoor federated learning
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref8
  doi: 10.1145/2640087.2644155
– ident: ref1
  doi: 10.1109/MNET.2018.1700460
– year: 2016
  ident: ref19
  article-title: Neural combinatorial optimization with reinforcement learning
– start-page: 1273
  year: 2017
  ident: ref7
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– ident: ref11
  doi: 10.1109/ICDCS.2019.00099
– ident: ref31
  doi: 10.1109/TPDS.2020.3009406
– ident: ref12
  doi: 10.1109/INFOCOM41043.2020.9155494
– ident: ref49
  doi: 10.1109/TWC.2020.3031503
– start-page: 118
  year: 2017
  ident: ref45
  article-title: Machine learning with adversaries: Byzantine tolerant gradient descent
  publication-title: Proc Int Conf Neural Inf Process
– year: 2020
  ident: ref42
  article-title: Learning to detect malicious clients for robust federated learning
– year: 2019
  ident: ref29
  article-title: On the convergence of FedAvg on non-IID data
– ident: ref14
  doi: 10.1109/5.726791
– ident: ref50
  doi: 10.1109/TMC.2020.2994639
– ident: ref5
  doi: 10.1145/3355369.3355577
– ident: ref2
  doi: 10.1109/MNET.2019.1800286
– start-page: 756
  year: 2019
  ident: ref38
  article-title: DÏoT: A federated self-learning anomaly detection system for IoT
  publication-title: Proc IEEE 39th Int Conf Distrib Comput Syst
– ident: ref34
  doi: 10.1109/INFOCOM.2019.8737416
– year: 2020
  ident: ref27
  article-title: Client selection in federated learning: Convergence analysis and power-of-choice selection strategies
– ident: ref25
  doi: 10.1109/TPDS.2017.2775232
– ident: ref37
  doi: 10.1145/3381006
– ident: ref48
  doi: 10.1109/TPDS.2020.3040887
– year: 2020
  ident: ref41
  article-title: Adaptive federated optimization
– ident: ref47
  doi: 10.1109/TWC.2020.3008091
– year: 2018
  ident: ref43
  article-title: Mitigating sybils in federated learning poisoning
– ident: ref6
  doi: 10.1145/3362031
– ident: ref36
  doi: 10.1109/JIOT.2019.2940820
– ident: ref46
  doi: 10.1109/JSAC.2019.2904348
– ident: ref24
  doi: 10.1109/CVPR.2018.00474
– ident: ref13
  doi: 10.1109/JIOT.2020.3036157
– year: 2014
  ident: ref23
  article-title: Adam: A method for stochastic optimization
– ident: ref35
  doi: 10.1109/TII.2020.3046028
– ident: ref39
  doi: 10.1109/TPDS.2020.2975189
– ident: ref3
  doi: 10.1109/JPROC.2019.2951169
– year: 2017
  ident: ref17
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
– year: 1998
  ident: ref16
  article-title: The MNIST database of handwritten digits
– start-page: 5132
  year: 2020
  ident: ref28
  article-title: SCAFFOLD: Stochastic controlled averaging for federated learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref30
  doi: 10.1109/ICDCS51616.2021.00012
– ident: ref10
  doi: 10.1109/ICC.2019.8761315
– ident: ref9
  doi: 10.1109/INFOCOM.2018.8486422
– ident: ref26
  doi: 10.1109/TWC.2017.2686085
– year: 0
  ident: ref18
  article-title: Learning multiple layers of features from tiny images
SSID ssj0014504
Score 2.6803088
Snippet The emergency of federated learning (FL) enables distributed data owners to collaboratively build a global model without sharing their raw data, which creates...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1996
SubjectTerms Artificial neural networks
Budgets
client selection
Clients
Coders
Collaborative work
Data integrity
Data models
Data privacy
data quality
Design factors
Distributed databases
distributed system
Encoders-Decoders
Federated learning
Machine learning
Neural networks
reinforcement learning
Task analysis
Training
Title AUCTION: Automated and Quality-Aware Client Selection Framework for Efficient Federated Learning
URI https://ieeexplore.ieee.org/document/9647925
https://www.proquest.com/docview/2615512932
Volume 33
WOSCitedRecordID wos000736739000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2183
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014504
  issn: 1045-9219
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5s8aAHq1axWmUPnsRoNpvXeiva4kkEK_QW9ylCaaUPxX_vznZbCorgLYHdJOTLZmZ2Zr4P4NxmZSmk89xyy0WUpkpGzo1wp0IbnqeSs0x7sYni4aEcDPjjBlyuemGMMb74zFzhoc_l67Ga41bZNXZN8iSrQa0o8kWv1ipjkGZeKtBFF5m7G-Uhg0ljft1_vHtykWBCXYDK0hyVVNZskBdV-fEn9ual1_jfg-3CTnAjSWeB-x5smNE-NJYSDSSs2H3YXuMbbMJL59nXjNyQznw2dr6q0USMNFkQaXxFnU8xMeR2iD2S5Mkr5DjYSG9ZwEWch0u6nnQCR_SQiMJfJLC0vh7Ac6_bv72PgsRCpJydnzlIqMosMkzYzGiWy1zHsXL4lQWjgslESqVKXdpScSoTq1UpqcZcpUZmQcYOoT4aj8wREG5ZLApn7zMh0tgmQjGlmaKFjSWVuWxBvHzplQr84yiDMax8HBLzCnGqEKcq4NSCi9WU9wX5xl-DmwjMamDApAXtJbJVWJ7TKsFsLHo6yfHvs05gK8E-B1_p14b6bDI3p7CpPmZv08mZ__K-Aclt1Ys
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxtBEB_UCupD_aZpbd0Hn8TT_bi93PYtWIOiBsEIvp37KYIkEpNK__vubDZBaCn07Q5274773d7M7Mz8fgAHQda1NtFzq4LSRVlaU0Q3Ip5q51VVGiWkS2IT7V6vvr9XNwtwNO-F8d6n4jN_jIcpl--GdoJbZSfYNam4XIQPsiw5nXZrzXMGpUxigTG-kPF-TOUcJqPqpH_z4zbGgpzFEFWUFWqpvLNCSVblj39xMjDd9f97tA34mB1J0pkivwkLfrAF6zORBpLX7BasvWMc3IaHzl2qGvlOOpPxMHqr3hE9cGRKpfGr6LzpkSenz9glSW6TRk4EjnRnJVwk-rjkLNFO4IguUlGki2Se1scduOue9U_PiyyyUNho6ccRFGZlQI6JIL0TlakcpTYiWLcF08JwY6ytXR1qq5jhwdnaMIfZSofcgkLswtJgOPCfgKggqG5Hiy-1Lmng2grrhGXtQA0zlWkBnb30xmYGchTCeG5SJEJVgzg1iFOTcWrB4XzKy5R-41-DtxGY-cCMSQv2Zsg2eYG-Nhzzsejr8M9_n7UPK-f966vm6qJ3-QVWOXY9pLq_PVgajyb-Kyzbn-On19G39BX-Bg1b2NI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AUCTION%3A+Automated+and+Quality-Aware+Client+Selection+Framework+for+Efficient+Federated+Learning&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Deng%2C+Yongheng&rft.au=Lyu%2C+Feng&rft.au=Ren%2C+Ju&rft.au=Wu%2C+Huaqing&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=33&rft.issue=8&rft.spage=1996&rft_id=info:doi/10.1109%2FTPDS.2021.3134647&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon