Distributed Co-Evolutionary Memetic Algorithm for Distributed Hybrid Differentiation Flowshop Scheduling Problem

This article deals with a practical distributed hybrid differentiation flowshop scheduling problem (DHDFSP) for the first time, where manufacturing products to minimize makespan criterion goes through three consecutive stages: 1) job fabrication in first-stage distributed flowshop factories; 2) job-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 26; číslo 5; s. 1043 - 1057
Hlavní autoři: Zhang, Guanghui, Liu, Bo, Wang, Ling, Yu, Dengxiu, Xing, Keyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article deals with a practical distributed hybrid differentiation flowshop scheduling problem (DHDFSP) for the first time, where manufacturing products to minimize makespan criterion goes through three consecutive stages: 1) job fabrication in first-stage distributed flowshop factories; 2) job-to-product assembly based on specified assembly plan on a second-stage single machine; and 3) product differentiation according to customization on one of the third-stage dedicated machines. Considering the characteristics of multistage and diversified processing technologies of the problem, building new powerful evolutionary algorithm (EA) for DHDFSP is expected. To achieve this, we propose a general EA framework called distributed co-evolutionary memetic algorithm (DCMA). It includes four basic modules: 1) dual population (POP)-based global exploration; 2) elite archive (EAR)-oriented local exploitation; 3) elite knowledge transfer (EKT) among POPs and EAR; and 4) adaptive POP restart. EKT is a general model for information fusion among search agents due to its problem independence. In execution, four modules cooperate with each other and search agents co-evolve in a distributed way. This DCMA evolutionary framework provides some guidance in algorithm construction of different optimization problems. Furthermore, we design each module based on problem knowledge and follow the DCMA framework to propose a specific DCMA metaheuristic for coping with DHDFSP. Computational experiments validate the effectiveness of the DCMA evolutionary framework and its special designs, and show that the proposed DCMA metaheuristic outperforms the compared algorithms.
AbstractList This article deals with a practical distributed hybrid differentiation flowshop scheduling problem (DHDFSP) for the first time, where manufacturing products to minimize makespan criterion goes through three consecutive stages: 1) job fabrication in first-stage distributed flowshop factories; 2) job-to-product assembly based on specified assembly plan on a second-stage single machine; and 3) product differentiation according to customization on one of the third-stage dedicated machines. Considering the characteristics of multistage and diversified processing technologies of the problem, building new powerful evolutionary algorithm (EA) for DHDFSP is expected. To achieve this, we propose a general EA framework called distributed co-evolutionary memetic algorithm (DCMA). It includes four basic modules: 1) dual population (POP)-based global exploration; 2) elite archive (EAR)-oriented local exploitation; 3) elite knowledge transfer (EKT) among POPs and EAR; and 4) adaptive POP restart. EKT is a general model for information fusion among search agents due to its problem independence. In execution, four modules cooperate with each other and search agents co-evolve in a distributed way. This DCMA evolutionary framework provides some guidance in algorithm construction of different optimization problems. Furthermore, we design each module based on problem knowledge and follow the DCMA framework to propose a specific DCMA metaheuristic for coping with DHDFSP. Computational experiments validate the effectiveness of the DCMA evolutionary framework and its special designs, and show that the proposed DCMA metaheuristic outperforms the compared algorithms.
Author Yu, Dengxiu
Liu, Bo
Zhang, Guanghui
Xing, Keyi
Wang, Ling
Author_xml – sequence: 1
  givenname: Guanghui
  orcidid: 0000-0002-4766-4758
  surname: Zhang
  fullname: Zhang, Guanghui
  email: zhangguanghui@stu.xjtu.edu.cn
  organization: School of Information Science and Technology, Hebei Agricultural University, Baoding, China
– sequence: 2
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  email: liubo2021@hotmail.com
  organization: School of Information Science and Technology, Hebei Agricultural University, Baoding, China
– sequence: 3
  givenname: Ling
  orcidid: 0000-0001-8964-6454
  surname: Wang
  fullname: Wang, Ling
  email: wangling@tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Dengxiu
  orcidid: 0000-0003-1803-3946
  surname: Yu
  fullname: Yu, Dengxiu
  email: yudengxiu@126.com
  organization: Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China
– sequence: 5
  givenname: Keyi
  orcidid: 0000-0002-9843-7467
  surname: Xing
  fullname: Xing, Keyi
  email: kyxing@mail.xjtu.edu.cn
  organization: State Key Laboratory for Manufacturing System Engineering and the Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China
BookMark eNp9kN9LwzAQx4NMcJv-AeJLwefOJE2a5nHUzQkTBaf4VvrjsmW0zUxTZf-9rRsiPvh0x_H93HGfERrUpgaELgmeEILlzWr2Gk8opnQSEI6FICdoSCQjPsY0HHQ9jqQvRPR2hkZNs8WYME7kEO1udeOszloHhRcbf_ZhytZpU6d27z1ABU7n3rRcG6vdpvKUsd5vYrHPrC66kVJgoXY67VlvXprPZmN23nO-gaItdb32nqzJSqjO0alKywYujnWMXuazVbzwl4939_F06edUBs4PQxrxgGVhKDmoQqgiKvKQMihSmaXAckwzRQIZMJ4zrjLFgeJUFNBBKc0gGKPrw96dNe8tNC7ZmtbW3cmECiI5ZxGjXUocUrk1TWNBJbl23z84m-oyITjp9Sa93qTXmxz1diT5Q-6srjpr_zJXB0YDwE9eCkJ4GAZfvVKKlQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_swevo_2025_102035
crossref_primary_10_1016_j_swevo_2025_102076
crossref_primary_10_1016_j_swevo_2025_102110
crossref_primary_10_1109_TEVC_2024_3443874
crossref_primary_10_1109_TAES_2024_3462369
crossref_primary_10_3390_electronics14173543
crossref_primary_10_1016_j_eswa_2025_126603
crossref_primary_10_3390_pr13030728
crossref_primary_10_1016_j_asoc_2024_112461
crossref_primary_10_1016_j_cor_2024_106855
crossref_primary_10_1109_TCYB_2023_3280175
crossref_primary_10_1109_TEVC_2024_3432745
crossref_primary_10_1016_j_swevo_2024_101815
crossref_primary_10_1016_j_cie_2025_110950
crossref_primary_10_1109_TCYB_2023_3336656
crossref_primary_10_1016_j_eswa_2024_125690
crossref_primary_10_1109_TAES_2022_3211247
crossref_primary_10_1109_TSMC_2024_3488205
crossref_primary_10_3390_math11030581
crossref_primary_10_1109_TEVC_2024_3388527
crossref_primary_10_1016_j_knosys_2023_111295
crossref_primary_10_1016_j_swevo_2024_101497
crossref_primary_10_1109_TSMC_2024_3449413
crossref_primary_10_1016_j_eswa_2023_121570
crossref_primary_10_1016_j_swevo_2023_101335
crossref_primary_10_1016_j_swevo_2023_101412
crossref_primary_10_1016_j_cie_2024_110647
crossref_primary_10_1016_j_swevo_2025_102024
crossref_primary_10_3390_pr11030755
crossref_primary_10_1016_j_eswa_2024_124874
crossref_primary_10_1109_TEVC_2024_3354850
crossref_primary_10_1016_j_cie_2024_110324
crossref_primary_10_3390_app122111296
crossref_primary_10_1080_00207543_2025_2502106
crossref_primary_10_1016_j_asoc_2023_110589
crossref_primary_10_1016_j_eswa_2023_121667
crossref_primary_10_1016_j_swevo_2024_101764
crossref_primary_10_1016_j_swevo_2023_101320
crossref_primary_10_1016_j_compeleceng_2024_109780
crossref_primary_10_1109_TETCI_2025_3540422
crossref_primary_10_1016_j_eswa_2024_125002
crossref_primary_10_1109_TCYB_2022_3217074
crossref_primary_10_1016_j_eswa_2025_128992
Cites_doi 10.1016/j.ejor.2014.07.004
10.1016/j.asoc.2012.02.028
10.1080/00207543.2020.1757174
10.3390/en11123526
10.1109/TEVC.2021.3094542
10.1080/00207543.2013.784418
10.1109/TEVC.2016.2602860
10.1109/TEVC.2008.2009460
10.1016/j.swevo.2017.04.007
10.1109/TCYB.2019.2944873
10.1016/j.swevo.2020.100716
10.1109/TSMC.2017.2788879
10.1109/TASE.2013.2274517
10.1109/TSMC.2021.3102658
10.1080/0305215X.2013.827673
10.1016/j.omega.2018.03.004
10.1080/00207543.2017.1401241
10.1109/TASE.2012.2219860
10.1080/00207543.2013.807955
10.1016/j.omega.2018.01.001
10.1109/ACCESS.2020.2996305
10.1002/nav.3800010110
10.1109/TII.2020.3043734
10.1109/TSMC.2015.2416127
10.1080/00207543.2020.1836422
10.1016/j.ipl.2010.11.021
10.1109/TSMCB.2006.883272
10.1016/j.asoc.2017.01.017
10.1016/j.cie.2018.09.007
10.1109/TCYB.2020.2977956
10.1016/j.eswa.2020.113348
10.1080/00207543.2014.948578
10.1016/j.asoc.2015.04.061
10.1109/TCYB.2020.3027962
10.1016/j.ejor.2014.05.024
10.1080/00207543.2011.644819
10.1080/00207540210159536
10.1109/TCYB.2019.2933499
10.1109/TEVC.2010.2059031
10.1016/j.ijpe.2013.05.004
10.1109/TEVC.2011.2132725
10.1109/TEVC.2003.819944
10.1109/TCYB.2017.2728725
10.1080/0305215X.2012.737783
10.1109/TEVC.2003.810752
10.1016/j.swevo.2016.06.002
10.1016/j.cor.2009.06.019
10.1016/j.cie.2016.05.005
10.23919/CSMS.2021.0027
10.1016/j.eswa.2019.01.062
10.1016/j.cie.2018.03.014
10.1016/j.cie.2020.107021
10.1080/00207543.2013.790571
10.1007/s10732-008-9080-4
10.1109/TEVC.2015.2507785
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2022.3150771
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1057
ExternalDocumentID 10_1109_TEVC_2022_3150771
9711566
Genre orig-research
GrantInformation_xml – fundername: Talent Introducing Project of Hebei Agricultural University
  grantid: YJ201953; KY201903
  funderid: 10.13039/501100012144
– fundername: National Natural Science Foundation of China
  grantid: 61573278; 61873328
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-6628534b6695efd7fd8dc624eda9bae4c02bf139345c45fbf5e20a7de534a2be3
IEDL.DBID RIE
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862385200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 09 05:59:18 EST 2025
Tue Nov 18 22:18:26 EST 2025
Sat Nov 29 03:13:49 EST 2025
Wed Aug 27 02:14:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-6628534b6695efd7fd8dc624eda9bae4c02bf139345c45fbf5e20a7de534a2be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9843-7467
0000-0003-1803-3946
0000-0001-8964-6454
0000-0002-4766-4758
PQID 2719554842
PQPubID 85418
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2022_3150771
crossref_primary_10_1109_TEVC_2022_3150771
ieee_primary_9711566
proquest_journals_2719554842
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref3
  doi: 10.1016/j.ejor.2014.07.004
– ident: ref42
  doi: 10.1016/j.asoc.2012.02.028
– ident: ref25
  doi: 10.1080/00207543.2020.1757174
– ident: ref44
  doi: 10.3390/en11123526
– ident: ref2
  doi: 10.1109/TEVC.2021.3094542
– ident: ref28
  doi: 10.1080/00207543.2013.784418
– ident: ref31
  doi: 10.1109/TEVC.2016.2602860
– ident: ref33
  doi: 10.1109/TEVC.2008.2009460
– ident: ref22
  doi: 10.1016/j.swevo.2017.04.007
– ident: ref45
  doi: 10.1109/TCYB.2019.2944873
– ident: ref19
  doi: 10.1016/j.swevo.2020.100716
– ident: ref18
  doi: 10.1109/TSMC.2017.2788879
– ident: ref40
  doi: 10.1109/TASE.2013.2274517
– ident: ref6
  doi: 10.1109/TSMC.2021.3102658
– ident: ref13
  doi: 10.1080/0305215X.2013.827673
– ident: ref15
  doi: 10.1016/j.omega.2018.03.004
– ident: ref26
  doi: 10.1080/00207543.2017.1401241
– ident: ref37
  doi: 10.1109/TASE.2012.2219860
– ident: ref5
  doi: 10.1080/00207543.2013.807955
– ident: ref35
  doi: 10.1016/j.omega.2018.01.001
– ident: ref24
  doi: 10.1109/ACCESS.2020.2996305
– ident: ref50
  doi: 10.1002/nav.3800010110
– ident: ref1
  doi: 10.1109/TII.2020.3043734
– ident: ref21
  doi: 10.1109/TSMC.2015.2416127
– ident: ref53
  doi: 10.1080/00207543.2020.1836422
– ident: ref29
  doi: 10.1016/j.ipl.2010.11.021
– ident: ref36
  doi: 10.1109/TSMCB.2006.883272
– ident: ref38
  doi: 10.1016/j.asoc.2017.01.017
– ident: ref54
  doi: 10.1016/j.cie.2018.09.007
– ident: ref47
  doi: 10.1109/TCYB.2020.2977956
– ident: ref39
  doi: 10.1016/j.eswa.2020.113348
– ident: ref14
  doi: 10.1080/00207543.2014.948578
– ident: ref8
  doi: 10.1016/j.asoc.2015.04.061
– ident: ref49
  doi: 10.1109/TCYB.2020.3027962
– ident: ref12
  doi: 10.1016/j.ejor.2014.05.024
– ident: ref9
  doi: 10.1080/00207543.2011.644819
– ident: ref30
  doi: 10.1080/00207540210159536
– ident: ref46
  doi: 10.1109/TCYB.2019.2933499
– ident: ref51
  doi: 10.1109/TEVC.2010.2059031
– ident: ref11
  doi: 10.1016/j.ijpe.2013.05.004
– ident: ref7
  doi: 10.1109/TEVC.2011.2132725
– ident: ref32
  doi: 10.1109/TEVC.2003.819944
– ident: ref43
  doi: 10.1109/TCYB.2017.2728725
– ident: ref27
  doi: 10.1080/0305215X.2012.737783
– ident: ref34
  doi: 10.1109/TEVC.2003.810752
– ident: ref41
  doi: 10.1016/j.swevo.2016.06.002
– ident: ref4
  doi: 10.1016/j.cor.2009.06.019
– ident: ref20
  doi: 10.1016/j.cie.2016.05.005
– ident: ref55
  doi: 10.23919/CSMS.2021.0027
– ident: ref17
  doi: 10.1016/j.eswa.2019.01.062
– ident: ref16
  doi: 10.1016/j.cie.2018.03.014
– ident: ref23
  doi: 10.1016/j.cie.2020.107021
– ident: ref10
  doi: 10.1080/00207543.2013.790571
– ident: ref52
  doi: 10.1007/s10732-008-9080-4
– ident: ref48
  doi: 10.1109/TEVC.2015.2507785
SSID ssj0014519
Score 2.5792751
Snippet This article deals with a practical distributed hybrid differentiation flowshop scheduling problem (DHDFSP) for the first time, where manufacturing products to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1043
SubjectTerms Algorithms
Assembly
Data integration
Design optimization
Differential evolution (DE)
differentiation flowshop scheduling
distributed evolutionary algorithm (DEA)
distributed production scheduling
Evolutionary algorithms
Flowcharts
Heuristic methods
Job shop scheduling
Knowledge management
Manufacturing
memetic algorithm (MA)
Memetics
Metaheuristics
Modules
Product differentiation
Production
Production facilities
Scheduling
Title Distributed Co-Evolutionary Memetic Algorithm for Distributed Hybrid Differentiation Flowshop Scheduling Problem
URI https://ieeexplore.ieee.org/document/9711566
https://www.proquest.com/docview/2719554842
Volume 26
WOSCitedRecordID wos000862385200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BxQAD5VOUL3lgQgQSx7HjEZVWLCAGQN2iOD5TpNJUbQDx77ETtwKBkNiiyJdEerbvXc53D-AkpJhInvJAaKEC1zsnkAZ1oGSsNJNpnKOpxSbE7W06GMi7JThb1MIgYn34DM_dZZ3L12Xx6n6VXUgRuXBjGZaF4E2t1iJj4NqkNIfppWWM6cBnMKNQXtz3Hrs2EqTUBqiW_ojomw-qRVV-7MS1e-m3__dhG7DuaSS5bHDfhCUcb0F7LtFA_IrdgrUv_Qa3YXLl2uQ6hSvUpFsGvTc_8fLpB7nBF1fQSC5HT-X0uRq-EMtnyVeL6w9X3mVvNZoqVYMq6Y_K99mwnNi3Dq3jcvXt5K7RqdmBh37vvnsdeMmFoLB-vwq4q6iMmeJcJmi0MDrVBacMdS5VjqwIqTKWNMYsKVhilEmQhrnQaI1yqjDehda4HOMeEK5t6GI4Skm15VxhqjQ3Mg-ljhQrUtaBcA5CVvh-5E4WY5TVcUkoM4db5nDLPG4dOF2YTJpmHH8N3nZALQZ6jDpwOEc688t1llERScurUkb3f7c6gFX37OYU3yG0qukrHsFK8VY9z6bH9Uz8BA-Y3bk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xmLTtATbYtG788MOe0DISx3HiR1RaFQEVDx3qWxTH5xWpNFUbmPjv50vcigk0aW9R5JMjfbbvLr77PoBvIcdEyUwGqUl1QNw5gbJoAq1ibYTK4gJtIzaRDofZeKyuN-D7uhcGEZviM_xBj81dvqnKe_pVdqLSiNKNV7BFylm-W2t9Z0BEKW05vXIxYzb2d5hRqE5GvZuuywU5dymqC4DS6C8v1MiqPDuLGwfT3_m_T3sP2z6QZKct8h9gA2e7sLMSaWB-z-7CuyeMg3swPyOiXNK4QsO6VdB78EuvWDyyK7yjlkZ2Ov1VLW7ryR1zES17ajF4pAYv96pVValbXFl_Wv1eTqq5m3XiXBd1uLPrVqnmI_zs90bdQeBFF4LSef46kNRTGQstpUrQmtSazJSSCzSF0gWKMuTaurAxFkkpEqttgjwsUoPOqOAa40-wOatm-BmYNC55sRKV4sbhFWbaSKuKUJlIizITHQhXIOSlZyQnYYxp3mQmocoJt5xwyz1uHThem8xbOo5_Dd4joNYDPUYd2F8hnfsNu8x5GikXWWWCf3nZ6gjeDEZXl_nl-fDiK7yledqavn3YrBf3eACvy4f6drk4bFblH8EA4QI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Co-Evolutionary+Memetic+Algorithm+for+Distributed+Hybrid+Differentiation+Flowshop+Scheduling+Problem&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zhang%2C+Guanghui&rft.au=Liu%2C+Bo&rft.au=Wang%2C+Ling&rft.au=Yu%2C+Dengxiu&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=26&rft.issue=5&rft.spage=1043&rft.epage=1057&rft_id=info:doi/10.1109%2FTEVC.2022.3150771&rft.externalDocID=9711566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon