Distributed Co-Evolutionary Memetic Algorithm for Distributed Hybrid Differentiation Flowshop Scheduling Problem
This article deals with a practical distributed hybrid differentiation flowshop scheduling problem (DHDFSP) for the first time, where manufacturing products to minimize makespan criterion goes through three consecutive stages: 1) job fabrication in first-stage distributed flowshop factories; 2) job-...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation Ročník 26; číslo 5; s. 1043 - 1057 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This article deals with a practical distributed hybrid differentiation flowshop scheduling problem (DHDFSP) for the first time, where manufacturing products to minimize makespan criterion goes through three consecutive stages: 1) job fabrication in first-stage distributed flowshop factories; 2) job-to-product assembly based on specified assembly plan on a second-stage single machine; and 3) product differentiation according to customization on one of the third-stage dedicated machines. Considering the characteristics of multistage and diversified processing technologies of the problem, building new powerful evolutionary algorithm (EA) for DHDFSP is expected. To achieve this, we propose a general EA framework called distributed co-evolutionary memetic algorithm (DCMA). It includes four basic modules: 1) dual population (POP)-based global exploration; 2) elite archive (EAR)-oriented local exploitation; 3) elite knowledge transfer (EKT) among POPs and EAR; and 4) adaptive POP restart. EKT is a general model for information fusion among search agents due to its problem independence. In execution, four modules cooperate with each other and search agents co-evolve in a distributed way. This DCMA evolutionary framework provides some guidance in algorithm construction of different optimization problems. Furthermore, we design each module based on problem knowledge and follow the DCMA framework to propose a specific DCMA metaheuristic for coping with DHDFSP. Computational experiments validate the effectiveness of the DCMA evolutionary framework and its special designs, and show that the proposed DCMA metaheuristic outperforms the compared algorithms. |
|---|---|
| AbstractList | This article deals with a practical distributed hybrid differentiation flowshop scheduling problem (DHDFSP) for the first time, where manufacturing products to minimize makespan criterion goes through three consecutive stages: 1) job fabrication in first-stage distributed flowshop factories; 2) job-to-product assembly based on specified assembly plan on a second-stage single machine; and 3) product differentiation according to customization on one of the third-stage dedicated machines. Considering the characteristics of multistage and diversified processing technologies of the problem, building new powerful evolutionary algorithm (EA) for DHDFSP is expected. To achieve this, we propose a general EA framework called distributed co-evolutionary memetic algorithm (DCMA). It includes four basic modules: 1) dual population (POP)-based global exploration; 2) elite archive (EAR)-oriented local exploitation; 3) elite knowledge transfer (EKT) among POPs and EAR; and 4) adaptive POP restart. EKT is a general model for information fusion among search agents due to its problem independence. In execution, four modules cooperate with each other and search agents co-evolve in a distributed way. This DCMA evolutionary framework provides some guidance in algorithm construction of different optimization problems. Furthermore, we design each module based on problem knowledge and follow the DCMA framework to propose a specific DCMA metaheuristic for coping with DHDFSP. Computational experiments validate the effectiveness of the DCMA evolutionary framework and its special designs, and show that the proposed DCMA metaheuristic outperforms the compared algorithms. |
| Author | Yu, Dengxiu Liu, Bo Zhang, Guanghui Xing, Keyi Wang, Ling |
| Author_xml | – sequence: 1 givenname: Guanghui orcidid: 0000-0002-4766-4758 surname: Zhang fullname: Zhang, Guanghui email: zhangguanghui@stu.xjtu.edu.cn organization: School of Information Science and Technology, Hebei Agricultural University, Baoding, China – sequence: 2 givenname: Bo surname: Liu fullname: Liu, Bo email: liubo2021@hotmail.com organization: School of Information Science and Technology, Hebei Agricultural University, Baoding, China – sequence: 3 givenname: Ling orcidid: 0000-0001-8964-6454 surname: Wang fullname: Wang, Ling email: wangling@tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 4 givenname: Dengxiu orcidid: 0000-0003-1803-3946 surname: Yu fullname: Yu, Dengxiu email: yudengxiu@126.com organization: Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China – sequence: 5 givenname: Keyi orcidid: 0000-0002-9843-7467 surname: Xing fullname: Xing, Keyi email: kyxing@mail.xjtu.edu.cn organization: State Key Laboratory for Manufacturing System Engineering and the Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China |
| BookMark | eNp9kN9LwzAQx4NMcJv-AeJLwefOJE2a5nHUzQkTBaf4VvrjsmW0zUxTZf-9rRsiPvh0x_H93HGfERrUpgaELgmeEILlzWr2Gk8opnQSEI6FICdoSCQjPsY0HHQ9jqQvRPR2hkZNs8WYME7kEO1udeOszloHhRcbf_ZhytZpU6d27z1ABU7n3rRcG6vdpvKUsd5vYrHPrC66kVJgoXY67VlvXprPZmN23nO-gaItdb32nqzJSqjO0alKywYujnWMXuazVbzwl4939_F06edUBs4PQxrxgGVhKDmoQqgiKvKQMihSmaXAckwzRQIZMJ4zrjLFgeJUFNBBKc0gGKPrw96dNe8tNC7ZmtbW3cmECiI5ZxGjXUocUrk1TWNBJbl23z84m-oyITjp9Sa93qTXmxz1diT5Q-6srjpr_zJXB0YDwE9eCkJ4GAZfvVKKlQ |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_102035 crossref_primary_10_1016_j_swevo_2025_102076 crossref_primary_10_1016_j_swevo_2025_102110 crossref_primary_10_1109_TEVC_2024_3443874 crossref_primary_10_1109_TAES_2024_3462369 crossref_primary_10_3390_electronics14173543 crossref_primary_10_1016_j_eswa_2025_126603 crossref_primary_10_3390_pr13030728 crossref_primary_10_1016_j_asoc_2024_112461 crossref_primary_10_1016_j_cor_2024_106855 crossref_primary_10_1109_TCYB_2023_3280175 crossref_primary_10_1109_TEVC_2024_3432745 crossref_primary_10_1016_j_swevo_2024_101815 crossref_primary_10_1016_j_cie_2025_110950 crossref_primary_10_1109_TCYB_2023_3336656 crossref_primary_10_1016_j_eswa_2024_125690 crossref_primary_10_1109_TAES_2022_3211247 crossref_primary_10_1109_TSMC_2024_3488205 crossref_primary_10_3390_math11030581 crossref_primary_10_1109_TEVC_2024_3388527 crossref_primary_10_1016_j_knosys_2023_111295 crossref_primary_10_1016_j_swevo_2024_101497 crossref_primary_10_1109_TSMC_2024_3449413 crossref_primary_10_1016_j_eswa_2023_121570 crossref_primary_10_1016_j_swevo_2023_101335 crossref_primary_10_1016_j_swevo_2023_101412 crossref_primary_10_1016_j_cie_2024_110647 crossref_primary_10_1016_j_swevo_2025_102024 crossref_primary_10_3390_pr11030755 crossref_primary_10_1016_j_eswa_2024_124874 crossref_primary_10_1109_TEVC_2024_3354850 crossref_primary_10_1016_j_cie_2024_110324 crossref_primary_10_3390_app122111296 crossref_primary_10_1080_00207543_2025_2502106 crossref_primary_10_1016_j_asoc_2023_110589 crossref_primary_10_1016_j_eswa_2023_121667 crossref_primary_10_1016_j_swevo_2024_101764 crossref_primary_10_1016_j_swevo_2023_101320 crossref_primary_10_1016_j_compeleceng_2024_109780 crossref_primary_10_1109_TETCI_2025_3540422 crossref_primary_10_1016_j_eswa_2024_125002 crossref_primary_10_1109_TCYB_2022_3217074 crossref_primary_10_1016_j_eswa_2025_128992 |
| Cites_doi | 10.1016/j.ejor.2014.07.004 10.1016/j.asoc.2012.02.028 10.1080/00207543.2020.1757174 10.3390/en11123526 10.1109/TEVC.2021.3094542 10.1080/00207543.2013.784418 10.1109/TEVC.2016.2602860 10.1109/TEVC.2008.2009460 10.1016/j.swevo.2017.04.007 10.1109/TCYB.2019.2944873 10.1016/j.swevo.2020.100716 10.1109/TSMC.2017.2788879 10.1109/TASE.2013.2274517 10.1109/TSMC.2021.3102658 10.1080/0305215X.2013.827673 10.1016/j.omega.2018.03.004 10.1080/00207543.2017.1401241 10.1109/TASE.2012.2219860 10.1080/00207543.2013.807955 10.1016/j.omega.2018.01.001 10.1109/ACCESS.2020.2996305 10.1002/nav.3800010110 10.1109/TII.2020.3043734 10.1109/TSMC.2015.2416127 10.1080/00207543.2020.1836422 10.1016/j.ipl.2010.11.021 10.1109/TSMCB.2006.883272 10.1016/j.asoc.2017.01.017 10.1016/j.cie.2018.09.007 10.1109/TCYB.2020.2977956 10.1016/j.eswa.2020.113348 10.1080/00207543.2014.948578 10.1016/j.asoc.2015.04.061 10.1109/TCYB.2020.3027962 10.1016/j.ejor.2014.05.024 10.1080/00207543.2011.644819 10.1080/00207540210159536 10.1109/TCYB.2019.2933499 10.1109/TEVC.2010.2059031 10.1016/j.ijpe.2013.05.004 10.1109/TEVC.2011.2132725 10.1109/TEVC.2003.819944 10.1109/TCYB.2017.2728725 10.1080/0305215X.2012.737783 10.1109/TEVC.2003.810752 10.1016/j.swevo.2016.06.002 10.1016/j.cor.2009.06.019 10.1016/j.cie.2016.05.005 10.23919/CSMS.2021.0027 10.1016/j.eswa.2019.01.062 10.1016/j.cie.2018.03.014 10.1016/j.cie.2020.107021 10.1080/00207543.2013.790571 10.1007/s10732-008-9080-4 10.1109/TEVC.2015.2507785 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2022.3150771 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1057 |
| ExternalDocumentID | 10_1109_TEVC_2022_3150771 9711566 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Talent Introducing Project of Hebei Agricultural University grantid: YJ201953; KY201903 funderid: 10.13039/501100012144 – fundername: National Natural Science Foundation of China grantid: 61573278; 61873328 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-6628534b6695efd7fd8dc624eda9bae4c02bf139345c45fbf5e20a7de534a2be3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862385200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Nov 09 05:59:18 EST 2025 Tue Nov 18 22:18:26 EST 2025 Sat Nov 29 03:13:49 EST 2025 Wed Aug 27 02:14:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-6628534b6695efd7fd8dc624eda9bae4c02bf139345c45fbf5e20a7de534a2be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9843-7467 0000-0003-1803-3946 0000-0001-8964-6454 0000-0002-4766-4758 |
| PQID | 2719554842 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2022_3150771 crossref_primary_10_1109_TEVC_2022_3150771 ieee_primary_9711566 proquest_journals_2719554842 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref3 doi: 10.1016/j.ejor.2014.07.004 – ident: ref42 doi: 10.1016/j.asoc.2012.02.028 – ident: ref25 doi: 10.1080/00207543.2020.1757174 – ident: ref44 doi: 10.3390/en11123526 – ident: ref2 doi: 10.1109/TEVC.2021.3094542 – ident: ref28 doi: 10.1080/00207543.2013.784418 – ident: ref31 doi: 10.1109/TEVC.2016.2602860 – ident: ref33 doi: 10.1109/TEVC.2008.2009460 – ident: ref22 doi: 10.1016/j.swevo.2017.04.007 – ident: ref45 doi: 10.1109/TCYB.2019.2944873 – ident: ref19 doi: 10.1016/j.swevo.2020.100716 – ident: ref18 doi: 10.1109/TSMC.2017.2788879 – ident: ref40 doi: 10.1109/TASE.2013.2274517 – ident: ref6 doi: 10.1109/TSMC.2021.3102658 – ident: ref13 doi: 10.1080/0305215X.2013.827673 – ident: ref15 doi: 10.1016/j.omega.2018.03.004 – ident: ref26 doi: 10.1080/00207543.2017.1401241 – ident: ref37 doi: 10.1109/TASE.2012.2219860 – ident: ref5 doi: 10.1080/00207543.2013.807955 – ident: ref35 doi: 10.1016/j.omega.2018.01.001 – ident: ref24 doi: 10.1109/ACCESS.2020.2996305 – ident: ref50 doi: 10.1002/nav.3800010110 – ident: ref1 doi: 10.1109/TII.2020.3043734 – ident: ref21 doi: 10.1109/TSMC.2015.2416127 – ident: ref53 doi: 10.1080/00207543.2020.1836422 – ident: ref29 doi: 10.1016/j.ipl.2010.11.021 – ident: ref36 doi: 10.1109/TSMCB.2006.883272 – ident: ref38 doi: 10.1016/j.asoc.2017.01.017 – ident: ref54 doi: 10.1016/j.cie.2018.09.007 – ident: ref47 doi: 10.1109/TCYB.2020.2977956 – ident: ref39 doi: 10.1016/j.eswa.2020.113348 – ident: ref14 doi: 10.1080/00207543.2014.948578 – ident: ref8 doi: 10.1016/j.asoc.2015.04.061 – ident: ref49 doi: 10.1109/TCYB.2020.3027962 – ident: ref12 doi: 10.1016/j.ejor.2014.05.024 – ident: ref9 doi: 10.1080/00207543.2011.644819 – ident: ref30 doi: 10.1080/00207540210159536 – ident: ref46 doi: 10.1109/TCYB.2019.2933499 – ident: ref51 doi: 10.1109/TEVC.2010.2059031 – ident: ref11 doi: 10.1016/j.ijpe.2013.05.004 – ident: ref7 doi: 10.1109/TEVC.2011.2132725 – ident: ref32 doi: 10.1109/TEVC.2003.819944 – ident: ref43 doi: 10.1109/TCYB.2017.2728725 – ident: ref27 doi: 10.1080/0305215X.2012.737783 – ident: ref34 doi: 10.1109/TEVC.2003.810752 – ident: ref41 doi: 10.1016/j.swevo.2016.06.002 – ident: ref4 doi: 10.1016/j.cor.2009.06.019 – ident: ref20 doi: 10.1016/j.cie.2016.05.005 – ident: ref55 doi: 10.23919/CSMS.2021.0027 – ident: ref17 doi: 10.1016/j.eswa.2019.01.062 – ident: ref16 doi: 10.1016/j.cie.2018.03.014 – ident: ref23 doi: 10.1016/j.cie.2020.107021 – ident: ref10 doi: 10.1080/00207543.2013.790571 – ident: ref52 doi: 10.1007/s10732-008-9080-4 – ident: ref48 doi: 10.1109/TEVC.2015.2507785 |
| SSID | ssj0014519 |
| Score | 2.5792751 |
| Snippet | This article deals with a practical distributed hybrid differentiation flowshop scheduling problem (DHDFSP) for the first time, where manufacturing products to... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1043 |
| SubjectTerms | Algorithms Assembly Data integration Design optimization Differential evolution (DE) differentiation flowshop scheduling distributed evolutionary algorithm (DEA) distributed production scheduling Evolutionary algorithms Flowcharts Heuristic methods Job shop scheduling Knowledge management Manufacturing memetic algorithm (MA) Memetics Metaheuristics Modules Product differentiation Production Production facilities Scheduling |
| Title | Distributed Co-Evolutionary Memetic Algorithm for Distributed Hybrid Differentiation Flowshop Scheduling Problem |
| URI | https://ieeexplore.ieee.org/document/9711566 https://www.proquest.com/docview/2719554842 |
| Volume | 26 |
| WOSCitedRecordID | wos000862385200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BxQAD5VOUL3lgQgQSx7HjEZVWLCAGQN2iOD5TpNJUbQDx77ETtwKBkNiiyJdEerbvXc53D-AkpJhInvJAaKEC1zsnkAZ1oGSsNJNpnKOpxSbE7W06GMi7JThb1MIgYn34DM_dZZ3L12Xx6n6VXUgRuXBjGZaF4E2t1iJj4NqkNIfppWWM6cBnMKNQXtz3Hrs2EqTUBqiW_ojomw-qRVV-7MS1e-m3__dhG7DuaSS5bHDfhCUcb0F7LtFA_IrdgrUv_Qa3YXLl2uQ6hSvUpFsGvTc_8fLpB7nBF1fQSC5HT-X0uRq-EMtnyVeL6w9X3mVvNZoqVYMq6Y_K99mwnNi3Dq3jcvXt5K7RqdmBh37vvnsdeMmFoLB-vwq4q6iMmeJcJmi0MDrVBacMdS5VjqwIqTKWNMYsKVhilEmQhrnQaI1yqjDehda4HOMeEK5t6GI4Skm15VxhqjQ3Mg-ljhQrUtaBcA5CVvh-5E4WY5TVcUkoM4db5nDLPG4dOF2YTJpmHH8N3nZALQZ6jDpwOEc688t1llERScurUkb3f7c6gFX37OYU3yG0qukrHsFK8VY9z6bH9Uz8BA-Y3bk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xmLTtATbYtG788MOe0DISx3HiR1RaFQEVDx3qWxTH5xWpNFUbmPjv50vcigk0aW9R5JMjfbbvLr77PoBvIcdEyUwGqUl1QNw5gbJoAq1ibYTK4gJtIzaRDofZeKyuN-D7uhcGEZviM_xBj81dvqnKe_pVdqLSiNKNV7BFylm-W2t9Z0BEKW05vXIxYzb2d5hRqE5GvZuuywU5dymqC4DS6C8v1MiqPDuLGwfT3_m_T3sP2z6QZKct8h9gA2e7sLMSaWB-z-7CuyeMg3swPyOiXNK4QsO6VdB78EuvWDyyK7yjlkZ2Ov1VLW7ryR1zES17ajF4pAYv96pVValbXFl_Wv1eTqq5m3XiXBd1uLPrVqnmI_zs90bdQeBFF4LSef46kNRTGQstpUrQmtSazJSSCzSF0gWKMuTaurAxFkkpEqttgjwsUoPOqOAa40-wOatm-BmYNC55sRKV4sbhFWbaSKuKUJlIizITHQhXIOSlZyQnYYxp3mQmocoJt5xwyz1uHThem8xbOo5_Dd4joNYDPUYd2F8hnfsNu8x5GikXWWWCf3nZ6gjeDEZXl_nl-fDiK7yledqavn3YrBf3eACvy4f6drk4bFblH8EA4QI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Co-Evolutionary+Memetic+Algorithm+for+Distributed+Hybrid+Differentiation+Flowshop+Scheduling+Problem&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zhang%2C+Guanghui&rft.au=Liu%2C+Bo&rft.au=Wang%2C+Ling&rft.au=Yu%2C+Dengxiu&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=26&rft.issue=5&rft.spage=1043&rft.epage=1057&rft_id=info:doi/10.1109%2FTEVC.2022.3150771&rft.externalDocID=9711566 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |