Graph Optimized Data Offloading for Crowd-AI Hybrid Urban Tracking in Intelligent Transportation Systems
Urban tracking plays a vital role for people's urban life in intelligent transportation systems, e.g., public safety, case investigation, finding missing items, etc. However, the current tracking methods consume a large amount of communication and computing resources since they mainly offload a...
Uložené v:
| Vydané v: | IEEE transactions on intelligent transportation systems Ročník 24; číslo 1; s. 1075 - 1087 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Urban tracking plays a vital role for people's urban life in intelligent transportation systems, e.g., public safety, case investigation, finding missing items, etc. However, the current tracking methods consume a large amount of communication and computing resources since they mainly offload all related sensing data, i.e., videos, generated by widely deployed cameras to the cloud where data are stored, processed, and analyzed. In this paper, we propose a graph optimized data offloading algorithm leveraging a crowd-AI hybrid method to minimize the data offloading cost and ensure the reliable urban tracking result. To be specific, we first formulate a crowd-AI hybrid urban tracking scenario, and prove the proposed data offloading problem in this scenario is NP-hard. Then, we solve it by decomposing the problem into two parts, i.e., trajectory prediction and task allocation. The trajectory prediction algorithm, leveraging the state graph, computes possible tracking areas of the target object, and the task allocation algorithm, using the dependency graph, chooses the optimal set of crowds and cameras to cover the tracking area while minimizing the data offloading cost separately. Finally, the extensive simulations with large real world data set are conducted showing that the proposed algorithm outperforms benchmarks in reducing data offloading cost while ensuring the tracking success rate in intelligent transportation systems. |
|---|---|
| AbstractList | Urban tracking plays a vital role for people's urban life in intelligent transportation systems, e.g., public safety, case investigation, finding missing items, etc. However, the current tracking methods consume a large amount of communication and computing resources since they mainly offload all related sensing data, i.e., videos, generated by widely deployed cameras to the cloud where data are stored, processed, and analyzed. In this paper, we propose a graph optimized data offloading algorithm leveraging a crowd-AI hybrid method to minimize the data offloading cost and ensure the reliable urban tracking result. To be specific, we first formulate a crowd-AI hybrid urban tracking scenario, and prove the proposed data offloading problem in this scenario is NP-hard. Then, we solve it by decomposing the problem into two parts, i.e., trajectory prediction and task allocation. The trajectory prediction algorithm, leveraging the state graph, computes possible tracking areas of the target object, and the task allocation algorithm, using the dependency graph, chooses the optimal set of crowds and cameras to cover the tracking area while minimizing the data offloading cost separately. Finally, the extensive simulations with large real world data set are conducted showing that the proposed algorithm outperforms benchmarks in reducing data offloading cost while ensuring the tracking success rate in intelligent transportation systems. |
| Author | Yu, Zhen Qi, Heng Ren, Jiankang Pan, Yuzhu Lin, Chi Zhang, Qiang Wang, Ning Zhou, Dongsheng Wang, Pengfei |
| Author_xml | – sequence: 1 givenname: Pengfei orcidid: 0000-0002-0906-4217 surname: Wang fullname: Wang, Pengfei email: wangpf@dlut.edu.cn organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China – sequence: 2 givenname: Yuzhu surname: Pan fullname: Pan, Yuzhu email: yuzhu123@mail.dlut.edu.cn organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China – sequence: 3 givenname: Chi orcidid: 0000-0002-0302-5102 surname: Lin fullname: Lin, Chi email: c.lin@dlut.edu.cn organization: School of Software, Dalian University of Technology, Dalian, China – sequence: 4 givenname: Heng orcidid: 0000-0002-8770-3934 surname: Qi fullname: Qi, Heng email: hengqi@dlut.edu.cn organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China – sequence: 5 givenname: Jiankang orcidid: 0000-0001-6289-1513 surname: Ren fullname: Ren, Jiankang email: rjk@dlut.edu.cn organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China – sequence: 6 givenname: Ning orcidid: 0000-0002-9467-9215 surname: Wang fullname: Wang, Ning email: wangn@rowan.edu organization: Department of Computer Science, Rowan University, Glassboro, NJ, USA – sequence: 7 givenname: Zhen surname: Yu fullname: Yu, Zhen email: yuzhen@mail.dlut.edu.cn organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China – sequence: 8 givenname: Dongsheng surname: Zhou fullname: Zhou, Dongsheng email: zhouds@dlu.edu.cn organization: National and Local Joint Engineering Laboratory of Computer Aided Design, School of Software Engineering, Dalian University, Dalian, China – sequence: 9 givenname: Qiang orcidid: 0000-0003-3776-9799 surname: Zhang fullname: Zhang, Qiang email: zhangq@dlut.edu.cn organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China |
| BookMark | eNp9kE9rGzEQxUVxoYnTD1B6EfS8rv6sdrXH4KaxweCD7fMyuxolStbSRlII7qevF4ceeshphsf7zWPeNZn54JGQb5wtOGfNz_16v1sIJsRC8pJrrT6RK66ULhjj1WzaRVk0TLEv5Dqlp7NaKs6vyON9hPGRbsfsju4PGvoLMtCttUMA4_wDtSHSZQxvprhd09Wpi87QQ-zA032E_nmyOE_XPuMwuAf0edJ9GkPMkF3wdHdKGY_phny2MCT8-j7n5PD7br9cFZvt_Xp5uyl60chcVAJN1SF0Go1RDNA2FnpUWlswNXRoOwVlD8g5St1bU0lRCqtLY0yJ2sg5-XG5O8bw8oopt0_hNfpzZCvqmtV1I6Q6u_jF1ceQUkTbjtEdIZ5aztqp0HYqtJ0Kbd8LPTP1f0zvLj_mCG74kPx-IR0i_ktqKl1VUsq_TO2ITw |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1007_s12083_024_01627_9 crossref_primary_10_1109_TITS_2023_3263643 crossref_primary_10_3390_math10234571 crossref_primary_10_1109_TSC_2024_3355188 crossref_primary_10_1109_JIOT_2024_3417285 crossref_primary_10_1109_COMST_2024_3400121 crossref_primary_10_1016_j_eswa_2023_122132 crossref_primary_10_1155_2022_3391917 |
| Cites_doi | 10.1016/j.future.2017.12.011 10.1287/mnsc.21.5.591 10.1109/JIOT.2020.3039467 10.1109/INFOCOM.2015.7218644 10.1109/JIOT.2016.2579198 10.1023/A:1019225027893 10.1109/COMST.2014.2369742 10.1016/j.patcog.2017.11.007 10.1109/JIOT.2020.3049024 10.1109/MWC.2013.6507401 10.1109/INFOCOM.2015.7218612 10.1016/j.dcan.2018.10.003 10.1016/j.comcom.2019.10.035 10.1109/TSP.2015.2498126 10.1145/2020408.2020462 10.1109/TVT.2018.2881191 10.1145/2746285.2746293 10.1109/INFCOMW.2017.8116362 10.1109/MC.2016.145 10.1109/JSAC.2018.2815360 10.1109/TCOMM.2019.2935717 10.1016/j.future.2013.01.010 10.1007/s11276-017-1576-0 10.1109/JSEN.2021.3096245 10.1109/ISWC.2002.1167224 10.1109/TITS.2020.2991766 10.1109/TNET.2020.2983119 10.1109/TMM.2018.2882744 10.1109/TVT.2020.3040596 10.1109/TVT.2019.2894437 10.1109/TNET.2015.2487344 10.1145/2181196.2181199 10.1049/ip-vis:20041147 10.1109/TVT.2019.2904244 10.1109/TVT.2019.2936792 10.1109/INFOCOM.2018.8485905 10.1145/1869790.1869807 10.1109/JIOT.2019.2956409 10.1109/TITS.2020.2990214 10.1109/TMC.2017.2771258 10.1109/TVT.2020.2991372 10.1109/TITS.2021.3078753 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2022.3141885 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 1087 |
| ExternalDocumentID | 10_1109_TITS_2022_3141885 9686633 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: DUT20RC(3)039; DUT21TD107; DUT21JC27 funderid: 10.13039/501100012226 – fundername: NSFC–Liaoning Province United Foundation grantid: U1908214 funderid: 10.13039/501100001809 – fundername: Special Project of Central Government Guiding Local Science and Technology Development grantid: 2021JH6/10500140 – fundername: CCF-Tencent Open Fund grantid: IAGR20210116 – fundername: Dalian Young Star of Science and Technology Project grantid: 2021RQ055 – fundername: National Natural Science Foundation of China grantid: U1811463; 62072067; U1808206; 61872052; 62172069 funderid: 10.13039/501100001809 – fundername: Science and Technology Innovation Fund of Dalian grantid: 2020JJ25CY001 – fundername: Liaoning Key Research and Development Program grantid: 2019JH2/10100030 funderid: 10.13039/501100019033 – fundername: Support Plan for Key Field Innovation Team of Dalian grantid: 2021RT06 – fundername: National Key Research and Development Program of China grantid: 2021ZD0112400 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-62ed6beab8edd50aef9face588fad7abefb5a4cae11e38cfd63242f84ddd4e8d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745452400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Mon Jun 30 05:52:21 EDT 2025 Sat Nov 29 06:34:59 EST 2025 Tue Nov 18 22:30:38 EST 2025 Wed Aug 27 02:14:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-62ed6beab8edd50aef9face588fad7abefb5a4cae11e38cfd63242f84ddd4e8d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8770-3934 0000-0002-0302-5102 0000-0002-9467-9215 0000-0002-0906-4217 0000-0003-3776-9799 0000-0001-6289-1513 |
| PQID | 2770779235 |
| PQPubID | 75735 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TITS_2022_3141885 crossref_primary_10_1109_TITS_2022_3141885 ieee_primary_9686633 proquest_journals_2770779235 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Jan. 2023-1-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 Abdulrahim (ref34) 2016; 11 ref9 ref4 ref3 ref6 Caprara (ref37) 2000; 98 Hatwar (ref5) 2018; 118 ref40 |
| References_xml | – ident: ref3 doi: 10.1016/j.future.2017.12.011 – ident: ref36 doi: 10.1287/mnsc.21.5.591 – ident: ref12 doi: 10.1109/JIOT.2020.3039467 – volume: 118 start-page: 511 issue: 16 year: 2018 ident: ref5 article-title: A review on moving object detection and tracking methods in video publication-title: Int. J. Pure Appl. Math. – ident: ref40 doi: 10.1109/INFOCOM.2015.7218644 – ident: ref9 doi: 10.1109/JIOT.2016.2579198 – volume: 98 start-page: 353 issue: 1 year: 2000 ident: ref37 article-title: Algorithms for the set covering problem publication-title: Ann. Oper. Res. doi: 10.1023/A:1019225027893 – ident: ref19 doi: 10.1109/COMST.2014.2369742 – ident: ref6 doi: 10.1016/j.patcog.2017.11.007 – ident: ref20 doi: 10.1109/JIOT.2020.3049024 – ident: ref15 doi: 10.1109/MWC.2013.6507401 – ident: ref44 doi: 10.1109/INFOCOM.2015.7218612 – ident: ref33 doi: 10.1016/j.dcan.2018.10.003 – ident: ref2 doi: 10.1016/j.comcom.2019.10.035 – ident: ref4 doi: 10.1109/TSP.2015.2498126 – ident: ref42 doi: 10.1145/2020408.2020462 – ident: ref32 doi: 10.1109/TVT.2018.2881191 – ident: ref39 doi: 10.1145/2746285.2746293 – ident: ref25 doi: 10.1109/INFCOMW.2017.8116362 – ident: ref10 doi: 10.1109/MC.2016.145 – ident: ref21 doi: 10.1109/JSAC.2018.2815360 – ident: ref26 doi: 10.1109/TCOMM.2019.2935717 – ident: ref1 doi: 10.1016/j.future.2013.01.010 – ident: ref11 doi: 10.1007/s11276-017-1576-0 – ident: ref30 doi: 10.1109/JSEN.2021.3096245 – volume: 11 start-page: 713 issue: 1 year: 2016 ident: ref34 article-title: Traffic surveillance: A review of vision based vehicle detection, recognition and tracking publication-title: Int. J. Appl. Eng. Res. – ident: ref43 doi: 10.1109/ISWC.2002.1167224 – ident: ref16 doi: 10.1109/TITS.2020.2991766 – ident: ref7 doi: 10.1109/TNET.2020.2983119 – ident: ref28 doi: 10.1109/TMM.2018.2882744 – ident: ref29 doi: 10.1109/TVT.2020.3040596 – ident: ref24 doi: 10.1109/TVT.2019.2894437 – ident: ref23 doi: 10.1109/TNET.2015.2487344 – ident: ref38 doi: 10.1145/2181196.2181199 – ident: ref8 doi: 10.1049/ip-vis:20041147 – ident: ref22 doi: 10.1109/TVT.2019.2904244 – ident: ref17 doi: 10.1109/TVT.2019.2936792 – ident: ref31 doi: 10.1109/INFOCOM.2018.8485905 – ident: ref41 doi: 10.1145/1869790.1869807 – ident: ref27 doi: 10.1109/JIOT.2019.2956409 – ident: ref18 doi: 10.1109/TITS.2020.2990214 – ident: ref13 doi: 10.1109/TMC.2017.2771258 – ident: ref14 doi: 10.1109/TVT.2020.2991372 – ident: ref35 doi: 10.1109/TITS.2021.3078753 |
| SSID | ssj0014511 |
| Score | 2.4849622 |
| Snippet | Urban tracking plays a vital role for people's urban life in intelligent transportation systems, e.g., public safety, case investigation, finding missing... Urban tracking plays a vital role for people’s urban life in intelligent transportation systems, e.g., public safety, case investigation, finding missing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1075 |
| SubjectTerms | Algorithms Artificial intelligence Cameras Costs crowd-AI data offloading graph computing Hybrid systems Intelligent transportation systems Public safety Resource management Sensors Target tracking task allocation Task analysis Tracking Urban tracking Videos |
| Title | Graph Optimized Data Offloading for Crowd-AI Hybrid Urban Tracking in Intelligent Transportation Systems |
| URI | https://ieeexplore.ieee.org/document/9686633 https://www.proquest.com/docview/2770779235 |
| Volume | 24 |
| WOSCitedRecordID | wos000745452400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6gEO_aKo29LKh54qAk7ixM4R0VL2AkgsErdo7BmrK0G2WkKl9tfX9mYjJKpKveVgS1ae7TcfnjcAn9D4WiGqcNKkzoJ9i1kgQZ3JytaSfOnJ2dRsQp-fm5ub5nIDDsZaGGZOj8_4MH6mXD4t3EMMlR01tQkEWW7Cptb1qlZrzBhEna2kjVqorJHVOoOZy-ZoNp1dBU-wKIKDqnIT2yY_4qDUVOXJTZzo5fTF_y3sJTwfzEhxvML9FWxw9xp2HokL7sL3b1GLWlyEO-Fu_ptJfMEexYX3t4v0bl4Ec1WcBC-csuOpOPsVS7fE9dJiJwKBuRhCF_NOTEfNzl6MSugJTjGonb-B69Ovs5OzbOirkLlA7n1WF0y1ZbSGiSqJ7BuPjitjPJJGy95WqBxynnNpnKco6V54o4hIsaFyD7a6RcdvQSBKpTTluW_yQHPcUOV0YViitWVB9QTk-k-3bhAdj70vbtvkfMimjeC0EZx2AGcCn8cpP1aKG_8avBvRGAcOQExgfw1nO5zJ-7bQYTtGucTq3d9nvYft2Ex-FWDZh61--cAf4Jn72c_vlx_TdvsDODPVOQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQcykeLurSAD5wQoU7iJM6xaim7omyR2Eq9RWPPWKxUstU2RYJfj-3NRpWKkLjlYEtWnu03M7bfA3iL2pUKUfmVJqvEx7eYeBKsElmYUpLLHVkTzSaq6VRfXNRfN-D98BaGmePlM_4QPuNZPi3sTSiVHdSl9gSZ34P7wTmrf601nBkEpa2ojpqppJbF-gwzlfXBbDL75nPBLPMpqkp1ME6-xULRVuXOXhwJ5uTJ_w3tKWz1gaQ4XCH_DDa4fQ6Pb8kLbsP3T0GNWpz5XeHH_DeTOMYOxZlzl4t4c174gFUc-TycksOJGP8Kj7fE-dJgKzyF2VBEF_NWTAbVzk4MWugRUNHrne_A-cnH2dE46Z0VEuvpvUvKjKk0jEYzUSGRXe3QcqG1Q6rQsDMFKoucppxr6yiIumdOKyJSrCl_AZvtouVdEIhSqYrS1NWpJzquqbBVplmiMXlG5Qjk-k83tpcdD-4Xl01MP2TdBHCaAE7TgzOCd0OXq5Xmxr8abwc0hoY9ECPYX8PZ9KvyuskqPyGDYGLx8u-93sDD8ezLaXM6mX7eg0fBWn5VbtmHzW55w6_ggf3Zza-Xr-PU-wN5aNiC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Optimized+Data+Offloading+for+Crowd-AI+Hybrid+Urban+Tracking+in+Intelligent+Transportation+Systems&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Wang%2C+Pengfei&rft.au=Pan%2C+Yuzhu&rft.au=Lin%2C+Chi&rft.au=Qi%2C+Heng&rft.date=2023-01-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=1&rft.spage=1075&rft.epage=1087&rft_id=info:doi/10.1109%2FTITS.2022.3141885&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3141885 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |