Graph Optimized Data Offloading for Crowd-AI Hybrid Urban Tracking in Intelligent Transportation Systems

Urban tracking plays a vital role for people's urban life in intelligent transportation systems, e.g., public safety, case investigation, finding missing items, etc. However, the current tracking methods consume a large amount of communication and computing resources since they mainly offload a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on intelligent transportation systems Ročník 24; číslo 1; s. 1075 - 1087
Hlavní autori: Wang, Pengfei, Pan, Yuzhu, Lin, Chi, Qi, Heng, Ren, Jiankang, Wang, Ning, Yu, Zhen, Zhou, Dongsheng, Zhang, Qiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1524-9050, 1558-0016
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Urban tracking plays a vital role for people's urban life in intelligent transportation systems, e.g., public safety, case investigation, finding missing items, etc. However, the current tracking methods consume a large amount of communication and computing resources since they mainly offload all related sensing data, i.e., videos, generated by widely deployed cameras to the cloud where data are stored, processed, and analyzed. In this paper, we propose a graph optimized data offloading algorithm leveraging a crowd-AI hybrid method to minimize the data offloading cost and ensure the reliable urban tracking result. To be specific, we first formulate a crowd-AI hybrid urban tracking scenario, and prove the proposed data offloading problem in this scenario is NP-hard. Then, we solve it by decomposing the problem into two parts, i.e., trajectory prediction and task allocation. The trajectory prediction algorithm, leveraging the state graph, computes possible tracking areas of the target object, and the task allocation algorithm, using the dependency graph, chooses the optimal set of crowds and cameras to cover the tracking area while minimizing the data offloading cost separately. Finally, the extensive simulations with large real world data set are conducted showing that the proposed algorithm outperforms benchmarks in reducing data offloading cost while ensuring the tracking success rate in intelligent transportation systems.
AbstractList Urban tracking plays a vital role for people's urban life in intelligent transportation systems, e.g., public safety, case investigation, finding missing items, etc. However, the current tracking methods consume a large amount of communication and computing resources since they mainly offload all related sensing data, i.e., videos, generated by widely deployed cameras to the cloud where data are stored, processed, and analyzed. In this paper, we propose a graph optimized data offloading algorithm leveraging a crowd-AI hybrid method to minimize the data offloading cost and ensure the reliable urban tracking result. To be specific, we first formulate a crowd-AI hybrid urban tracking scenario, and prove the proposed data offloading problem in this scenario is NP-hard. Then, we solve it by decomposing the problem into two parts, i.e., trajectory prediction and task allocation. The trajectory prediction algorithm, leveraging the state graph, computes possible tracking areas of the target object, and the task allocation algorithm, using the dependency graph, chooses the optimal set of crowds and cameras to cover the tracking area while minimizing the data offloading cost separately. Finally, the extensive simulations with large real world data set are conducted showing that the proposed algorithm outperforms benchmarks in reducing data offloading cost while ensuring the tracking success rate in intelligent transportation systems.
Author Yu, Zhen
Qi, Heng
Ren, Jiankang
Pan, Yuzhu
Lin, Chi
Zhang, Qiang
Wang, Ning
Zhou, Dongsheng
Wang, Pengfei
Author_xml – sequence: 1
  givenname: Pengfei
  orcidid: 0000-0002-0906-4217
  surname: Wang
  fullname: Wang, Pengfei
  email: wangpf@dlut.edu.cn
  organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Yuzhu
  surname: Pan
  fullname: Pan, Yuzhu
  email: yuzhu123@mail.dlut.edu.cn
  organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China
– sequence: 3
  givenname: Chi
  orcidid: 0000-0002-0302-5102
  surname: Lin
  fullname: Lin, Chi
  email: c.lin@dlut.edu.cn
  organization: School of Software, Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Heng
  orcidid: 0000-0002-8770-3934
  surname: Qi
  fullname: Qi, Heng
  email: hengqi@dlut.edu.cn
  organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China
– sequence: 5
  givenname: Jiankang
  orcidid: 0000-0001-6289-1513
  surname: Ren
  fullname: Ren, Jiankang
  email: rjk@dlut.edu.cn
  organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China
– sequence: 6
  givenname: Ning
  orcidid: 0000-0002-9467-9215
  surname: Wang
  fullname: Wang, Ning
  email: wangn@rowan.edu
  organization: Department of Computer Science, Rowan University, Glassboro, NJ, USA
– sequence: 7
  givenname: Zhen
  surname: Yu
  fullname: Yu, Zhen
  email: yuzhen@mail.dlut.edu.cn
  organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China
– sequence: 8
  givenname: Dongsheng
  surname: Zhou
  fullname: Zhou, Dongsheng
  email: zhouds@dlu.edu.cn
  organization: National and Local Joint Engineering Laboratory of Computer Aided Design, School of Software Engineering, Dalian University, Dalian, China
– sequence: 9
  givenname: Qiang
  orcidid: 0000-0003-3776-9799
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhangq@dlut.edu.cn
  organization: School of Computer Science and Technology, Dalian University of Technology, Dalian, China
BookMark eNp9kE9rGzEQxUVxoYnTD1B6EfS8rv6sdrXH4KaxweCD7fMyuxolStbSRlII7qevF4ceeshphsf7zWPeNZn54JGQb5wtOGfNz_16v1sIJsRC8pJrrT6RK66ULhjj1WzaRVk0TLEv5Dqlp7NaKs6vyON9hPGRbsfsju4PGvoLMtCttUMA4_wDtSHSZQxvprhd09Wpi87QQ-zA032E_nmyOE_XPuMwuAf0edJ9GkPMkF3wdHdKGY_phny2MCT8-j7n5PD7br9cFZvt_Xp5uyl60chcVAJN1SF0Go1RDNA2FnpUWlswNXRoOwVlD8g5St1bU0lRCqtLY0yJ2sg5-XG5O8bw8oopt0_hNfpzZCvqmtV1I6Q6u_jF1ceQUkTbjtEdIZ5aztqp0HYqtJ0Kbd8LPTP1f0zvLj_mCG74kPx-IR0i_ktqKl1VUsq_TO2ITw
CODEN ITISFG
CitedBy_id crossref_primary_10_1007_s12083_024_01627_9
crossref_primary_10_1109_TITS_2023_3263643
crossref_primary_10_3390_math10234571
crossref_primary_10_1109_TSC_2024_3355188
crossref_primary_10_1109_JIOT_2024_3417285
crossref_primary_10_1109_COMST_2024_3400121
crossref_primary_10_1016_j_eswa_2023_122132
crossref_primary_10_1155_2022_3391917
Cites_doi 10.1016/j.future.2017.12.011
10.1287/mnsc.21.5.591
10.1109/JIOT.2020.3039467
10.1109/INFOCOM.2015.7218644
10.1109/JIOT.2016.2579198
10.1023/A:1019225027893
10.1109/COMST.2014.2369742
10.1016/j.patcog.2017.11.007
10.1109/JIOT.2020.3049024
10.1109/MWC.2013.6507401
10.1109/INFOCOM.2015.7218612
10.1016/j.dcan.2018.10.003
10.1016/j.comcom.2019.10.035
10.1109/TSP.2015.2498126
10.1145/2020408.2020462
10.1109/TVT.2018.2881191
10.1145/2746285.2746293
10.1109/INFCOMW.2017.8116362
10.1109/MC.2016.145
10.1109/JSAC.2018.2815360
10.1109/TCOMM.2019.2935717
10.1016/j.future.2013.01.010
10.1007/s11276-017-1576-0
10.1109/JSEN.2021.3096245
10.1109/ISWC.2002.1167224
10.1109/TITS.2020.2991766
10.1109/TNET.2020.2983119
10.1109/TMM.2018.2882744
10.1109/TVT.2020.3040596
10.1109/TVT.2019.2894437
10.1109/TNET.2015.2487344
10.1145/2181196.2181199
10.1049/ip-vis:20041147
10.1109/TVT.2019.2904244
10.1109/TVT.2019.2936792
10.1109/INFOCOM.2018.8485905
10.1145/1869790.1869807
10.1109/JIOT.2019.2956409
10.1109/TITS.2020.2990214
10.1109/TMC.2017.2771258
10.1109/TVT.2020.2991372
10.1109/TITS.2021.3078753
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3141885
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 1087
ExternalDocumentID 10_1109_TITS_2022_3141885
9686633
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: DUT20RC(3)039; DUT21TD107; DUT21JC27
  funderid: 10.13039/501100012226
– fundername: NSFC–Liaoning Province United Foundation
  grantid: U1908214
  funderid: 10.13039/501100001809
– fundername: Special Project of Central Government Guiding Local Science and Technology Development
  grantid: 2021JH6/10500140
– fundername: CCF-Tencent Open Fund
  grantid: IAGR20210116
– fundername: Dalian Young Star of Science and Technology Project
  grantid: 2021RQ055
– fundername: National Natural Science Foundation of China
  grantid: U1811463; 62072067; U1808206; 61872052; 62172069
  funderid: 10.13039/501100001809
– fundername: Science and Technology Innovation Fund of Dalian
  grantid: 2020JJ25CY001
– fundername: Liaoning Key Research and Development Program
  grantid: 2019JH2/10100030
  funderid: 10.13039/501100019033
– fundername: Support Plan for Key Field Innovation Team of Dalian
  grantid: 2021RT06
– fundername: National Key Research and Development Program of China
  grantid: 2021ZD0112400
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-62ed6beab8edd50aef9face588fad7abefb5a4cae11e38cfd63242f84ddd4e8d3
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745452400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Mon Jun 30 05:52:21 EDT 2025
Sat Nov 29 06:34:59 EST 2025
Tue Nov 18 22:30:38 EST 2025
Wed Aug 27 02:14:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-62ed6beab8edd50aef9face588fad7abefb5a4cae11e38cfd63242f84ddd4e8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8770-3934
0000-0002-0302-5102
0000-0002-9467-9215
0000-0002-0906-4217
0000-0003-3776-9799
0000-0001-6289-1513
PQID 2770779235
PQPubID 75735
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TITS_2022_3141885
crossref_primary_10_1109_TITS_2022_3141885
ieee_primary_9686633
proquest_journals_2770779235
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
Abdulrahim (ref34) 2016; 11
ref9
ref4
ref3
ref6
Caprara (ref37) 2000; 98
Hatwar (ref5) 2018; 118
ref40
References_xml – ident: ref3
  doi: 10.1016/j.future.2017.12.011
– ident: ref36
  doi: 10.1287/mnsc.21.5.591
– ident: ref12
  doi: 10.1109/JIOT.2020.3039467
– volume: 118
  start-page: 511
  issue: 16
  year: 2018
  ident: ref5
  article-title: A review on moving object detection and tracking methods in video
  publication-title: Int. J. Pure Appl. Math.
– ident: ref40
  doi: 10.1109/INFOCOM.2015.7218644
– ident: ref9
  doi: 10.1109/JIOT.2016.2579198
– volume: 98
  start-page: 353
  issue: 1
  year: 2000
  ident: ref37
  article-title: Algorithms for the set covering problem
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1019225027893
– ident: ref19
  doi: 10.1109/COMST.2014.2369742
– ident: ref6
  doi: 10.1016/j.patcog.2017.11.007
– ident: ref20
  doi: 10.1109/JIOT.2020.3049024
– ident: ref15
  doi: 10.1109/MWC.2013.6507401
– ident: ref44
  doi: 10.1109/INFOCOM.2015.7218612
– ident: ref33
  doi: 10.1016/j.dcan.2018.10.003
– ident: ref2
  doi: 10.1016/j.comcom.2019.10.035
– ident: ref4
  doi: 10.1109/TSP.2015.2498126
– ident: ref42
  doi: 10.1145/2020408.2020462
– ident: ref32
  doi: 10.1109/TVT.2018.2881191
– ident: ref39
  doi: 10.1145/2746285.2746293
– ident: ref25
  doi: 10.1109/INFCOMW.2017.8116362
– ident: ref10
  doi: 10.1109/MC.2016.145
– ident: ref21
  doi: 10.1109/JSAC.2018.2815360
– ident: ref26
  doi: 10.1109/TCOMM.2019.2935717
– ident: ref1
  doi: 10.1016/j.future.2013.01.010
– ident: ref11
  doi: 10.1007/s11276-017-1576-0
– ident: ref30
  doi: 10.1109/JSEN.2021.3096245
– volume: 11
  start-page: 713
  issue: 1
  year: 2016
  ident: ref34
  article-title: Traffic surveillance: A review of vision based vehicle detection, recognition and tracking
  publication-title: Int. J. Appl. Eng. Res.
– ident: ref43
  doi: 10.1109/ISWC.2002.1167224
– ident: ref16
  doi: 10.1109/TITS.2020.2991766
– ident: ref7
  doi: 10.1109/TNET.2020.2983119
– ident: ref28
  doi: 10.1109/TMM.2018.2882744
– ident: ref29
  doi: 10.1109/TVT.2020.3040596
– ident: ref24
  doi: 10.1109/TVT.2019.2894437
– ident: ref23
  doi: 10.1109/TNET.2015.2487344
– ident: ref38
  doi: 10.1145/2181196.2181199
– ident: ref8
  doi: 10.1049/ip-vis:20041147
– ident: ref22
  doi: 10.1109/TVT.2019.2904244
– ident: ref17
  doi: 10.1109/TVT.2019.2936792
– ident: ref31
  doi: 10.1109/INFOCOM.2018.8485905
– ident: ref41
  doi: 10.1145/1869790.1869807
– ident: ref27
  doi: 10.1109/JIOT.2019.2956409
– ident: ref18
  doi: 10.1109/TITS.2020.2990214
– ident: ref13
  doi: 10.1109/TMC.2017.2771258
– ident: ref14
  doi: 10.1109/TVT.2020.2991372
– ident: ref35
  doi: 10.1109/TITS.2021.3078753
SSID ssj0014511
Score 2.4849622
Snippet Urban tracking plays a vital role for people's urban life in intelligent transportation systems, e.g., public safety, case investigation, finding missing...
Urban tracking plays a vital role for people’s urban life in intelligent transportation systems, e.g., public safety, case investigation, finding missing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1075
SubjectTerms Algorithms
Artificial intelligence
Cameras
Costs
crowd-AI
data offloading
graph computing
Hybrid systems
Intelligent transportation systems
Public safety
Resource management
Sensors
Target tracking
task allocation
Task analysis
Tracking
Urban tracking
Videos
Title Graph Optimized Data Offloading for Crowd-AI Hybrid Urban Tracking in Intelligent Transportation Systems
URI https://ieeexplore.ieee.org/document/9686633
https://www.proquest.com/docview/2770779235
Volume 24
WOSCitedRecordID wos000745452400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6gEO_aKo29LKh54qAk7ixM4R0VL2AkgsErdo7BmrK0G2WkKl9tfX9mYjJKpKveVgS1ae7TcfnjcAn9D4WiGqcNKkzoJ9i1kgQZ3JytaSfOnJ2dRsQp-fm5ub5nIDDsZaGGZOj8_4MH6mXD4t3EMMlR01tQkEWW7Cptb1qlZrzBhEna2kjVqorJHVOoOZy-ZoNp1dBU-wKIKDqnIT2yY_4qDUVOXJTZzo5fTF_y3sJTwfzEhxvML9FWxw9xp2HokL7sL3b1GLWlyEO-Fu_ptJfMEexYX3t4v0bl4Ec1WcBC-csuOpOPsVS7fE9dJiJwKBuRhCF_NOTEfNzl6MSugJTjGonb-B69Ovs5OzbOirkLlA7n1WF0y1ZbSGiSqJ7BuPjitjPJJGy95WqBxynnNpnKco6V54o4hIsaFyD7a6RcdvQSBKpTTluW_yQHPcUOV0YViitWVB9QTk-k-3bhAdj70vbtvkfMimjeC0EZx2AGcCn8cpP1aKG_8avBvRGAcOQExgfw1nO5zJ-7bQYTtGucTq3d9nvYft2Ex-FWDZh61--cAf4Jn72c_vlx_TdvsDODPVOQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQcykeLurSAD5wQoU7iJM6xaim7omyR2Eq9RWPPWKxUstU2RYJfj-3NRpWKkLjlYEtWnu03M7bfA3iL2pUKUfmVJqvEx7eYeBKsElmYUpLLHVkTzSaq6VRfXNRfN-D98BaGmePlM_4QPuNZPi3sTSiVHdSl9gSZ34P7wTmrf601nBkEpa2ojpqppJbF-gwzlfXBbDL75nPBLPMpqkp1ME6-xULRVuXOXhwJ5uTJ_w3tKWz1gaQ4XCH_DDa4fQ6Pb8kLbsP3T0GNWpz5XeHH_DeTOMYOxZlzl4t4c174gFUc-TycksOJGP8Kj7fE-dJgKzyF2VBEF_NWTAbVzk4MWugRUNHrne_A-cnH2dE46Z0VEuvpvUvKjKk0jEYzUSGRXe3QcqG1Q6rQsDMFKoucppxr6yiIumdOKyJSrCl_AZvtouVdEIhSqYrS1NWpJzquqbBVplmiMXlG5Qjk-k83tpcdD-4Xl01MP2TdBHCaAE7TgzOCd0OXq5Xmxr8abwc0hoY9ECPYX8PZ9KvyuskqPyGDYGLx8u-93sDD8ezLaXM6mX7eg0fBWn5VbtmHzW55w6_ggf3Zza-Xr-PU-wN5aNiC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Optimized+Data+Offloading+for+Crowd-AI+Hybrid+Urban+Tracking+in+Intelligent+Transportation+Systems&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Wang%2C+Pengfei&rft.au=Pan%2C+Yuzhu&rft.au=Lin%2C+Chi&rft.au=Qi%2C+Heng&rft.date=2023-01-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=1&rft.spage=1075&rft.epage=1087&rft_id=info:doi/10.1109%2FTITS.2022.3141885&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3141885
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon