Robust Data-Driven Automation Based on Relaxed Supervised Hashing With Self-Optimized Labels
Recently, the Visual Internet of Things (VIoT) has been widely used in data-driven automation, where VIoT devices are used to monitor environmental dynamics and to trigger corresponding actuators after examining event signatures (e.g., hashes). Nonetheless, VIoT devices may collect partially observe...
Uložené v:
| Vydané v: | IEEE transactions on automation science and engineering Ročník 21; číslo 1; s. 512 - 527 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1545-5955, 1558-3783 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recently, the Visual Internet of Things (VIoT) has been widely used in data-driven automation, where VIoT devices are used to monitor environmental dynamics and to trigger corresponding actuators after examining event signatures (e.g., hashes). Nonetheless, VIoT devices may collect partially observed data, e.g., largely occluded images, which cause biased labeling and oversensitivity during modeling. Moreover, in typical methods, class labels are rigid and fixed categorical variables, where marginal space between different classes is fixed and equal. In fact, margins may be unequally spaced. Such nonflexibility in class labels inevitably causes fitting difficulty. In light of such, this study proposes relaxed robust supervised hashing (Relaxed RSH) for generating reliable signatures that can simultaneously conquer the above problems caused by incomplete data and rigid margins. To accommodate oversensitivity, this study proposes measuring hash learning loss by robust half quadratic (HQ) functions for modeling incomplete data. In the initial label matrix, slack variables are added to relax binary constraints. Such slack variables can be self-optimized during the learning process and can be used to automatically adjust margins between different classes. Decorrelation, balancing, and normalization constraints based on Relaxed RSH are also devised to provide discriminant and compact codes. Experimental results based on open datasets showed that the proposed method yielded higher mAP and F1 than the baselines. Note to Practitioners-This work is motivated by the problems caused by incomplete data and rigid class margins during event signature (e.g., hash) learning, where hashes are used to trigger automation systems. In existing hashing methods, incomplete data (e.g., continuous occlusion, missing values, and sample-specific outliers) along with rigid class margins cause fitting biases, thereby challenging data-driven automation. This study proposes Relaxed RSH by designing robust HQ loss, self-optimized label learning, and corresponding constraints for generating discriminant hashes. This prevents actuators from being mistriggered by corrupted data. Experiments were conducted on various data corruption. Future research will address the design for incremental/decentralized hash learning. |
|---|---|
| AbstractList | Recently, the Visual Internet of Things (VIoT) has been widely used in data-driven automation, where VIoT devices are used to monitor environmental dynamics and to trigger corresponding actuators after examining event signatures (e.g., hashes). Nonetheless, VIoT devices may collect partially observed data, e.g., largely occluded images, which cause biased labeling and oversensitivity during modeling. Moreover, in typical methods, class labels are rigid and fixed categorical variables, where marginal space between different classes is fixed and equal. In fact, margins may be unequally spaced. Such nonflexibility in class labels inevitably causes fitting difficulty. In light of such, this study proposes relaxed robust supervised hashing (Relaxed RSH) for generating reliable signatures that can simultaneously conquer the above problems caused by incomplete data and rigid margins. To accommodate oversensitivity, this study proposes measuring hash learning loss by robust half quadratic (HQ) functions for modeling incomplete data. In the initial label matrix, slack variables are added to relax binary constraints. Such slack variables can be self-optimized during the learning process and can be used to automatically adjust margins between different classes. Decorrelation, balancing, and normalization constraints based on Relaxed RSH are also devised to provide discriminant and compact codes. Experimental results based on open datasets showed that the proposed method yielded higher mAP and F1 than the baselines. Note to Practitioners—This work is motivated by the problems caused by incomplete data and rigid class margins during event signature (e.g., hash) learning, where hashes are used to trigger automation systems. In existing hashing methods, incomplete data (e.g., continuous occlusion, missing values, and sample-specific outliers) along with rigid class margins cause fitting biases, thereby challenging data-driven automation. This study proposes Relaxed RSH by designing robust HQ loss, self-optimized label learning, and corresponding constraints for generating discriminant hashes. This prevents actuators from being mistriggered by corrupted data. Experiments were conducted on various data corruption. Future research will address the design for incremental/decentralized hash learning. |
| Author | Chen, Bo-Wei Huang, Jhao-Yang Wu, Ying-Hsuan |
| Author_xml | – sequence: 1 givenname: Bo-Wei orcidid: 0000-0001-6014-8021 surname: Chen fullname: Chen, Bo-Wei email: bo-wei.chen@mail.nsysu.edu.tw organization: Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan – sequence: 2 givenname: Jhao-Yang surname: Huang fullname: Huang, Jhao-Yang organization: Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan – sequence: 3 givenname: Ying-Hsuan surname: Wu fullname: Wu, Ying-Hsuan organization: Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan |
| BookMark | eNp9kE9PwkAQxTcGEwH9AMZLE8_F_dOlu0cEFBMSEsB4MWl226ksKS3ubon66W2FePDgaV5m3m8m83qoU1YlIHRN8IAQLO_Wo9V0QDGlA0YpYYScoS7hXIQsFqzT6oiHXHJ-gXrObTGmkZC4i16Xla6dDybKq3BizQHKYFT7aqe8qcrgXjnIgkYsoVAfjVzVe7AH03Znym1M-Ra8GL8JVlDk4WLvzc58NbO50lC4S3Seq8LB1an20fPDdD2ehfPF49N4NA9TKpkPh0SKWNEUZ4ApZlEOGIuM84xhnKsUINci1jrCOU1jLaNsqHXOIy1pqhREivXR7XHv3lbvNTifbKvals3JhEpCIiGYwI0rPrpSWzlnIU9S43_e9FaZIiE4aaNM2iiTNsrkFGVDkj_k3pqdsp__MjdHxgDAr1_KIaHN9BtoFIGd |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2025_113522 crossref_primary_10_1007_s13042_024_02298_x |
| Cites_doi | 10.1109/JPROC.2015.2487976 10.1609/aaai.v30i1.10176 10.1109/TNNLS.2016.2636870 10.1017/CBO9780511804441 10.1109/TPAMI.2017.2678475 10.1109/TPAMI.2017.2699960 10.1109/CVPR.2016.227 10.1109/TETCI.2018.2872036 10.1109/TBDATA.2020.3027379 10.1016/j.patrec.2010.09.025 10.1109/TNNLS.2015.2500600 10.1109/TETCI.2020.3007905 10.1109/TNNLS.2017.2648880 10.1109/TPAMI.2012.48 10.1109/TPAMI.2019.2914897 10.1109/TMC.2020.3009745 10.1007/s11036-021-01823-4 10.1109/MNET.2018.1700202 10.1109/COMST.2018.2844341 10.1109/TKDE.2020.2970050 10.1016/j.bspc.2021.102601 10.1109/CVPR.2012.6247912 10.1109/MCOM.2017.1600223CM 10.1109/CVPR.2015.7298598 10.1109/MWC.101.2000479 10.1109/JIOT.2020.3034385 10.1109/MWC.001.1900349 10.1007/s11276-022-02927-9 10.1109/TNNLS.2014.2371492 10.1109/CVPR.2014.253 10.1214/15-STS530 10.1007/978-3-319-07416-0 10.1109/TPAMI.2012.193 10.1109/TIP.2022.3158092 10.1109/TASE.2019.2893414 10.1109/ICASSP43922.2022.9746805 10.1109/ACPR.2013.51 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TASE.2022.3221311 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 527 |
| ExternalDocumentID | 10_1109_TASE_2022_3221311 9961211 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science and Technology Council grantid: 111-2221-E-110-055-MY2 funderid: 10.13039/501100020950 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-61987a2c0de02034fe008d55d300faceefb87bb40f2c7b94d6bbf54b92caae4a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000890823400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sun Jun 29 16:06:34 EDT 2025 Sat Nov 29 04:12:48 EST 2025 Tue Nov 18 22:16:38 EST 2025 Wed Aug 27 02:15:00 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-61987a2c0de02034fe008d55d300faceefb87bb40f2c7b94d6bbf54b92caae4a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6014-8021 |
| PQID | 2911488380 |
| PQPubID | 27623 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2911488380 crossref_primary_10_1109_TASE_2022_3221311 ieee_primary_9961211 crossref_citationtrail_10_1109_TASE_2022_3221311 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jan. 2024-1-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref18 Kulis (ref12) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Norouzi (ref19) |
| References_xml | – ident: ref15 doi: 10.1109/JPROC.2015.2487976 – ident: ref20 doi: 10.1609/aaai.v30i1.10176 – ident: ref10 doi: 10.1109/TNNLS.2016.2636870 – start-page: 1993 volume-title: Proc. 28th Int. Conf. Mach. Learn. ident: ref19 article-title: Minimal loss hashing for compact binary codes – ident: ref36 doi: 10.1017/CBO9780511804441 – ident: ref22 doi: 10.1109/TPAMI.2017.2678475 – ident: ref16 doi: 10.1109/TPAMI.2017.2699960 – ident: ref26 doi: 10.1109/CVPR.2016.227 – ident: ref7 doi: 10.1109/TETCI.2018.2872036 – ident: ref21 doi: 10.1109/TBDATA.2020.3027379 – ident: ref25 doi: 10.1016/j.patrec.2010.09.025 – ident: ref37 doi: 10.1109/TNNLS.2015.2500600 – ident: ref6 doi: 10.1109/TETCI.2020.3007905 – ident: ref33 doi: 10.1109/TNNLS.2017.2648880 – ident: ref17 doi: 10.1109/TPAMI.2012.48 – ident: ref18 doi: 10.1109/TPAMI.2019.2914897 – ident: ref1 doi: 10.1109/TMC.2020.3009745 – ident: ref30 doi: 10.1007/s11036-021-01823-4 – start-page: 1042 volume-title: Proc. 22th Int. Conf. Neural Inf. Process. Syst. ident: ref12 article-title: Learning to hash with binary reconstructive embeddings – ident: ref31 doi: 10.1109/MNET.2018.1700202 – ident: ref32 doi: 10.1109/COMST.2018.2844341 – ident: ref23 doi: 10.1109/TKDE.2020.2970050 – ident: ref27 doi: 10.1016/j.bspc.2021.102601 – ident: ref9 doi: 10.1109/CVPR.2012.6247912 – ident: ref8 doi: 10.1109/MCOM.2017.1600223CM – ident: ref11 doi: 10.1109/CVPR.2015.7298598 – ident: ref4 doi: 10.1109/MWC.101.2000479 – ident: ref3 doi: 10.1109/JIOT.2020.3034385 – ident: ref2 doi: 10.1109/MWC.001.1900349 – ident: ref14 doi: 10.1007/s11276-022-02927-9 – ident: ref39 doi: 10.1109/TNNLS.2014.2371492 – ident: ref29 doi: 10.1109/CVPR.2014.253 – ident: ref35 doi: 10.1214/15-STS530 – ident: ref34 doi: 10.1007/978-3-319-07416-0 – ident: ref13 doi: 10.1109/TPAMI.2012.193 – ident: ref24 doi: 10.1109/TIP.2022.3158092 – ident: ref5 doi: 10.1109/TASE.2019.2893414 – ident: ref28 doi: 10.1109/ICASSP43922.2022.9746805 – ident: ref38 doi: 10.1109/ACPR.2013.51 |
| SSID | ssj0024890 |
| Score | 2.3820379 |
| Snippet | Recently, the Visual Internet of Things (VIoT) has been widely used in data-driven automation, where VIoT devices are used to monitor environmental dynamics... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 512 |
| SubjectTerms | Actuators Automation Codes Complexity theory half quadratic optimization incomplete data Internet of Things Labels Learning Loss measurement Modelling Occlusion Outliers (statistics) partially observed data Quadratic programming relaxation Relaxation methods relaxed robust supervised hashing Robust data-driven automation Robustness Signatures Slack variables Supervised learning Visual Internet of Things Visualization |
| Title | Robust Data-Driven Automation Based on Relaxed Supervised Hashing With Self-Optimized Labels |
| URI | https://ieeexplore.ieee.org/document/9961211 https://www.proquest.com/docview/2911488380 |
| Volume | 21 |
| WOSCitedRecordID | wos000890823400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH3-LqKj14EqvZJn3kuL7wICqur4NQkjTBBd2V3VbEX-9MW1dFEbyFJiklXzrfTB7fAGxFMRPcqNC3GJxggKIjPzFK-pZLzXXGQlfmIbs5jc_Okrs7eTEBO-O7MNba8vCZ3aViuZefDUxBS2V76JuTItkkTMZxVN3V-tTVS8r1FPII_FCGYb2D2WZy76rTPcJIMAh2cfaSvMw3DiqTqvywxCW9HM_978PmYbZ2I71OhfsCTNj-Isx8ERdcgvvLgS5GuXeocuUfDsmqeZ0iH1R3Fb19pK_MwwIdh3vFYrd4JrtBT0-qDEvebS9_8Lr20fnnaFmeem9Yd6o00ukyXB8fXR2c-HUuBd8goecYIcokVoFhmaW9R-Eskn8WhhlnzClkSqeTWGvBXGBiLUUWae1CoWVglLJC8RVo9Ad9uwpeRiL0UdtxJ9AdwDrBteKR0K7NCdwmsI_RTU0tNE75Lh7TMuBgMiVAUgIkrQFpwva4y3OlsvFX4yVCYNywHvwmtD4gTOv_cJQGkuK9hCds7fde6zCN7xbVokoLGvmwsBswZV7y3mi4WU6xd4bZzeg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6VgTT2MAYDrWywPPCEls6N7SR-LGxVEV2HaGF7mBTZji0qbe3UJhPir-cuSQsTCIk3K7aVyJ9z351_fAfwJk6Y4FbL0GFwggGKicPUahU6rgw3OZO-ykP2dZiMRunlpfrUgqP1XRjnXHX4zHWoWO3l53Nb0lLZMfrmpEj2AB5KISJW39b6payXVisq5BOEUknZ7GF2mTqe9ManGAtGUQfnLwnM3GOhKq3KH7a4Ipj-k__7tB3YbhzJoFcj_xRabvYMtn6TF9yFq89zUy6L4EQXOjxZkF0LemUxr28rBu-QwPIAC3Qg7jsWx-UtWQ56OqhzLAUX0-JbMHbXPjxH23Iz_YF1Q22QUJ_Dl_7p5P0gbLIphBYpvcAYUaWJjizLHe0-Cu-Q_nMpc86Y18iV3qSJMYL5yCZGiTw2xkthVGS1dkLzF7Axm8_cHgQ5ydDHXc-9QIcA6wQ3msfC-C4neNvAVqOb2UZqnDJeXGdVyMFURoBkBEjWANKGt-sut7XOxr8a7xIC64bN4LfhYAVh1vyJyyxSFPGlPGUv_97rEDYHk7NhNvww-rgPj_E9ol5iOYCNYlG6V_DI3hXT5eJ1Nd1-AmZF0S8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Data-Driven+Automation+Based+on+Relaxed+Supervised+Hashing+With+Self-Optimized+Labels&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Bo-Wei%2C+Chen&rft.au=Jhao-Yang+Huang&rft.au=Ying-Hsuan+Wu&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=21&rft.issue=1&rft.spage=512&rft_id=info:doi/10.1109%2FTASE.2022.3221311&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |