Robust Data-Driven Automation Based on Relaxed Supervised Hashing With Self-Optimized Labels

Recently, the Visual Internet of Things (VIoT) has been widely used in data-driven automation, where VIoT devices are used to monitor environmental dynamics and to trigger corresponding actuators after examining event signatures (e.g., hashes). Nonetheless, VIoT devices may collect partially observe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automation science and engineering Ročník 21; číslo 1; s. 512 - 527
Hlavní autori: Chen, Bo-Wei, Huang, Jhao-Yang, Wu, Ying-Hsuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1545-5955, 1558-3783
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recently, the Visual Internet of Things (VIoT) has been widely used in data-driven automation, where VIoT devices are used to monitor environmental dynamics and to trigger corresponding actuators after examining event signatures (e.g., hashes). Nonetheless, VIoT devices may collect partially observed data, e.g., largely occluded images, which cause biased labeling and oversensitivity during modeling. Moreover, in typical methods, class labels are rigid and fixed categorical variables, where marginal space between different classes is fixed and equal. In fact, margins may be unequally spaced. Such nonflexibility in class labels inevitably causes fitting difficulty. In light of such, this study proposes relaxed robust supervised hashing (Relaxed RSH) for generating reliable signatures that can simultaneously conquer the above problems caused by incomplete data and rigid margins. To accommodate oversensitivity, this study proposes measuring hash learning loss by robust half quadratic (HQ) functions for modeling incomplete data. In the initial label matrix, slack variables are added to relax binary constraints. Such slack variables can be self-optimized during the learning process and can be used to automatically adjust margins between different classes. Decorrelation, balancing, and normalization constraints based on Relaxed RSH are also devised to provide discriminant and compact codes. Experimental results based on open datasets showed that the proposed method yielded higher mAP and F1 than the baselines. Note to Practitioners-This work is motivated by the problems caused by incomplete data and rigid class margins during event signature (e.g., hash) learning, where hashes are used to trigger automation systems. In existing hashing methods, incomplete data (e.g., continuous occlusion, missing values, and sample-specific outliers) along with rigid class margins cause fitting biases, thereby challenging data-driven automation. This study proposes Relaxed RSH by designing robust HQ loss, self-optimized label learning, and corresponding constraints for generating discriminant hashes. This prevents actuators from being mistriggered by corrupted data. Experiments were conducted on various data corruption. Future research will address the design for incremental/decentralized hash learning.
AbstractList Recently, the Visual Internet of Things (VIoT) has been widely used in data-driven automation, where VIoT devices are used to monitor environmental dynamics and to trigger corresponding actuators after examining event signatures (e.g., hashes). Nonetheless, VIoT devices may collect partially observed data, e.g., largely occluded images, which cause biased labeling and oversensitivity during modeling. Moreover, in typical methods, class labels are rigid and fixed categorical variables, where marginal space between different classes is fixed and equal. In fact, margins may be unequally spaced. Such nonflexibility in class labels inevitably causes fitting difficulty. In light of such, this study proposes relaxed robust supervised hashing (Relaxed RSH) for generating reliable signatures that can simultaneously conquer the above problems caused by incomplete data and rigid margins. To accommodate oversensitivity, this study proposes measuring hash learning loss by robust half quadratic (HQ) functions for modeling incomplete data. In the initial label matrix, slack variables are added to relax binary constraints. Such slack variables can be self-optimized during the learning process and can be used to automatically adjust margins between different classes. Decorrelation, balancing, and normalization constraints based on Relaxed RSH are also devised to provide discriminant and compact codes. Experimental results based on open datasets showed that the proposed method yielded higher mAP and F1 than the baselines. Note to Practitioners—This work is motivated by the problems caused by incomplete data and rigid class margins during event signature (e.g., hash) learning, where hashes are used to trigger automation systems. In existing hashing methods, incomplete data (e.g., continuous occlusion, missing values, and sample-specific outliers) along with rigid class margins cause fitting biases, thereby challenging data-driven automation. This study proposes Relaxed RSH by designing robust HQ loss, self-optimized label learning, and corresponding constraints for generating discriminant hashes. This prevents actuators from being mistriggered by corrupted data. Experiments were conducted on various data corruption. Future research will address the design for incremental/decentralized hash learning.
Author Chen, Bo-Wei
Huang, Jhao-Yang
Wu, Ying-Hsuan
Author_xml – sequence: 1
  givenname: Bo-Wei
  orcidid: 0000-0001-6014-8021
  surname: Chen
  fullname: Chen, Bo-Wei
  email: bo-wei.chen@mail.nsysu.edu.tw
  organization: Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
– sequence: 2
  givenname: Jhao-Yang
  surname: Huang
  fullname: Huang, Jhao-Yang
  organization: Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
– sequence: 3
  givenname: Ying-Hsuan
  surname: Wu
  fullname: Wu, Ying-Hsuan
  organization: Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
BookMark eNp9kE9PwkAQxTcGEwH9AMZLE8_F_dOlu0cEFBMSEsB4MWl226ksKS3ubon66W2FePDgaV5m3m8m83qoU1YlIHRN8IAQLO_Wo9V0QDGlA0YpYYScoS7hXIQsFqzT6oiHXHJ-gXrObTGmkZC4i16Xla6dDybKq3BizQHKYFT7aqe8qcrgXjnIgkYsoVAfjVzVe7AH03Znym1M-Ra8GL8JVlDk4WLvzc58NbO50lC4S3Seq8LB1an20fPDdD2ehfPF49N4NA9TKpkPh0SKWNEUZ4ApZlEOGIuM84xhnKsUINci1jrCOU1jLaNsqHXOIy1pqhREivXR7XHv3lbvNTifbKvals3JhEpCIiGYwI0rPrpSWzlnIU9S43_e9FaZIiE4aaNM2iiTNsrkFGVDkj_k3pqdsp__MjdHxgDAr1_KIaHN9BtoFIGd
CODEN ITASC7
CitedBy_id crossref_primary_10_1016_j_knosys_2025_113522
crossref_primary_10_1007_s13042_024_02298_x
Cites_doi 10.1109/JPROC.2015.2487976
10.1609/aaai.v30i1.10176
10.1109/TNNLS.2016.2636870
10.1017/CBO9780511804441
10.1109/TPAMI.2017.2678475
10.1109/TPAMI.2017.2699960
10.1109/CVPR.2016.227
10.1109/TETCI.2018.2872036
10.1109/TBDATA.2020.3027379
10.1016/j.patrec.2010.09.025
10.1109/TNNLS.2015.2500600
10.1109/TETCI.2020.3007905
10.1109/TNNLS.2017.2648880
10.1109/TPAMI.2012.48
10.1109/TPAMI.2019.2914897
10.1109/TMC.2020.3009745
10.1007/s11036-021-01823-4
10.1109/MNET.2018.1700202
10.1109/COMST.2018.2844341
10.1109/TKDE.2020.2970050
10.1016/j.bspc.2021.102601
10.1109/CVPR.2012.6247912
10.1109/MCOM.2017.1600223CM
10.1109/CVPR.2015.7298598
10.1109/MWC.101.2000479
10.1109/JIOT.2020.3034385
10.1109/MWC.001.1900349
10.1007/s11276-022-02927-9
10.1109/TNNLS.2014.2371492
10.1109/CVPR.2014.253
10.1214/15-STS530
10.1007/978-3-319-07416-0
10.1109/TPAMI.2012.193
10.1109/TIP.2022.3158092
10.1109/TASE.2019.2893414
10.1109/ICASSP43922.2022.9746805
10.1109/ACPR.2013.51
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2022.3221311
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 527
ExternalDocumentID 10_1109_TASE_2022_3221311
9961211
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: 111-2221-E-110-055-MY2
  funderid: 10.13039/501100020950
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-61987a2c0de02034fe008d55d300faceefb87bb40f2c7b94d6bbf54b92caae4a3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000890823400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Jun 29 16:06:34 EDT 2025
Sat Nov 29 04:12:48 EST 2025
Tue Nov 18 22:16:38 EST 2025
Wed Aug 27 02:15:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-61987a2c0de02034fe008d55d300faceefb87bb40f2c7b94d6bbf54b92caae4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6014-8021
PQID 2911488380
PQPubID 27623
PageCount 16
ParticipantIDs proquest_journals_2911488380
crossref_primary_10_1109_TASE_2022_3221311
ieee_primary_9961211
crossref_citationtrail_10_1109_TASE_2022_3221311
PublicationCentury 2000
PublicationDate 2024-Jan.
2024-1-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref18
Kulis (ref12)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Norouzi (ref19)
References_xml – ident: ref15
  doi: 10.1109/JPROC.2015.2487976
– ident: ref20
  doi: 10.1609/aaai.v30i1.10176
– ident: ref10
  doi: 10.1109/TNNLS.2016.2636870
– start-page: 1993
  volume-title: Proc. 28th Int. Conf. Mach. Learn.
  ident: ref19
  article-title: Minimal loss hashing for compact binary codes
– ident: ref36
  doi: 10.1017/CBO9780511804441
– ident: ref22
  doi: 10.1109/TPAMI.2017.2678475
– ident: ref16
  doi: 10.1109/TPAMI.2017.2699960
– ident: ref26
  doi: 10.1109/CVPR.2016.227
– ident: ref7
  doi: 10.1109/TETCI.2018.2872036
– ident: ref21
  doi: 10.1109/TBDATA.2020.3027379
– ident: ref25
  doi: 10.1016/j.patrec.2010.09.025
– ident: ref37
  doi: 10.1109/TNNLS.2015.2500600
– ident: ref6
  doi: 10.1109/TETCI.2020.3007905
– ident: ref33
  doi: 10.1109/TNNLS.2017.2648880
– ident: ref17
  doi: 10.1109/TPAMI.2012.48
– ident: ref18
  doi: 10.1109/TPAMI.2019.2914897
– ident: ref1
  doi: 10.1109/TMC.2020.3009745
– ident: ref30
  doi: 10.1007/s11036-021-01823-4
– start-page: 1042
  volume-title: Proc. 22th Int. Conf. Neural Inf. Process. Syst.
  ident: ref12
  article-title: Learning to hash with binary reconstructive embeddings
– ident: ref31
  doi: 10.1109/MNET.2018.1700202
– ident: ref32
  doi: 10.1109/COMST.2018.2844341
– ident: ref23
  doi: 10.1109/TKDE.2020.2970050
– ident: ref27
  doi: 10.1016/j.bspc.2021.102601
– ident: ref9
  doi: 10.1109/CVPR.2012.6247912
– ident: ref8
  doi: 10.1109/MCOM.2017.1600223CM
– ident: ref11
  doi: 10.1109/CVPR.2015.7298598
– ident: ref4
  doi: 10.1109/MWC.101.2000479
– ident: ref3
  doi: 10.1109/JIOT.2020.3034385
– ident: ref2
  doi: 10.1109/MWC.001.1900349
– ident: ref14
  doi: 10.1007/s11276-022-02927-9
– ident: ref39
  doi: 10.1109/TNNLS.2014.2371492
– ident: ref29
  doi: 10.1109/CVPR.2014.253
– ident: ref35
  doi: 10.1214/15-STS530
– ident: ref34
  doi: 10.1007/978-3-319-07416-0
– ident: ref13
  doi: 10.1109/TPAMI.2012.193
– ident: ref24
  doi: 10.1109/TIP.2022.3158092
– ident: ref5
  doi: 10.1109/TASE.2019.2893414
– ident: ref28
  doi: 10.1109/ICASSP43922.2022.9746805
– ident: ref38
  doi: 10.1109/ACPR.2013.51
SSID ssj0024890
Score 2.3820379
Snippet Recently, the Visual Internet of Things (VIoT) has been widely used in data-driven automation, where VIoT devices are used to monitor environmental dynamics...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 512
SubjectTerms Actuators
Automation
Codes
Complexity theory
half quadratic optimization
incomplete data
Internet of Things
Labels
Learning
Loss measurement
Modelling
Occlusion
Outliers (statistics)
partially observed data
Quadratic programming
relaxation
Relaxation methods
relaxed robust supervised hashing
Robust data-driven automation
Robustness
Signatures
Slack variables
Supervised learning
Visual Internet of Things
Visualization
Title Robust Data-Driven Automation Based on Relaxed Supervised Hashing With Self-Optimized Labels
URI https://ieeexplore.ieee.org/document/9961211
https://www.proquest.com/docview/2911488380
Volume 21
WOSCitedRecordID wos000890823400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH3-LqKj14EqvZJn3kuL7wICqur4NQkjTBBd2V3VbEX-9MW1dFEbyFJiklXzrfTB7fAGxFMRPcqNC3GJxggKIjPzFK-pZLzXXGQlfmIbs5jc_Okrs7eTEBO-O7MNba8vCZ3aViuZefDUxBS2V76JuTItkkTMZxVN3V-tTVS8r1FPII_FCGYb2D2WZy76rTPcJIMAh2cfaSvMw3DiqTqvywxCW9HM_978PmYbZ2I71OhfsCTNj-Isx8ERdcgvvLgS5GuXeocuUfDsmqeZ0iH1R3Fb19pK_MwwIdh3vFYrd4JrtBT0-qDEvebS9_8Lr20fnnaFmeem9Yd6o00ukyXB8fXR2c-HUuBd8goecYIcokVoFhmaW9R-Eskn8WhhlnzClkSqeTWGvBXGBiLUUWae1CoWVglLJC8RVo9Ad9uwpeRiL0UdtxJ9AdwDrBteKR0K7NCdwmsI_RTU0tNE75Lh7TMuBgMiVAUgIkrQFpwva4y3OlsvFX4yVCYNywHvwmtD4gTOv_cJQGkuK9hCds7fde6zCN7xbVokoLGvmwsBswZV7y3mi4WU6xd4bZzeg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6VgTT2MAYDrWywPPCEls6N7SR-LGxVEV2HaGF7mBTZji0qbe3UJhPir-cuSQsTCIk3K7aVyJ9z351_fAfwJk6Y4FbL0GFwggGKicPUahU6rgw3OZO-ykP2dZiMRunlpfrUgqP1XRjnXHX4zHWoWO3l53Nb0lLZMfrmpEj2AB5KISJW39b6payXVisq5BOEUknZ7GF2mTqe9ManGAtGUQfnLwnM3GOhKq3KH7a4Ipj-k__7tB3YbhzJoFcj_xRabvYMtn6TF9yFq89zUy6L4EQXOjxZkF0LemUxr28rBu-QwPIAC3Qg7jsWx-UtWQ56OqhzLAUX0-JbMHbXPjxH23Iz_YF1Q22QUJ_Dl_7p5P0gbLIphBYpvcAYUaWJjizLHe0-Cu-Q_nMpc86Y18iV3qSJMYL5yCZGiTw2xkthVGS1dkLzF7Axm8_cHgQ5ydDHXc-9QIcA6wQ3msfC-C4neNvAVqOb2UZqnDJeXGdVyMFURoBkBEjWANKGt-sut7XOxr8a7xIC64bN4LfhYAVh1vyJyyxSFPGlPGUv_97rEDYHk7NhNvww-rgPj_E9ol5iOYCNYlG6V_DI3hXT5eJ1Nd1-AmZF0S8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Data-Driven+Automation+Based+on+Relaxed+Supervised+Hashing+With+Self-Optimized+Labels&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Bo-Wei%2C+Chen&rft.au=Jhao-Yang+Huang&rft.au=Ying-Hsuan+Wu&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=21&rft.issue=1&rft.spage=512&rft_id=info:doi/10.1109%2FTASE.2022.3221311&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon