Deep High-Order Tensor Convolutional Sparse Coding for Hyperspectral Image Classification
Most hyperspectral image (HSI) data exist in the form of tensor; the tensor representation preserves the potential spatial-spectral structure information compared with the vector representation, which can help improve the classification performance of HSI. In this article, a deep high-order tensor c...
Saved in:
| Published in: | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 11 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Most hyperspectral image (HSI) data exist in the form of tensor; the tensor representation preserves the potential spatial-spectral structure information compared with the vector representation, which can help improve the classification performance of HSI. In this article, a deep high-order tensor convolutional sparse coding (CSC) model is proposed, which can be used to train deep high-order filters. Based on the deep high-order tensor CSC model, a deep feature extraction network (DHTCSCNet) is constructed, which is used for feature extraction of HSIs. By combining the spectral-spatial feature and the features extracted by the proposed DHTCSCNet at each layer, a combined feature that incorporates shallow, deep, spectral, and spatial features can be obtained. Then, the graph-based learning (GSL) methods are used to classify the combined feature. Experimental results show that the DHTCSCNet can obtain better classification performance compared with other HSI classification methods. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0196-2892 1558-0644 |
| DOI: | 10.1109/TGRS.2021.3134682 |