Zero-Shot Hashing via Asymmetric Ratio Similarity Matrix

Zero-shot hashing targets to learn the hash codes of images in unseen classes based on the limited training data provided by seen classes. In zero-shot hashing, transferring the supervised knowledge, such as attributes and semantic relations, from seen classes to unseen ones is a widely employed met...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on knowledge and data engineering Ročník 35; číslo 5; s. 5426 - 5437
Hlavní autori: Shi, Yang, Nie, Xiushan, Liu, Xingbo, Yang, Lu, Yin, Yilong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1041-4347, 1558-2191
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Zero-shot hashing targets to learn the hash codes of images in unseen classes based on the limited training data provided by seen classes. In zero-shot hashing, transferring the supervised knowledge, such as attributes and semantic relations, from seen classes to unseen ones is a widely employed method, where the performance is always subject to the ability to capture these supervised knowledge (which is always difficult to obtain). Therefore, in this study, we propose a new methodology for zero-shot hashing via an asymmetric ratio similarity matrix (ASZH), which only needs to calculate the semantic similarity among seen classes for hash learning. Specifically, we use an asymmetric ratio matrix in the similarity calculation to further explore the influence of similarity, where the values of positive weights for similar samples are not equivalent to those of negative ones for dissimilar samples. Additionally, a theoretical analysis regarding the utilization of an asymmetric ratio matrix is provided in this study. The experiments on three large benchmark datasets indicate that the proposed method achieves excellent performance than several state-of-the-art hashing methods.
AbstractList Zero-shot hashing targets to learn the hash codes of images in unseen classes based on the limited training data provided by seen classes. In zero-shot hashing, transferring the supervised knowledge, such as attributes and semantic relations, from seen classes to unseen ones is a widely employed method, where the performance is always subject to the ability to capture these supervised knowledge (which is always difficult to obtain). Therefore, in this study, we propose a new methodology for zero-shot hashing via an asymmetric ratio similarity matrix (ASZH), which only needs to calculate the semantic similarity among seen classes for hash learning. Specifically, we use an asymmetric ratio matrix in the similarity calculation to further explore the influence of similarity, where the values of positive weights for similar samples are not equivalent to those of negative ones for dissimilar samples. Additionally, a theoretical analysis regarding the utilization of an asymmetric ratio matrix is provided in this study. The experiments on three large benchmark datasets indicate that the proposed method achieves excellent performance than several state-of-the-art hashing methods.
Author Yin, Yilong
Liu, Xingbo
Shi, Yang
Yang, Lu
Nie, Xiushan
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0003-2515-1588
  surname: Shi
  fullname: Shi, Yang
  email: shiyang@mail.sdu.edu.cn
  organization: School of Software, Shandong University, Jinan, China
– sequence: 2
  givenname: Xiushan
  orcidid: 0000-0001-9644-9723
  surname: Nie
  fullname: Nie, Xiushan
  email: niexsh@hotmail.com
  organization: School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
– sequence: 3
  givenname: Xingbo
  orcidid: 0000-0002-7236-8715
  surname: Liu
  fullname: Liu, Xingbo
  email: sclxb@mail.sdu.edu.cn
  organization: School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
– sequence: 4
  givenname: Lu
  orcidid: 0000-0002-5186-6504
  surname: Yang
  fullname: Yang, Lu
  email: yangluhi@163.com
  organization: School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
– sequence: 5
  givenname: Yilong
  orcidid: 0000-0002-8465-1294
  surname: Yin
  fullname: Yin, Yilong
  email: ylyin@sdu.edu.cn
  organization: School of Software, Shandong University, Jinan, China
BookMark eNp9kE9PwjAYhxujiYB-AONliefh23Zd2yNBFCPGRPDipem6Vkpgw64Y-fZugXjw4Klvmt_z_nn66LSqK4vQFYYhxiBvF093kyEBQoYUM-ASTlAPMyZSgiU-bWvIcJrRjJ-jftOsAEBwgXtIvNtQp_NlHZOpbpa--ki-vE5GzX6zsTF4k7zq6Otk7jd-rYOP--RZt__fF-jM6XVjL4_vAL3dTxbjaTp7eXgcj2apIZLGlDlZGkIlMKFdBrJkueGUYOdKxrksnMSFKKUrhNEgictpgY0Wuc5ZCe05dIBuDn23of7c2SaqVb0LVTtSES6ZAJqBaFP8kDKhbppgnTI-dotXMWi_VhhUp0l1mlSnSR01tST-Q26D3-iw_5e5PjDeWvublxwTKjL6A48fc7c
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_TKDE_2023_3312109
crossref_primary_10_1016_j_engappai_2024_108197
crossref_primary_10_1109_TCSVT_2022_3195874
crossref_primary_10_1177_15501477211066305
crossref_primary_10_1016_j_neucom_2022_09_037
crossref_primary_10_1109_JBHI_2022_3161341
crossref_primary_10_1109_TBDATA_2022_3161905
crossref_primary_10_1016_j_knosys_2024_111820
crossref_primary_10_1016_j_ins_2023_119376
crossref_primary_10_1145_3734871
crossref_primary_10_1007_s00530_022_00988_6
crossref_primary_10_1145_3624016
Cites_doi 10.1109/TKDE.2019.2913383
10.1109/TPAMI.2012.193
10.1145/3209978.3210035
10.1109/CVPR.2014.253
10.1109/TKDE.2015.2507127
10.1023/A:1011139631724
10.1109/CVPR.2009.5206772
10.1145/2964284.2964319
10.1109/TCSVT.2020.3040863
10.1109/CVPR.2016.227
10.1109/TKDE.2017.2752156
10.1109/CVPR.2010.5539994
10.1609/aaai.v32i1.11814
10.1109/TPAMI.2017.2699960
10.1145/2766462.2767725
10.1007/s11263-020-01327-w
10.1109/TKDE.2012.76
10.1109/CVPR.2010.5540129
10.1109/TCSVT.2013.2276713
10.1145/1327452.1327494
10.1109/TPAMI.2018.2857768
10.24963/ijcai.2019/420
10.1145/997817.997857
10.1109/TKDE.2015.2485224
10.1109/TIP.2020.2970577
10.1109/CVPR.2015.7298598
10.1109/TPAMI.2017.2769047
10.1109/TIP.2020.2963952
10.1016/j.patrec.2018.04.011
10.1109/CVPR.2012.6247912
10.1109/TIP.2020.3036735
10.1109/ICME.2017.8019425
10.1109/JPROC.2015.2487976
10.1109/TIP.2018.2864894
10.1109/CVPR.2018.00134
10.14778/2732939.2732947
10.1109/TPAMI.2013.140
10.1109/TPAMI.2018.2849378
10.1109/TKDE.2016.2562624
10.1109/ICCV.2017.598
10.24963/ijcai.2017/245
10.5244/C.28.6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2022.3150790
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 5437
ExternalDocumentID 10_1109_TKDE_2022_3150790
9712384
Genre orig-research
GrantInformation_xml – fundername: Taishan Scholar Project of Shandong Province
  grantid: tsqn202103088
  funderid: 10.13039/501100010040
– fundername: National Natural Science Foundation of China
  grantid: 62176141; 62176139; 61876098
  funderid: 10.13039/501100001809
– fundername: Shandong Provincial Natural Science Foundation for Distinguished Young Scholars
  grantid: ZR2021JQ26
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021ZD15
  funderid: 10.13039/501100007129
– fundername: Shandong Jianzhu University
  funderid: 10.13039/501100007927
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
1OL
5VS
9M8
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-5f9dc239058af409d56c7321ffd5779bf91b8d9fb8ca092f63b1ca86a65d00223
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000964880800074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Mon Jun 30 03:42:55 EDT 2025
Sat Nov 29 02:36:05 EST 2025
Tue Nov 18 22:17:19 EST 2025
Wed Aug 27 02:14:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-5f9dc239058af409d56c7321ffd5779bf91b8d9fb8ca092f63b1ca86a65d00223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9644-9723
0000-0002-5186-6504
0000-0003-2515-1588
0000-0002-7236-8715
0000-0002-8465-1294
PQID 2795803408
PQPubID 85438
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2022_3150790
proquest_journals_2795803408
crossref_primary_10_1109_TKDE_2022_3150790
ieee_primary_9712384
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Oliva (ref47) 2001; 42
ref14
Wah (ref45) 2011
ref11
ref10
ref17
ref16
ref19
ref50
ref48
ref42
ref41
ref44
Liu (ref43)
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref33
ref32
ref2
ref1
ref39
ref38
Li (ref30)
Liu (ref18)
Wang (ref20)
ref24
Krizhevsky (ref46) 2009
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
Weiss (ref15)
Li (ref31)
References_xml – ident: ref26
  doi: 10.1109/TKDE.2019.2913383
– start-page: 3419
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref43
  article-title: Discrete graph hashing
– ident: ref2
  doi: 10.1109/TPAMI.2012.193
– year: 2009
  ident: ref46
  article-title: Learning multiple layers of features from tiny images
– ident: ref23
  doi: 10.1145/3209978.3210035
– ident: ref42
  doi: 10.1109/CVPR.2014.253
– ident: ref8
  doi: 10.1109/TKDE.2015.2507127
– volume: 42
  start-page: 145
  issue: 3
  year: 2001
  ident: ref47
  article-title: Modeling the shape of the scene: A holistic representation of the spatial envelope
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1011139631724
– ident: ref36
  doi: 10.1109/CVPR.2009.5206772
– ident: ref37
  doi: 10.1145/2964284.2964319
– ident: ref27
  doi: 10.1109/TCSVT.2020.3040863
– ident: ref29
  doi: 10.1109/CVPR.2016.227
– ident: ref12
  doi: 10.1109/TKDE.2017.2752156
– ident: ref19
  doi: 10.1109/CVPR.2010.5539994
– ident: ref32
  doi: 10.1609/aaai.v32i1.11814
– ident: ref10
  doi: 10.1109/TPAMI.2017.2699960
– start-page: 1
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref18
  article-title: Hashing with graphs
– start-page: 1711
  volume-title: Proc. Int. Joint Conf. Artif. Intell.
  ident: ref30
  article-title: Feature learning based deep supervised hashing with pairwise labels
– year: 2011
  ident: ref45
  article-title: The Caltech-UCSD Birds-200–2011 dataset
– ident: ref22
  doi: 10.1145/2766462.2767725
– ident: ref34
  doi: 10.1007/s11263-020-01327-w
– start-page: 1753
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref15
  article-title: Spectral hashing
– ident: ref9
  doi: 10.1109/TKDE.2012.76
– ident: ref16
  doi: 10.1109/CVPR.2010.5540129
– ident: ref21
  doi: 10.1109/TCSVT.2013.2276713
– ident: ref1
  doi: 10.1145/1327452.1327494
– start-page: 1127
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref20
  article-title: Sequential projection learning for hashing with compact codes
– ident: ref44
  doi: 10.1109/TPAMI.2018.2857768
– ident: ref28
  doi: 10.24963/ijcai.2019/420
– ident: ref13
  doi: 10.1145/997817.997857
– ident: ref4
  doi: 10.1109/TKDE.2015.2485224
– ident: ref25
  doi: 10.1109/TIP.2020.2970577
– ident: ref3
  doi: 10.1109/CVPR.2015.7298598
– start-page: 2479
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref31
  article-title: Deep supervised discrete hashing
– ident: ref5
  doi: 10.1109/TPAMI.2017.2769047
– ident: ref24
  doi: 10.1109/TIP.2020.2963952
– ident: ref40
  doi: 10.1016/j.patrec.2018.04.011
– ident: ref41
  doi: 10.1109/CVPR.2012.6247912
– ident: ref49
  doi: 10.1109/TIP.2020.3036735
– ident: ref38
  doi: 10.1109/ICME.2017.8019425
– ident: ref14
  doi: 10.1109/JPROC.2015.2487976
– ident: ref33
  doi: 10.1109/TIP.2018.2864894
– ident: ref48
  doi: 10.1109/CVPR.2018.00134
– ident: ref11
  doi: 10.14778/2732939.2732947
– ident: ref35
  doi: 10.1109/TPAMI.2013.140
– ident: ref6
  doi: 10.1109/TPAMI.2018.2849378
– ident: ref17
  doi: 10.1109/TKDE.2016.2562624
– ident: ref7
  doi: 10.1109/ICCV.2017.598
– ident: ref39
  doi: 10.24963/ijcai.2017/245
– ident: ref50
  doi: 10.5244/C.28.6
SSID ssj0008781
Score 2.509219
Snippet Zero-shot hashing targets to learn the hash codes of images in unseen classes based on the limited training data provided by seen classes. In zero-shot...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5426
SubjectTerms asymmetric ratio similarity matrix
Asymmetry
Binary codes
Hamming distance
Hash functions
Hashing
Mathematical analysis
Optimization
Semantics
Similarity
Symmetric matrices
Visualization
zero-shot
Title Zero-Shot Hashing via Asymmetric Ratio Similarity Matrix
URI https://ieeexplore.ieee.org/document/9712384
https://www.proquest.com/docview/2795803408
Volume 35
WOSCitedRecordID wos000964880800074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8aAHq1WxWiUHT-JqNtndJMeilYJYxFYQL0uSTbBgW-kX-u9NdreloAjeckhgeZPMzNtJ5gGcM2oNsUYGCZW-zKhYIIUNgyTRliqZUUsLsQnW7fKXF_FYgcvVWxhjTH75zFz5YV7Lz8Z67n-VXQvm_CyPNmCDMVa81Vp5Xc5yQVLHLhwnohErK5ghFtf9-9u2Y4KEOILq0h_vftdiUC6q8sMT5-Hlrva_D9uFnTKNRK3C7ntQMaM61JYSDag8sXXYXus3uA_81UzGQe9tPEOdQkQJLQYStaZfw6FX1tLoyRsK9QbDgWO8LkFHD76F_-cBPN-1-zedoJROCLSL37MgtiLThAocc2kdhcviRDNKQmuzmDGhrAgVz4RVXEssiE2oCrXkiUzizId1egjV0XhkjgAx5VyQYYooqiMZUhVZrJilkuJMc00agJdgprrsK-7lLd7TnF9gkXr8U49_WuLfgIvVko-iqcZfk_c94KuJJdYNaC4tlpbHbpoSJmKOaYT58e-rTmDL68UXNxabUJ1N5uYUNvViNphOzvId9Q0iice6
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7qA9SDb7E-c_AkrmaT3U1yFLVU1CK2gnhZkmyCBdtKX-i_N9ndloIieMshgeWbZGa-nWQ-gBNGrSHWyCCh0pcZFQuksGGQJNpSJTNqaSE2wRoN_vIiHitwNn0LY4zJL5-Zcz_Ma_lZT4_8r7ILwZyf5dEcLMRRRMLitdbU73KWS5I6fuFYEY1YWcMMsbho3V3fOC5IiKOoLgHyDngmCuWyKj98cR5gamv_-7R1WC0TSXRZWH4DKqa7CWsTkQZUntlNWJnpOLgF_NX0e0HzrTdE9UJGCY3bEl0Ovjodr62l0ZM3FWq2O23HeV2Kjh58E__PbXiu3bSu6kEpnhBoF8GHQWxFpgkVOObSOhKXxYlmlITWZjFjQlkRKp4Jq7iWWBCbUBVqyROZxJkP7HQH5ru9rtkFxJRzQoYpoqiOZEhVZLFilkqKM801qQKegJnqsrO4F7h4T3OGgUXq8U89_mmJfxVOp0s-irYaf03e8oBPJ5ZYV-FgYrG0PHiDlDARc0wjzPd-X3UMS_XWw316f9u424dlrx5f3F88gPlhf2QOYVGPh-1B_yjfXd-zBcsB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zero-shot+Hashing+via+Asymmetric+Ratio+Similarity+Matrix&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Shi%2C+Yang&rft.au=Nie%2C+Xiushan&rft.au=Liu%2C+Xingbo&rft.au=Yang%2C+Lu&rft.date=2023-05-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTKDE.2022.3150790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2022_3150790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon