Chiller Fault Diagnosis Based on VAE-Enabled Generative Adversarial Networks
Artificial intelligence (AI)-enhanced automated fault diagnosis (AFD) has become increasingly popular for chiller fault diagnosis with promising classification performance. In practice, a sufficient number of fault samples are required by the AI methods in the training phase. However, faulty trainin...
Saved in:
| Published in: | IEEE transactions on automation science and engineering Vol. 19; no. 1; pp. 387 - 395 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1545-5955, 1558-3783 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Artificial intelligence (AI)-enhanced automated fault diagnosis (AFD) has become increasingly popular for chiller fault diagnosis with promising classification performance. In practice, a sufficient number of fault samples are required by the AI methods in the training phase. However, faulty training samples are generally much more difficult to be collected than normal training samples. Data augmentation is introduced in these scenarios to enhance the training data set with synthetic data. In this study, a variational autoencoder-based conditional Wasserstein GAN with gradient penalty (CWGAN-GP-VAE) is proposed to diagnose various faults for chillers. A detailed comparative study has been conducted with real-world fault data samples to verify the effectiveness and robustness of the proposed methodology. Note to Practitioners -This work attacks the fact that faulty training samples are usually much harder to be collected than the normal training samples in the practice of chiller automated fault diagnosis (AFD). Modern supervised learning chiller AFD relies on a sufficient number of faulty training samples to train the classifier. When the number of faulty training samples is insufficient, the conventional AFD methods fail to work. This study proposed a variational autoencoder-based conditional Wasserstein GAN with gradient penalty (CWGAN-GP-VAE) framework for generating synthetic faulty training samples to enrich the training data set for machine learning-based AFD methods. The proposed algorithm has been carefully designed, implemented, and practically proved to be more effective than the existing methods in the literature. |
|---|---|
| AbstractList | Artificial intelligence (AI)-enhanced automated fault diagnosis (AFD) has become increasingly popular for chiller fault diagnosis with promising classification performance. In practice, a sufficient number of fault samples are required by the AI methods in the training phase. However, faulty training samples are generally much more difficult to be collected than normal training samples. Data augmentation is introduced in these scenarios to enhance the training data set with synthetic data. In this study, a variational autoencoder-based conditional Wasserstein GAN with gradient penalty (CWGAN-GP-VAE) is proposed to diagnose various faults for chillers. A detailed comparative study has been conducted with real-world fault data samples to verify the effectiveness and robustness of the proposed methodology. Note to Practitioners —This work attacks the fact that faulty training samples are usually much harder to be collected than the normal training samples in the practice of chiller automated fault diagnosis (AFD). Modern supervised learning chiller AFD relies on a sufficient number of faulty training samples to train the classifier. When the number of faulty training samples is insufficient, the conventional AFD methods fail to work. This study proposed a variational autoencoder-based conditional Wasserstein GAN with gradient penalty (CWGAN-GP-VAE) framework for generating synthetic faulty training samples to enrich the training data set for machine learning-based AFD methods. The proposed algorithm has been carefully designed, implemented, and practically proved to be more effective than the existing methods in the literature. |
| Author | Su, Jianye Mo, Yuchang Huang, Jing Yan, Ke |
| Author_xml | – sequence: 1 givenname: Ke orcidid: 0000-0002-1611-6636 surname: Yan fullname: Yan, Ke organization: Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou, China – sequence: 2 givenname: Jianye orcidid: 0000-0003-0070-350X surname: Su fullname: Su, Jianye organization: Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou, China – sequence: 3 givenname: Jing orcidid: 0000-0001-8704-154X surname: Huang fullname: Huang, Jing email: gabriel.jing.huang@gmail.com organization: School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, China – sequence: 4 givenname: Yuchang orcidid: 0000-0002-1976-5412 surname: Mo fullname: Mo, Yuchang organization: Fujian Province University Key Laboratory of Computational Science, School of Mathematical Sciences, Huaqiao University, Quanzhou, China |
| BookMark | eNp9kD9PwzAQxS0EEm3hAyCWSMwp_hM7zhhKWpAqGCislpNcwCXYxU6L-PYkasXAwHR30vvdu3tjdGydBYQuCJ4SgrPrVf5UTCmmeMow44LiIzQinMuYpZIdD33CY55xforGIawxponM8AgtZ2-mbcFHc71tu-jW6FfrggnRjQ5QR85GL3kRF1aXbT8uwILXndlBlNc78EF7o9voAbov59_DGTppdBvg_FAn6HlerGZ38fJxcT_Ll3FFM9bFvKGUVALzjDJGaFrzVCd1olNZQ6kFqYUUILlmtSgxo2WaMayTDCihpSihYRN0td-78e5zC6FTa7f1trdUVBCRUiKl6FVkr6q8C8FDozbefGj_rQhWQ2hqCE0NoalDaD2T_mEq0_UPO9t5bdp_ycs9aQDg1ymjIumvYT9zOnob |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1007_s12206_025_0406_z crossref_primary_10_1177_14759217251370360 crossref_primary_10_1016_j_jnca_2024_104020 crossref_primary_10_3390_act12060242 crossref_primary_10_1007_s00521_022_07417_9 crossref_primary_10_1016_j_renene_2021_12_054 crossref_primary_10_1016_j_jobe_2025_113527 crossref_primary_10_70401_jbde_2025_0012 crossref_primary_10_1016_j_buildenv_2025_112529 crossref_primary_10_1016_j_apenergy_2023_122189 crossref_primary_10_1063_5_0260746 crossref_primary_10_1016_j_engappai_2024_109443 crossref_primary_10_1016_j_aei_2024_102471 crossref_primary_10_1016_j_apenergy_2023_121975 crossref_primary_10_1016_j_ress_2024_110567 crossref_primary_10_1155_2022_1807103 crossref_primary_10_1007_s10489_023_04870_4 crossref_primary_10_1016_j_eswa_2023_121076 crossref_primary_10_1109_TII_2022_3193733 crossref_primary_10_1109_JSEN_2023_3334739 crossref_primary_10_1109_JSEN_2023_3347251 crossref_primary_10_1016_j_rser_2025_115387 crossref_primary_10_1109_TII_2024_3403267 crossref_primary_10_1109_ACCESS_2024_3351802 crossref_primary_10_1016_j_knosys_2022_109651 crossref_primary_10_1016_j_jobe_2025_112646 crossref_primary_10_1088_1361_6501_ada4c7 crossref_primary_10_1109_TIM_2025_3547074 crossref_primary_10_1155_2021_9953509 crossref_primary_10_1109_TIM_2024_3504560 crossref_primary_10_1016_j_engappai_2025_112177 crossref_primary_10_1016_j_enbuild_2025_115844 crossref_primary_10_1016_j_compeleceng_2024_109268 crossref_primary_10_1016_j_buildenv_2022_109218 crossref_primary_10_1016_j_buildenv_2024_112265 crossref_primary_10_1016_j_ress_2023_109455 crossref_primary_10_1139_tcsme_2024_0167 crossref_primary_10_1002_qre_3394 crossref_primary_10_1109_TSUSC_2024_3390003 crossref_primary_10_1016_j_displa_2024_102847 crossref_primary_10_1109_ACCESS_2024_3490701 crossref_primary_10_1093_jcde_qwae075 crossref_primary_10_1177_10775463251378250 crossref_primary_10_1109_TASE_2023_3325271 crossref_primary_10_1016_j_jobe_2024_108991 crossref_primary_10_1016_j_eswa_2024_126109 crossref_primary_10_1007_s12273_023_1086_1 crossref_primary_10_1016_j_engappai_2024_109218 crossref_primary_10_1007_s11063_022_11143_7 crossref_primary_10_3390_machines13080673 crossref_primary_10_1109_TASE_2024_3502426 crossref_primary_10_1007_s10462_024_11021_9 crossref_primary_10_1109_TSP_2024_3502454 crossref_primary_10_1109_TASE_2021_3106011 crossref_primary_10_1109_TII_2022_3230684 crossref_primary_10_1016_j_enbuild_2024_114540 crossref_primary_10_1155_2024_1041791 crossref_primary_10_3390_su14095441 crossref_primary_10_1016_j_buildenv_2022_109620 crossref_primary_10_1109_ACCESS_2022_3228441 crossref_primary_10_1109_JSEN_2022_3211021 crossref_primary_10_1109_TII_2024_3514090 crossref_primary_10_1016_j_eswa_2023_122545 crossref_primary_10_1016_j_ymssp_2023_111033 crossref_primary_10_1109_TII_2024_3383459 crossref_primary_10_1109_TIM_2024_3481554 crossref_primary_10_1016_j_jobe_2022_105559 crossref_primary_10_1016_j_buildenv_2025_113271 crossref_primary_10_1016_j_engappai_2023_106911 crossref_primary_10_1016_j_jobe_2024_109137 crossref_primary_10_1109_TIM_2025_3542138 crossref_primary_10_1016_j_rser_2024_114418 crossref_primary_10_1080_15435075_2025_2557564 crossref_primary_10_1109_TASE_2023_3331347 crossref_primary_10_1088_1361_6501_ad8024 crossref_primary_10_1016_j_decarb_2023_100023 crossref_primary_10_1016_j_energy_2023_127405 crossref_primary_10_1016_j_jprocont_2023_103050 crossref_primary_10_1016_j_buildenv_2022_109513 crossref_primary_10_1016_j_buildenv_2024_112365 crossref_primary_10_1016_j_buildenv_2022_108866 crossref_primary_10_1109_TASE_2025_3552009 crossref_primary_10_1016_j_enconman_2025_120418 crossref_primary_10_3390_en15124366 crossref_primary_10_1109_TII_2022_3197839 crossref_primary_10_1109_TR_2022_3214519 |
| Cites_doi | 10.1007/BF01753236 10.3156/jsoft.29.5_177_2 10.1109/TNSRE.2017.2721116 10.1016/j.eswa.2017.09.030 10.1109/TCDS.2018.2883368 10.1016/j.enbuild.2017.03.064 10.1109/TASE.2016.2574875 10.1109/TASE.2006.888053 10.1109/TASE.2006.888054 10.1016/j.enbuild.2016.09.037 10.1016/j.enbuild.2012.11.007 10.1016/j.enbuild.2016.07.014 10.1016/j.applthermaleng.2016.06.153 10.1109/TSMC.2019.2938298 10.1016/j.neucom.2016.09.076 10.1109/IJCNN.2008.4633969 10.1109/TPAMI.2019.2904062 10.1186/s12859-019-3255-x 10.1109/MSP.2017.2765202 10.1007/s12273-019-0598-1 10.1109/TASE.2017.2669892 10.1109/TASE.2017.2770170 10.1016/j.enbuild.2018.10.016 10.3390/en12030527 10.1007/s10664-017-9512-6 10.1002/eap.2043 10.1016/j.ijrefrig.2017.11.003 10.1016/j.applthermaleng.2018.03.041 10.1109/TASE.2018.2874487 10.1016/j.applthermaleng.2017.12.024 10.1016/S0034-4257(97)00083-7 10.1109/TMI.2015.2512606 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TASE.2020.3035620 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 395 |
| ExternalDocumentID | 10_1109_TASE_2020_3035620 9264218 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61850410531; 61602431; 61972156 funderid: 10.13039/501100001809 – fundername: Ministry of Education (MOE) Singapore, Tier 1 Grant for National University of Singapore (NUS) grantid: R296000208133 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-5f221c6059233127d57a4d4a78deba61d686e85a3d6b032b7930a49e212b6bef3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 109 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000739634600034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sun Nov 09 06:15:46 EST 2025 Sat Nov 29 04:12:47 EST 2025 Tue Nov 18 22:08:13 EST 2025 Wed Aug 27 03:03:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-5f221c6059233127d57a4d4a78deba61d686e85a3d6b032b7930a49e212b6bef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1611-6636 0000-0002-1976-5412 0000-0001-8704-154X 0000-0003-0070-350X |
| PQID | 2616721886 |
| PQPubID | 27623 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1109_TASE_2020_3035620 proquest_journals_2616721886 crossref_citationtrail_10_1109_TASE_2020_3035620 ieee_primary_9264218 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan. 2022-1-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 Gauthier (ref26) 2014; 2014 ref17 Lopez (ref27) ref16 ref38 ref19 ref18 Comstock (ref21) 2006 ref23 ref20 ref22 Gulrajani (ref25) (ref1) 2016 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Arjovsky (ref24); 70 |
| References_xml | – ident: ref23 doi: 10.1007/BF01753236 – ident: ref22 doi: 10.3156/jsoft.29.5_177_2 – start-page: 6114 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref27 article-title: Information constraints on auto-encoding variational Bayes – ident: ref37 doi: 10.1109/TNSRE.2017.2721116 – ident: ref16 doi: 10.1016/j.eswa.2017.09.030 – start-page: 5767 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref25 article-title: Improved training of Wasserstein GANs – ident: ref28 doi: 10.1109/TCDS.2018.2883368 – ident: ref3 doi: 10.1016/j.enbuild.2017.03.064 – ident: ref32 doi: 10.1109/TASE.2016.2574875 – ident: ref4 doi: 10.1109/TASE.2006.888053 – ident: ref8 doi: 10.1109/TASE.2006.888054 – year: 2006 ident: ref21 article-title: ASHRAE 1043-RP: Fault detection and diagnostic (FDD) requirements and evaluation tools for chillers – ident: ref10 doi: 10.1016/j.enbuild.2016.09.037 – ident: ref11 doi: 10.1016/j.enbuild.2012.11.007 – ident: ref12 doi: 10.1016/j.enbuild.2016.07.014 – ident: ref13 doi: 10.1016/j.applthermaleng.2016.06.153 – ident: ref31 doi: 10.1109/TSMC.2019.2938298 – ident: ref9 doi: 10.1016/j.neucom.2016.09.076 – volume-title: Buildings Energy Data Book, Energy Efficiency & Renewable Energy Department year: 2016 ident: ref1 – ident: ref19 doi: 10.1109/IJCNN.2008.4633969 – ident: ref35 doi: 10.1109/TPAMI.2019.2904062 – ident: ref17 doi: 10.1186/s12859-019-3255-x – ident: ref20 doi: 10.1109/MSP.2017.2765202 – ident: ref14 doi: 10.1007/s12273-019-0598-1 – volume: 70 start-page: 214 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref24 article-title: Wasserstein generative adversarial networks – volume: 2014 start-page: 2 issue: 5 year: 2014 ident: ref26 article-title: Conditional generative adversarial nets for convolutional face generation publication-title: Class Project Stanford CS231N, Convolutional Neural Netw. Visual Recognit., Winter Semester – ident: ref5 doi: 10.1109/TASE.2017.2669892 – ident: ref33 doi: 10.1109/TASE.2017.2770170 – ident: ref30 doi: 10.1016/j.enbuild.2018.10.016 – ident: ref15 doi: 10.3390/en12030527 – ident: ref38 doi: 10.1007/s10664-017-9512-6 – ident: ref18 doi: 10.1002/eap.2043 – ident: ref6 doi: 10.1016/j.ijrefrig.2017.11.003 – ident: ref7 doi: 10.1016/j.applthermaleng.2018.03.041 – ident: ref34 doi: 10.1109/TASE.2018.2874487 – ident: ref2 doi: 10.1016/j.applthermaleng.2017.12.024 – ident: ref36 doi: 10.1016/S0034-4257(97)00083-7 – ident: ref29 doi: 10.1109/TMI.2015.2512606 |
| SSID | ssj0024890 |
| Score | 2.5882354 |
| Snippet | Artificial intelligence (AI)-enhanced automated fault diagnosis (AFD) has become increasingly popular for chiller fault diagnosis with promising classification... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 387 |
| SubjectTerms | Algorithms Artificial intelligence Automation Comparative studies Data augmentation Datasets Fault diagnosis Gallium nitride generative adversarial network (GAN) Generative adversarial networks HVAC Machine learning Refrigerants Training Training data variational autoencoder (VAE) |
| Title | Chiller Fault Diagnosis Based on VAE-Enabled Generative Adversarial Networks |
| URI | https://ieeexplore.ieee.org/document/9264218 https://www.proquest.com/docview/2616721886 |
| Volume | 19 |
| WOSCitedRecordID | wos000739634600034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4Me_DXF6ZQcPIlxadom6XHqhgcZglN2K0mTwmBssnb-_SZpNxVF8NZDAuW9JN_7XvK-B3CZUYtrihhMTJjjiGc5FnkmcZ6oxOI_40ZJ32yCj0ZiMkmeGnC9qYUxxvjHZ-bGffq7fL3IVi5V1kuoK8sUTWhyzqparU9dPeHzKS4iwHESx_UNZkCS3rj_PLBMkFqCSkKL9-QbBvmmKj9OYg8vw73__dg-7NZhJOpXfj-Ahpkfws4XccE2PDrV4plZoqFczUp0X72pmxbo1gKXRos5eu0P8MDXTmlUyU-7sw_5Hs2FdCsTjapX4sURvAwH47sHXPdOwJkF8BLHOaVBZrmKDeDCgHIdcxnpSHKhrfVZoJlgRsQy1EyRkCq7TYmMEmORTDFl8vAYWvPF3JwAInmodRSpKDbUhRuSaiNUyL1uDw-iDpC1NdOsFhZ3_S1mqScYJEmdA1LngLR2QAeuNlPeKlWNvwa3ncU3A2tjd6C7dlla77sitXyQWU4rBDv9fdYZbFNXwOCTKF1olcuVOYet7L2cFssLv6Q-APwTxto |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKagHf4vTqTl4EuPSNG3T49SNiXMITtmtJE0Kg7HJuvn3m6TdVBTBWw8JlPeSfO97yfsewEVKDa5JojHRfoZZlGaYZ6nAWSxjg_9hpKVwzSaiXo8PBvFTBa6WtTBaa_f4TF_bT3eXrybp3KbKGjG1ZZl8BVYDxigpqrU-lfW4y6jYmAAHcRCUd5geiRv95nPLcEFqKCrxDeKTbyjk2qr8OIsdwLS3__drO7BVBpKoWXh-Fyp6vAebX-QF96FrdYtHeoraYj6aobviVd0wRzcGuhSajNFrs4VbrnpKoUKA2p5-yHVpzoVdm6hXvBPPD-Cl3erfdnDZPQGnBsJnOMgo9VLDVkwI53s0UkEkmGIi4srYP_RUyEPNA-GrUBKfSrNRiWCxNlgmQ6kz_xCq48lYHwEima8UY5IFmtqAQ1ClufQjp9wTeawGZGHNJC2lxW2Hi1HiKAaJE-uAxDogKR1Qg8vllLdCV-OvwfvW4suBpbFrUF-4LCl3Xp4YRhgaVst5ePz7rHNY7_Qfu0n3vvdwAhvUljO4lEodqrPpXJ_CWvo-G-bTM7e8PgCCu8oh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiller+Fault+Diagnosis+Based+on+VAE-Enabled+Generative+Adversarial+Networks&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Yan%2C+Ke&rft.au=Su%2C+Jianye&rft.au=Huang%2C+Jing&rft.au=Mo%2C+Yuchang&rft.date=2022-01-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=1&rft.spage=387&rft.epage=395&rft_id=info:doi/10.1109%2FTASE.2020.3035620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2020_3035620 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |