Chiller Fault Diagnosis Based on VAE-Enabled Generative Adversarial Networks

Artificial intelligence (AI)-enhanced automated fault diagnosis (AFD) has become increasingly popular for chiller fault diagnosis with promising classification performance. In practice, a sufficient number of fault samples are required by the AI methods in the training phase. However, faulty trainin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 19; no. 1; pp. 387 - 395
Main Authors: Yan, Ke, Su, Jianye, Huang, Jing, Mo, Yuchang
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Artificial intelligence (AI)-enhanced automated fault diagnosis (AFD) has become increasingly popular for chiller fault diagnosis with promising classification performance. In practice, a sufficient number of fault samples are required by the AI methods in the training phase. However, faulty training samples are generally much more difficult to be collected than normal training samples. Data augmentation is introduced in these scenarios to enhance the training data set with synthetic data. In this study, a variational autoencoder-based conditional Wasserstein GAN with gradient penalty (CWGAN-GP-VAE) is proposed to diagnose various faults for chillers. A detailed comparative study has been conducted with real-world fault data samples to verify the effectiveness and robustness of the proposed methodology. Note to Practitioners -This work attacks the fact that faulty training samples are usually much harder to be collected than the normal training samples in the practice of chiller automated fault diagnosis (AFD). Modern supervised learning chiller AFD relies on a sufficient number of faulty training samples to train the classifier. When the number of faulty training samples is insufficient, the conventional AFD methods fail to work. This study proposed a variational autoencoder-based conditional Wasserstein GAN with gradient penalty (CWGAN-GP-VAE) framework for generating synthetic faulty training samples to enrich the training data set for machine learning-based AFD methods. The proposed algorithm has been carefully designed, implemented, and practically proved to be more effective than the existing methods in the literature.
AbstractList Artificial intelligence (AI)-enhanced automated fault diagnosis (AFD) has become increasingly popular for chiller fault diagnosis with promising classification performance. In practice, a sufficient number of fault samples are required by the AI methods in the training phase. However, faulty training samples are generally much more difficult to be collected than normal training samples. Data augmentation is introduced in these scenarios to enhance the training data set with synthetic data. In this study, a variational autoencoder-based conditional Wasserstein GAN with gradient penalty (CWGAN-GP-VAE) is proposed to diagnose various faults for chillers. A detailed comparative study has been conducted with real-world fault data samples to verify the effectiveness and robustness of the proposed methodology. Note to Practitioners —This work attacks the fact that faulty training samples are usually much harder to be collected than the normal training samples in the practice of chiller automated fault diagnosis (AFD). Modern supervised learning chiller AFD relies on a sufficient number of faulty training samples to train the classifier. When the number of faulty training samples is insufficient, the conventional AFD methods fail to work. This study proposed a variational autoencoder-based conditional Wasserstein GAN with gradient penalty (CWGAN-GP-VAE) framework for generating synthetic faulty training samples to enrich the training data set for machine learning-based AFD methods. The proposed algorithm has been carefully designed, implemented, and practically proved to be more effective than the existing methods in the literature.
Author Su, Jianye
Mo, Yuchang
Huang, Jing
Yan, Ke
Author_xml – sequence: 1
  givenname: Ke
  orcidid: 0000-0002-1611-6636
  surname: Yan
  fullname: Yan, Ke
  organization: Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou, China
– sequence: 2
  givenname: Jianye
  orcidid: 0000-0003-0070-350X
  surname: Su
  fullname: Su, Jianye
  organization: Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou, China
– sequence: 3
  givenname: Jing
  orcidid: 0000-0001-8704-154X
  surname: Huang
  fullname: Huang, Jing
  email: gabriel.jing.huang@gmail.com
  organization: School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, China
– sequence: 4
  givenname: Yuchang
  orcidid: 0000-0002-1976-5412
  surname: Mo
  fullname: Mo, Yuchang
  organization: Fujian Province University Key Laboratory of Computational Science, School of Mathematical Sciences, Huaqiao University, Quanzhou, China
BookMark eNp9kD9PwzAQxS0EEm3hAyCWSMwp_hM7zhhKWpAqGCislpNcwCXYxU6L-PYkasXAwHR30vvdu3tjdGydBYQuCJ4SgrPrVf5UTCmmeMow44LiIzQinMuYpZIdD33CY55xforGIawxponM8AgtZ2-mbcFHc71tu-jW6FfrggnRjQ5QR85GL3kRF1aXbT8uwILXndlBlNc78EF7o9voAbov59_DGTppdBvg_FAn6HlerGZ38fJxcT_Ll3FFM9bFvKGUVALzjDJGaFrzVCd1olNZQ6kFqYUUILlmtSgxo2WaMayTDCihpSihYRN0td-78e5zC6FTa7f1trdUVBCRUiKl6FVkr6q8C8FDozbefGj_rQhWQ2hqCE0NoalDaD2T_mEq0_UPO9t5bdp_ycs9aQDg1ymjIumvYT9zOnob
CODEN ITASC7
CitedBy_id crossref_primary_10_1007_s12206_025_0406_z
crossref_primary_10_1177_14759217251370360
crossref_primary_10_1016_j_jnca_2024_104020
crossref_primary_10_3390_act12060242
crossref_primary_10_1007_s00521_022_07417_9
crossref_primary_10_1016_j_renene_2021_12_054
crossref_primary_10_1016_j_jobe_2025_113527
crossref_primary_10_70401_jbde_2025_0012
crossref_primary_10_1016_j_buildenv_2025_112529
crossref_primary_10_1016_j_apenergy_2023_122189
crossref_primary_10_1063_5_0260746
crossref_primary_10_1016_j_engappai_2024_109443
crossref_primary_10_1016_j_aei_2024_102471
crossref_primary_10_1016_j_apenergy_2023_121975
crossref_primary_10_1016_j_ress_2024_110567
crossref_primary_10_1155_2022_1807103
crossref_primary_10_1007_s10489_023_04870_4
crossref_primary_10_1016_j_eswa_2023_121076
crossref_primary_10_1109_TII_2022_3193733
crossref_primary_10_1109_JSEN_2023_3334739
crossref_primary_10_1109_JSEN_2023_3347251
crossref_primary_10_1016_j_rser_2025_115387
crossref_primary_10_1109_TII_2024_3403267
crossref_primary_10_1109_ACCESS_2024_3351802
crossref_primary_10_1016_j_knosys_2022_109651
crossref_primary_10_1016_j_jobe_2025_112646
crossref_primary_10_1088_1361_6501_ada4c7
crossref_primary_10_1109_TIM_2025_3547074
crossref_primary_10_1155_2021_9953509
crossref_primary_10_1109_TIM_2024_3504560
crossref_primary_10_1016_j_engappai_2025_112177
crossref_primary_10_1016_j_enbuild_2025_115844
crossref_primary_10_1016_j_compeleceng_2024_109268
crossref_primary_10_1016_j_buildenv_2022_109218
crossref_primary_10_1016_j_buildenv_2024_112265
crossref_primary_10_1016_j_ress_2023_109455
crossref_primary_10_1139_tcsme_2024_0167
crossref_primary_10_1002_qre_3394
crossref_primary_10_1109_TSUSC_2024_3390003
crossref_primary_10_1016_j_displa_2024_102847
crossref_primary_10_1109_ACCESS_2024_3490701
crossref_primary_10_1093_jcde_qwae075
crossref_primary_10_1177_10775463251378250
crossref_primary_10_1109_TASE_2023_3325271
crossref_primary_10_1016_j_jobe_2024_108991
crossref_primary_10_1016_j_eswa_2024_126109
crossref_primary_10_1007_s12273_023_1086_1
crossref_primary_10_1016_j_engappai_2024_109218
crossref_primary_10_1007_s11063_022_11143_7
crossref_primary_10_3390_machines13080673
crossref_primary_10_1109_TASE_2024_3502426
crossref_primary_10_1007_s10462_024_11021_9
crossref_primary_10_1109_TSP_2024_3502454
crossref_primary_10_1109_TASE_2021_3106011
crossref_primary_10_1109_TII_2022_3230684
crossref_primary_10_1016_j_enbuild_2024_114540
crossref_primary_10_1155_2024_1041791
crossref_primary_10_3390_su14095441
crossref_primary_10_1016_j_buildenv_2022_109620
crossref_primary_10_1109_ACCESS_2022_3228441
crossref_primary_10_1109_JSEN_2022_3211021
crossref_primary_10_1109_TII_2024_3514090
crossref_primary_10_1016_j_eswa_2023_122545
crossref_primary_10_1016_j_ymssp_2023_111033
crossref_primary_10_1109_TII_2024_3383459
crossref_primary_10_1109_TIM_2024_3481554
crossref_primary_10_1016_j_jobe_2022_105559
crossref_primary_10_1016_j_buildenv_2025_113271
crossref_primary_10_1016_j_engappai_2023_106911
crossref_primary_10_1016_j_jobe_2024_109137
crossref_primary_10_1109_TIM_2025_3542138
crossref_primary_10_1016_j_rser_2024_114418
crossref_primary_10_1080_15435075_2025_2557564
crossref_primary_10_1109_TASE_2023_3331347
crossref_primary_10_1088_1361_6501_ad8024
crossref_primary_10_1016_j_decarb_2023_100023
crossref_primary_10_1016_j_energy_2023_127405
crossref_primary_10_1016_j_jprocont_2023_103050
crossref_primary_10_1016_j_buildenv_2022_109513
crossref_primary_10_1016_j_buildenv_2024_112365
crossref_primary_10_1016_j_buildenv_2022_108866
crossref_primary_10_1109_TASE_2025_3552009
crossref_primary_10_1016_j_enconman_2025_120418
crossref_primary_10_3390_en15124366
crossref_primary_10_1109_TII_2022_3197839
crossref_primary_10_1109_TR_2022_3214519
Cites_doi 10.1007/BF01753236
10.3156/jsoft.29.5_177_2
10.1109/TNSRE.2017.2721116
10.1016/j.eswa.2017.09.030
10.1109/TCDS.2018.2883368
10.1016/j.enbuild.2017.03.064
10.1109/TASE.2016.2574875
10.1109/TASE.2006.888053
10.1109/TASE.2006.888054
10.1016/j.enbuild.2016.09.037
10.1016/j.enbuild.2012.11.007
10.1016/j.enbuild.2016.07.014
10.1016/j.applthermaleng.2016.06.153
10.1109/TSMC.2019.2938298
10.1016/j.neucom.2016.09.076
10.1109/IJCNN.2008.4633969
10.1109/TPAMI.2019.2904062
10.1186/s12859-019-3255-x
10.1109/MSP.2017.2765202
10.1007/s12273-019-0598-1
10.1109/TASE.2017.2669892
10.1109/TASE.2017.2770170
10.1016/j.enbuild.2018.10.016
10.3390/en12030527
10.1007/s10664-017-9512-6
10.1002/eap.2043
10.1016/j.ijrefrig.2017.11.003
10.1016/j.applthermaleng.2018.03.041
10.1109/TASE.2018.2874487
10.1016/j.applthermaleng.2017.12.024
10.1016/S0034-4257(97)00083-7
10.1109/TMI.2015.2512606
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2020.3035620
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 395
ExternalDocumentID 10_1109_TASE_2020_3035620
9264218
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61850410531; 61602431; 61972156
  funderid: 10.13039/501100001809
– fundername: Ministry of Education (MOE) Singapore, Tier 1 Grant for National University of Singapore (NUS)
  grantid: R296000208133
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-5f221c6059233127d57a4d4a78deba61d686e85a3d6b032b7930a49e212b6bef3
IEDL.DBID RIE
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000739634600034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Nov 09 06:15:46 EST 2025
Sat Nov 29 04:12:47 EST 2025
Tue Nov 18 22:08:13 EST 2025
Wed Aug 27 03:03:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-5f221c6059233127d57a4d4a78deba61d686e85a3d6b032b7930a49e212b6bef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1611-6636
0000-0002-1976-5412
0000-0001-8704-154X
0000-0003-0070-350X
PQID 2616721886
PQPubID 27623
PageCount 9
ParticipantIDs crossref_primary_10_1109_TASE_2020_3035620
proquest_journals_2616721886
crossref_citationtrail_10_1109_TASE_2020_3035620
ieee_primary_9264218
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Gauthier (ref26) 2014; 2014
ref17
Lopez (ref27)
ref16
ref38
ref19
ref18
Comstock (ref21) 2006
ref23
ref20
ref22
Gulrajani (ref25)
(ref1) 2016
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Arjovsky (ref24); 70
References_xml – ident: ref23
  doi: 10.1007/BF01753236
– ident: ref22
  doi: 10.3156/jsoft.29.5_177_2
– start-page: 6114
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Information constraints on auto-encoding variational Bayes
– ident: ref37
  doi: 10.1109/TNSRE.2017.2721116
– ident: ref16
  doi: 10.1016/j.eswa.2017.09.030
– start-page: 5767
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Improved training of Wasserstein GANs
– ident: ref28
  doi: 10.1109/TCDS.2018.2883368
– ident: ref3
  doi: 10.1016/j.enbuild.2017.03.064
– ident: ref32
  doi: 10.1109/TASE.2016.2574875
– ident: ref4
  doi: 10.1109/TASE.2006.888053
– ident: ref8
  doi: 10.1109/TASE.2006.888054
– year: 2006
  ident: ref21
  article-title: ASHRAE 1043-RP: Fault detection and diagnostic (FDD) requirements and evaluation tools for chillers
– ident: ref10
  doi: 10.1016/j.enbuild.2016.09.037
– ident: ref11
  doi: 10.1016/j.enbuild.2012.11.007
– ident: ref12
  doi: 10.1016/j.enbuild.2016.07.014
– ident: ref13
  doi: 10.1016/j.applthermaleng.2016.06.153
– ident: ref31
  doi: 10.1109/TSMC.2019.2938298
– ident: ref9
  doi: 10.1016/j.neucom.2016.09.076
– volume-title: Buildings Energy Data Book, Energy Efficiency & Renewable Energy Department
  year: 2016
  ident: ref1
– ident: ref19
  doi: 10.1109/IJCNN.2008.4633969
– ident: ref35
  doi: 10.1109/TPAMI.2019.2904062
– ident: ref17
  doi: 10.1186/s12859-019-3255-x
– ident: ref20
  doi: 10.1109/MSP.2017.2765202
– ident: ref14
  doi: 10.1007/s12273-019-0598-1
– volume: 70
  start-page: 214
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref24
  article-title: Wasserstein generative adversarial networks
– volume: 2014
  start-page: 2
  issue: 5
  year: 2014
  ident: ref26
  article-title: Conditional generative adversarial nets for convolutional face generation
  publication-title: Class Project Stanford CS231N, Convolutional Neural Netw. Visual Recognit., Winter Semester
– ident: ref5
  doi: 10.1109/TASE.2017.2669892
– ident: ref33
  doi: 10.1109/TASE.2017.2770170
– ident: ref30
  doi: 10.1016/j.enbuild.2018.10.016
– ident: ref15
  doi: 10.3390/en12030527
– ident: ref38
  doi: 10.1007/s10664-017-9512-6
– ident: ref18
  doi: 10.1002/eap.2043
– ident: ref6
  doi: 10.1016/j.ijrefrig.2017.11.003
– ident: ref7
  doi: 10.1016/j.applthermaleng.2018.03.041
– ident: ref34
  doi: 10.1109/TASE.2018.2874487
– ident: ref2
  doi: 10.1016/j.applthermaleng.2017.12.024
– ident: ref36
  doi: 10.1016/S0034-4257(97)00083-7
– ident: ref29
  doi: 10.1109/TMI.2015.2512606
SSID ssj0024890
Score 2.5882354
Snippet Artificial intelligence (AI)-enhanced automated fault diagnosis (AFD) has become increasingly popular for chiller fault diagnosis with promising classification...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 387
SubjectTerms Algorithms
Artificial intelligence
Automation
Comparative studies
Data augmentation
Datasets
Fault diagnosis
Gallium nitride
generative adversarial network (GAN)
Generative adversarial networks
HVAC
Machine learning
Refrigerants
Training
Training data
variational autoencoder (VAE)
Title Chiller Fault Diagnosis Based on VAE-Enabled Generative Adversarial Networks
URI https://ieeexplore.ieee.org/document/9264218
https://www.proquest.com/docview/2616721886
Volume 19
WOSCitedRecordID wos000739634600034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4Me_DXF6ZQcPIlxadom6XHqhgcZglN2K0mTwmBssnb-_SZpNxVF8NZDAuW9JN_7XvK-B3CZUYtrihhMTJjjiGc5FnkmcZ6oxOI_40ZJ32yCj0ZiMkmeGnC9qYUxxvjHZ-bGffq7fL3IVi5V1kuoK8sUTWhyzqparU9dPeHzKS4iwHESx_UNZkCS3rj_PLBMkFqCSkKL9-QbBvmmKj9OYg8vw73__dg-7NZhJOpXfj-Ahpkfws4XccE2PDrV4plZoqFczUp0X72pmxbo1gKXRos5eu0P8MDXTmlUyU-7sw_5Hs2FdCsTjapX4sURvAwH47sHXPdOwJkF8BLHOaVBZrmKDeDCgHIdcxnpSHKhrfVZoJlgRsQy1EyRkCq7TYmMEmORTDFl8vAYWvPF3JwAInmodRSpKDbUhRuSaiNUyL1uDw-iDpC1NdOsFhZ3_S1mqScYJEmdA1LngLR2QAeuNlPeKlWNvwa3ncU3A2tjd6C7dlla77sitXyQWU4rBDv9fdYZbFNXwOCTKF1olcuVOYet7L2cFssLv6Q-APwTxto
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKagHf4vTqTl4EuPSNG3T49SNiXMITtmtJE0Kg7HJuvn3m6TdVBTBWw8JlPeSfO97yfsewEVKDa5JojHRfoZZlGaYZ6nAWSxjg_9hpKVwzSaiXo8PBvFTBa6WtTBaa_f4TF_bT3eXrybp3KbKGjG1ZZl8BVYDxigpqrU-lfW4y6jYmAAHcRCUd5geiRv95nPLcEFqKCrxDeKTbyjk2qr8OIsdwLS3__drO7BVBpKoWXh-Fyp6vAebX-QF96FrdYtHeoraYj6aobviVd0wRzcGuhSajNFrs4VbrnpKoUKA2p5-yHVpzoVdm6hXvBPPD-Cl3erfdnDZPQGnBsJnOMgo9VLDVkwI53s0UkEkmGIi4srYP_RUyEPNA-GrUBKfSrNRiWCxNlgmQ6kz_xCq48lYHwEima8UY5IFmtqAQ1ClufQjp9wTeawGZGHNJC2lxW2Hi1HiKAaJE-uAxDogKR1Qg8vllLdCV-OvwfvW4suBpbFrUF-4LCl3Xp4YRhgaVst5ePz7rHNY7_Qfu0n3vvdwAhvUljO4lEodqrPpXJ_CWvo-G-bTM7e8PgCCu8oh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiller+Fault+Diagnosis+Based+on+VAE-Enabled+Generative+Adversarial+Networks&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Yan%2C+Ke&rft.au=Su%2C+Jianye&rft.au=Huang%2C+Jing&rft.au=Mo%2C+Yuchang&rft.date=2022-01-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=1&rft.spage=387&rft.epage=395&rft_id=info:doi/10.1109%2FTASE.2020.3035620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2020_3035620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon