Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems

Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniq...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on intelligent transportation systems Ročník 22; číslo 7; s. 4507 - 4518
Hlavní autori: Ashraf, Javed, Bakhshi, Asim D., Moustafa, Nour, Khurshid, Hasnat, Javed, Abdullah, Beheshti, Amin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1524-9050, 1558-0016
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniques, thus barring AVs from the effective use in our routine lives. Once manual vehicles are connected to the Internet, called the Internet of Vehicles (IoVs), it would be exploited by cyber-attacks, like denial of service, sniffing, distributed denial of service, spoofing and replay attacks. In this article, we present a deep learning-based Intrusion Detection System (IDS) for ITS, in particular, to discover suspicious network activity of In-Vehicles Networks (IVN), vehicles to vehicles (V2V) communications and vehicles to infrastructure (V2I) networks. A Deep Learning architecture-based Long-Short Term Memory (LSTM) autoencoder algorithm is designed to recognize intrusive events from the central network gateways of AVs. The proposed IDS is evaluated using two benchmark datasets, i.e., the car hacking dataset for in-vehicle communications and the UNSW-NB15 dataset for external network communications. The experimental results demonstrated that our proposed system achieved over a 99% accuracy for detecting all types of attacks on the car hacking dataset and a 98% accuracy on the UNSW-NB15 dataset, outperforming other eight intrusion detection techniques.
AbstractList Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniques, thus barring AVs from the effective use in our routine lives. Once manual vehicles are connected to the Internet, called the Internet of Vehicles (IoVs), it would be exploited by cyber-attacks, like denial of service, sniffing, distributed denial of service, spoofing and replay attacks. In this article, we present a deep learning-based Intrusion Detection System (IDS) for ITS, in particular, to discover suspicious network activity of In-Vehicles Networks (IVN), vehicles to vehicles (V2V) communications and vehicles to infrastructure (V2I) networks. A Deep Learning architecture-based Long-Short Term Memory (LSTM) autoencoder algorithm is designed to recognize intrusive events from the central network gateways of AVs. The proposed IDS is evaluated using two benchmark datasets, i.e., the car hacking dataset for in-vehicle communications and the UNSW-NB15 dataset for external network communications. The experimental results demonstrated that our proposed system achieved over a 99% accuracy for detecting all types of attacks on the car hacking dataset and a 98% accuracy on the UNSW-NB15 dataset, outperforming other eight intrusion detection techniques.
Author Javed, Abdullah
Beheshti, Amin
Moustafa, Nour
Ashraf, Javed
Bakhshi, Asim D.
Khurshid, Hasnat
Author_xml – sequence: 1
  givenname: Javed
  orcidid: 0000-0003-0491-5649
  surname: Ashraf
  fullname: Ashraf, Javed
  email: javed.ashraf@mcs.edu.pk
  organization: Department of Computer Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
– sequence: 2
  givenname: Asim D.
  orcidid: 0000-0002-9516-9153
  surname: Bakhshi
  fullname: Bakhshi, Asim D.
  email: asim.dilawar@mcs.edu.pk
  organization: Department of Computer Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
– sequence: 3
  givenname: Nour
  orcidid: 0000-0001-6127-9349
  surname: Moustafa
  fullname: Moustafa, Nour
  email: nour.moustafa@unsw.edu.au
  organization: School of Engineering and Information Technology, University of New South Wales at ADFA, Canberra, ACT, Australia
– sequence: 4
  givenname: Hasnat
  surname: Khurshid
  fullname: Khurshid, Hasnat
  email: hasnat@mcs.edu.pk
  organization: Department of Computer Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
– sequence: 5
  givenname: Abdullah
  surname: Javed
  fullname: Javed, Abdullah
  email: abdullahjaved.case@gmail.com
  organization: Sir Syed Centre for Advanced Studies in Engineering (CASE), Institute of Technology, Islamabad, Pakistan
– sequence: 6
  givenname: Amin
  surname: Beheshti
  fullname: Beheshti, Amin
  email: amin.beheshti@mq.edu.au
  organization: Department of Computing, Macquarie University, Sydney, NSW, Australia
BookMark eNp9kEtPwzAQhC0EEs8fgLhY4pziR5zExwoKVCpwaDhHjrMuRqldbKcSV345qYo4cOC0q9F8s6s5RYfOO0DokpIJpUTe1PN6OWGEkQkntKwqdoBOqBBVRggtDnc7yzNJBDlGpzG-j2ouKD1BX89-Cz2-A9jgBajgrFtlM6faHjq8WNZPeDokD077DgKeBv1mE-g0BMDGB3xnox4DwkjhqfNr1fsh4tkWXIr4Pvg1nrsEfW9Xo4LroFzc-JBUst7h5WdMsI7n6MioPsLFzzxDr_ez-vYxW7w8zG-ni0wzyVMmoJVFS01Rlm3Fu5brrsyV4aqCThipVV4okRuQkjGujATWEi3BUK6VUi3nZ-h6n7sJ_mOAmJp3PwQ3nmyYEJQXTFTF6Cr3Lh18jAFMo-3-3xSU7RtKml3hza7wZld481P4SNI_5CbYtQqf_zJXe8YCwK9fUllJUvFvwbaRgw
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TITS_2021_3105834
crossref_primary_10_3390_electronics12102284
crossref_primary_10_1051_e3sconf_202346900082
crossref_primary_10_1109_ACCESS_2021_3136147
crossref_primary_10_1109_ACCESS_2023_3307473
crossref_primary_10_3390_s22197655
crossref_primary_10_1002_ett_70239
crossref_primary_10_1016_j_adhoc_2025_103770
crossref_primary_10_1016_j_compeleceng_2022_108308
crossref_primary_10_1016_j_sysarc_2025_103567
crossref_primary_10_1016_j_compeleceng_2022_108543
crossref_primary_10_3233_IDT_240231
crossref_primary_10_1145_3540198
crossref_primary_10_1109_TITS_2022_3202869
crossref_primary_10_1109_JIOT_2021_3122021
crossref_primary_10_1109_TITS_2022_3221388
crossref_primary_10_1007_s00521_024_10967_9
crossref_primary_10_1109_TITS_2021_3106378
crossref_primary_10_1016_j_comnet_2024_110768
crossref_primary_10_1016_j_vehcom_2024_100845
crossref_primary_10_1002_itl2_70046
crossref_primary_10_1109_TITS_2025_3567940
crossref_primary_10_1016_j_future_2025_107779
crossref_primary_10_3390_fi16060185
crossref_primary_10_1109_JIOT_2024_3524504
crossref_primary_10_1109_TITS_2024_3478371
crossref_primary_10_1109_TIV_2023_3304762
crossref_primary_10_1109_JIOT_2021_3130156
crossref_primary_10_1002_widm_1515
crossref_primary_10_1109_ACCESS_2024_3386631
crossref_primary_10_1016_j_trc_2023_104058
crossref_primary_10_1007_s13042_024_02401_2
crossref_primary_10_1007_s11704_023_3026_8
crossref_primary_10_1007_s12083_025_01961_6
crossref_primary_10_1109_TIFS_2022_3228493
crossref_primary_10_1109_MCE_2022_3154346
crossref_primary_10_3390_s22041340
crossref_primary_10_3390_iot3020017
crossref_primary_10_1007_s41870_023_01367_8
crossref_primary_10_1016_j_ins_2023_120057
crossref_primary_10_1109_TITS_2024_3351438
crossref_primary_10_3390_s23218788
crossref_primary_10_1109_JAS_2021_1004261
crossref_primary_10_32604_cmc_2023_039583
crossref_primary_10_1016_j_iot_2024_101245
crossref_primary_10_1109_TITS_2024_3524790
crossref_primary_10_1016_j_imavis_2025_105736
crossref_primary_10_1007_s42154_025_00355_x
crossref_primary_10_1007_s13369_024_09748_2
crossref_primary_10_3390_app13031252
crossref_primary_10_1109_TITS_2022_3188671
crossref_primary_10_1371_journal_pone_0301897
crossref_primary_10_1109_MCE_2021_3137790
crossref_primary_10_1007_s10922_024_09873_1
crossref_primary_10_1016_j_procs_2024_10_050
crossref_primary_10_1049_itr2_70017
crossref_primary_10_1109_JIOT_2023_3303271
crossref_primary_10_1061_JAEEEZ_ASENG_4576
crossref_primary_10_1109_JIOT_2024_3448505
crossref_primary_10_1016_j_rineng_2024_103171
crossref_primary_10_7717_peerj_cs_1648
crossref_primary_10_1016_j_cose_2022_102919
crossref_primary_10_1177_03611981231159118
crossref_primary_10_1016_j_suscom_2023_100936
crossref_primary_10_3390_app13116369
crossref_primary_10_1007_s40747_022_00705_w
crossref_primary_10_1109_TITS_2022_3229517
crossref_primary_10_1109_TITS_2022_3146024
crossref_primary_10_3390_s25134174
crossref_primary_10_1080_19393555_2024_2307638
crossref_primary_10_1016_j_measurement_2023_112884
crossref_primary_10_1016_j_ijcip_2025_100745
crossref_primary_10_1007_s13369_024_08787_z
crossref_primary_10_1109_ACCESS_2023_3347619
crossref_primary_10_1016_j_compeleceng_2025_110318
crossref_primary_10_1109_TITS_2024_3509459
crossref_primary_10_1016_j_asoc_2025_113346
crossref_primary_10_1016_j_comnet_2024_110560
crossref_primary_10_1109_ACCESS_2023_3273904
crossref_primary_10_1109_JIOT_2021_3084796
crossref_primary_10_3390_app12125864
crossref_primary_10_1109_TCE_2023_3326384
crossref_primary_10_1109_TGCN_2022_3179350
crossref_primary_10_3390_electronics12183779
crossref_primary_10_1007_s11071_024_10041_y
crossref_primary_10_1109_TITS_2024_3380263
crossref_primary_10_1109_TNSE_2024_3397719
crossref_primary_10_1109_ACCESS_2021_3098675
crossref_primary_10_1016_j_knosys_2024_112091
crossref_primary_10_3390_fi17070310
crossref_primary_10_1016_j_psep_2022_06_036
crossref_primary_10_1109_TC_2023_3333253
crossref_primary_10_2514_1_I011474
crossref_primary_10_3390_s23084086
crossref_primary_10_1016_j_engappai_2022_105458
crossref_primary_10_1109_COMST_2023_3236448
crossref_primary_10_1007_s10791_025_09696_x
crossref_primary_10_1016_j_cstp_2024_101247
crossref_primary_10_1016_j_adhoc_2024_103590
crossref_primary_10_1007_s10207_023_00807_7
crossref_primary_10_3390_electronics11101529
crossref_primary_10_1007_s12083_024_01627_9
crossref_primary_10_1109_TVT_2024_3385916
crossref_primary_10_1145_3570954
crossref_primary_10_1109_COMST_2023_3309864
crossref_primary_10_3390_electronics14132572
crossref_primary_10_1109_JSEN_2022_3208013
crossref_primary_10_1155_2021_7126913
crossref_primary_10_1109_ACCESS_2025_3569356
crossref_primary_10_1109_MNET_2024_3486220
crossref_primary_10_1016_j_geoen_2024_213279
crossref_primary_10_1007_s11227_024_06269_5
crossref_primary_10_1109_TITS_2021_3130906
crossref_primary_10_1109_TITS_2023_3267462
crossref_primary_10_32604_cmc_2023_033422
crossref_primary_10_1016_j_cose_2022_102842
crossref_primary_10_1007_s10586_025_05124_3
crossref_primary_10_1016_j_procs_2023_11_037
crossref_primary_10_1007_s40860_024_00231_1
crossref_primary_10_1063_5_0283683
crossref_primary_10_1016_j_vehcom_2024_100830
crossref_primary_10_4271_12_08_04_0031
crossref_primary_10_1016_j_phycom_2022_101938
crossref_primary_10_1016_j_knosys_2025_114436
crossref_primary_10_1109_ACCESS_2022_3176317
crossref_primary_10_1016_j_vehcom_2022_100515
crossref_primary_10_3390_s23094399
crossref_primary_10_1063_5_0221722
crossref_primary_10_1109_TITS_2021_3102581
crossref_primary_10_3390_wevj15080356
crossref_primary_10_1007_s12083_023_01508_7
crossref_primary_10_1016_j_knosys_2024_111387
Cites_doi 10.1109/VTCSpring.2018.8417690
10.1201/9781482276596
10.1109/TBDATA.2017.2715166
10.1016/j.array.2019.100013
10.1109/DSAA.2016.20
10.1109/TVT.2019.2893675
10.1007/BF00332918
10.1109/TII.2019.2957140
10.1016/j.suscom.2019.05.002
10.1109/TIFS.2018.2890808
10.1016/0364-0213(90)90002-E
10.1162/neco.1997.9.8.1735
10.1007/978-3-030-36167-9_9
10.1109/TASE.2016.2599436
10.1080/19393555.2015.1125974
10.1109/MNET.001.1900220
10.1109/TNSE.2020.2990984
10.1109/ICC.2016.7510811
10.1109/MWC.001.1900311
10.1016/j.adhoc.2019.02.001
10.1109/MCOM.2018.1701270
10.1109/TVT.2019.2907269
10.1109/MilCIS.2017.8190422
10.1109/GLOBECOM38437.2019.9013892
10.1109/MNET.2017.1600257
10.1109/ACCESS.2018.2825538
10.1371/journal.pone.0155781
10.1016/j.sysarc.2020.101761
10.1109/TITS.2019.2908074
10.1109/TNSM.2020.2972774
10.1109/MilCIS.2015.7348942
10.1007/s12243-016-0551-6
10.1109/PST.2018.8514157
10.1109/MilCIS.2017.8190421
10.1109/PST.2017.00017
10.1016/j.asoc.2018.05.049
10.1109/TVT.2020.2977829
10.1016/j.eswa.2019.04.017
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2020.3017882
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 4518
ExternalDocumentID 10_1109_TITS_2020_3017882
9198908
Genre orig-research
GrantInformation_xml – fundername: 2020 Australian Spitfire Memorial Defence Fund
  grantid: PS39150
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-5eb96b1f677b83db3cd74af3a8ed5f9ca46a54fe99223af9e2b0c9ef13caaab33
IEDL.DBID RIE
ISICitedReferencesCount 179
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673518500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 30 04:18:32 EST 2025
Sat Nov 29 06:34:55 EST 2025
Tue Nov 18 22:53:28 EST 2025
Wed Aug 27 02:40:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-5eb96b1f677b83db3cd74af3a8ed5f9ca46a54fe99223af9e2b0c9ef13caaab33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9516-9153
0000-0003-0491-5649
0000-0001-6127-9349
PQID 2551362586
PQPubID 75735
PageCount 12
ParticipantIDs crossref_primary_10_1109_TITS_2020_3017882
proquest_journals_2551362586
crossref_citationtrail_10_1109_TITS_2020_3017882
ieee_primary_9198908
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
ref37
ref15
miller (ref3) 2015
ref36
ref31
ref30
marsden (ref13) 2017
ref33
ref11
ref32
ref10
bernardini (ref5) 2017; 10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
song (ref35) 2020; 21
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
moustaf (ref14) 2015
ref28
nie (ref4) 2017
ref27
ref29
ref8
ref7
ref9
ref6
ref40
References_xml – ident: ref33
  doi: 10.1109/VTCSpring.2018.8417690
– ident: ref20
  doi: 10.1201/9781482276596
– ident: ref21
  doi: 10.1109/TBDATA.2017.2715166
– ident: ref8
  doi: 10.1016/j.array.2019.100013
– ident: ref32
  doi: 10.1109/DSAA.2016.20
– ident: ref26
  doi: 10.1109/TVT.2019.2893675
– ident: ref43
  doi: 10.1007/BF00332918
– ident: ref15
  doi: 10.1109/TII.2019.2957140
– ident: ref37
  doi: 10.1016/j.suscom.2019.05.002
– ident: ref22
  doi: 10.1109/TIFS.2018.2890808
– ident: ref42
  doi: 10.1016/0364-0213(90)90002-E
– ident: ref44
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref2
  doi: 10.1007/978-3-030-36167-9_9
– ident: ref16
  doi: 10.1109/TASE.2016.2599436
– ident: ref17
  doi: 10.1080/19393555.2015.1125974
– ident: ref1
  doi: 10.1109/MNET.001.1900220
– ident: ref36
  doi: 10.1109/TNSE.2020.2990984
– ident: ref18
  doi: 10.1109/ICC.2016.7510811
– ident: ref39
  doi: 10.1109/MWC.001.1900311
– ident: ref34
  doi: 10.1016/j.adhoc.2019.02.001
– ident: ref29
  doi: 10.1109/MCOM.2018.1701270
– ident: ref27
  doi: 10.1109/TVT.2019.2907269
– start-page: 204
  year: 2015
  ident: ref14
  article-title: Creating novel features to anomaly network detection using DARPA-2009 data set
  publication-title: Proc 14th Eur Conf Cyber Warfare Secur
– ident: ref25
  doi: 10.1109/MilCIS.2017.8190422
– ident: ref28
  doi: 10.1109/GLOBECOM38437.2019.9013892
– ident: ref7
  doi: 10.1109/MNET.2017.1600257
– ident: ref30
  doi: 10.1109/ACCESS.2018.2825538
– ident: ref11
  doi: 10.1371/journal.pone.0155781
– ident: ref41
  doi: 10.1016/j.sysarc.2020.101761
– start-page: 1
  year: 2017
  ident: ref4
  publication-title: Free-Fall Hacking Tesla from Wireless to Can Bus
– ident: ref6
  doi: 10.1109/TITS.2019.2908074
– start-page: 91
  year: 2015
  ident: ref3
  publication-title: Remote exploitation of an unaltered passenger vehicle
– ident: ref40
  doi: 10.1109/TNSM.2020.2972774
– ident: ref31
  doi: 10.1109/MilCIS.2015.7348942
– start-page: 353
  year: 2017
  ident: ref13
  article-title: Probability risk identification based intrusion detection system for SCADA systems
  publication-title: Proc Int Conf Mobile Netw Manage
– ident: ref9
  doi: 10.1007/s12243-016-0551-6
– ident: ref10
  doi: 10.1109/PST.2018.8514157
– ident: ref23
  doi: 10.1109/MilCIS.2017.8190421
– ident: ref12
  doi: 10.1109/PST.2017.00017
– ident: ref19
  doi: 10.1016/j.asoc.2018.05.049
– ident: ref38
  doi: 10.1109/TVT.2020.2977829
– ident: ref24
  doi: 10.1016/j.eswa.2019.04.017
– volume: 21
  year: 2020
  ident: ref35
  article-title: In-vehicle network intrusion detection using deep convolutional neural network
  publication-title: Veh Commun
– volume: 10
  start-page: 13
  year: 2017
  ident: ref5
  article-title: Security and privacy in vehicular communications: Challenges and opportunities
  publication-title: Veh Commun
SSID ssj0014511
Score 2.6674848
Snippet Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4507
SubjectTerms Algorithms
autoencoder
Autonomous vehicles
CAN bus
Computer architecture
Computer crime
Computer networks
Cybersecurity
Datasets
Deep learning
Denial of service attacks
Gateways
Intelligent transport systems
Intelligent transportation systems
Internet of Vehicles
Intrusion detection
intrusion detection system
Intrusion detection systems
LSTM
Machine learning
Security management
Short term
Spoofing
Training
Transportation networks
Title Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems
URI https://ieeexplore.ieee.org/document/9198908
https://www.proquest.com/docview/2551362586
Volume 22
WOSCitedRecordID wos000673518500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9tAEF0S00NzaJKmoc4Xe8ipdGtpd6XVHk1sU4NrAnFLbmI_RsXgWMGS_QPyy7O7lkVCQ6A3HXZA8EY7M5o3bxC6Bm5dVp8Z4oKxINwmkkiXCBNgmicMEqqCpNCfiZhOs_t7ebuHvrezMAAQyGfwwz-GXr4tzdr_KutJT_Dxk737QojtrFbbMfA6W0EblXIio2TXwYwj2ZuNZ3euEqSuQPXL6DP6KgaFpSr_3MQhvIwO_-_FjtCnJo3E_S3ux2gPlp_RwQtxwRP0NC03sMADgEfcqKj-JcMwKmXx5G72C_fXdel1LC2scP9FQwG7RBYP5pXx9E5nhfvL8kEtynWFh54eWeHRqnzA41bNs8atRnoAGjc66F_Q79FwdvOTNBsXiHFhvyYJaJnquEiF0BmzmhkruCqYysAmhTSKpyrhBXgxW6YKCVRHRkIRM6OU0oydos6yXMJXhOOCs1RR5wrKcBtD5jxCO0NNIwEuyeuiaIdBbho5cr8VY5GHsiSSuYct97DlDWxd9K01edxqcbx3-MTj1B5sIOqiix3QefO1Vjn1W25cIZilZ29bnaOP1HNZAk33AnXq1Rou0QezqefV6io44jPP5t2e
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5CWmhz6CsNcZK2e8gpdBtpd_XYo0lsYuqYQtSSm9jHKAQcK1hyfkB-eXbXskhpKfSmww4IvtHOjOabbwCOUViX1eeGumCcUWETSaVLhClyLRKOCVNBUujXNJvN8utr-WMLvvazMIgYyGf4zT-GXr6tzcr_KjuVnuDjJ3tfJEKweD2t1fcMvNJWUEdlgsoo2fQw40ieFpPiytWCzJWofh19zn6LQmGtyh93cQgw47f_92rv4E2XSJLhGvn3sIWLD7DzTF5wFx5n9QPOyTniPel0VG_oKAxLWTK9Ki7JcNXWXsnS4pIMn7UUiEtlyfltYzzB01mR4aK-U_N61ZCRJ0g2ZLys78ik1_NsSa-SHqAmnRL6R_g5HhVnF7TbuUCNC_wtTVDLVMdVmmU651ZzYzOhKq5ytEkljRKpSkSFXs6Wq0oi05GRWMXcKKU053uwvagXuA8krgRPFXPOoIywMebOJ7Qz1CzK0KV5A4g2GJSmEyT3ezHmZShMIll62EoPW9nBNoCT3uR-rcbxr8O7Hqf-YAfRAI42QJfd99qUzO-5caVgnh783eoLvLooLqfldDL7fgivmWe2BNLuEWy3yxV-gpfmob1tlp-DUz4BeMXg5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Deep+Learning-Enabled+LSTM+Autoencoder+Architecture+for+Discovering+Anomalous+Events+From+Intelligent+Transportation+Systems&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Ashraf%2C+Javed&rft.au=Bakhshi%2C+Asim+D.&rft.au=Moustafa%2C+Nour&rft.au=Khurshid%2C+Hasnat&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=22&rft.issue=7&rft.spage=4507&rft.epage=4518&rft_id=info:doi/10.1109%2FTITS.2020.3017882&rft.externalDocID=9198908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon