Perceptual Loss-Constrained Adversarial Autoencoder Networks for Hyperspectral Unmixing
Recently, the use of a deep autoencoder-based method in blind spectral unmixing has attracted great attention as the method can achieve superior performance. However, most autoencoder-based unmixing methods use non-structured reconstruction loss to train networks, leading to the ignorance of band-to...
Uloženo v:
| Vydáno v: | IEEE geoscience and remote sensing letters Ročník 19; s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, the use of a deep autoencoder-based method in blind spectral unmixing has attracted great attention as the method can achieve superior performance. However, most autoencoder-based unmixing methods use non-structured reconstruction loss to train networks, leading to the ignorance of band-to-band-dependent characteristics and fine-grained information. To cope with this issue, we propose a general perceptual loss-constrained adversarial autoencoder network for hyperspectral unmixing. Specifically, the adversarial training process is used to update our framework. The discriminate network is found to be efficient in discovering the discrepancy between the reconstructed pixels and their corresponding ground truth. Moreover, the general perceptual loss is combined with the adversarial loss to further improve the consistency of high-level representations. Ablation studies verify the effectiveness of the proposed components of our framework, and experiments with both synthetic and real data illustrate the superiority of our framework when compared with other competing methods. |
|---|---|
| AbstractList | Recently, the use of a deep autoencoder-based method in blind spectral unmixing has attracted great attention as the method can achieve superior performance. However, most autoencoder-based unmixing methods use non-structured reconstruction loss to train networks, leading to the ignorance of band-to-band-dependent characteristics and fine-grained information. To cope with this issue, we propose a general perceptual loss-constrained adversarial autoencoder network for hyperspectral unmixing. Specifically, the adversarial training process is used to update our framework. The discriminate network is found to be efficient in discovering the discrepancy between the reconstructed pixels and their corresponding ground truth. Moreover, the general perceptual loss is combined with the adversarial loss to further improve the consistency of high-level representations. Ablation studies verify the effectiveness of the proposed components of our framework, and experiments with both synthetic and real data illustrate the superiority of our framework when compared with other competing methods. |
| Author | Rahardja, Susanto Zhao, Min Wang, Mou Chen, Jie |
| Author_xml | – sequence: 1 givenname: Min orcidid: 0000-0003-3258-8358 surname: Zhao fullname: Zhao, Min organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Mou orcidid: 0000-0002-6476-2501 surname: Wang fullname: Wang, Mou organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Jie orcidid: 0000-0003-2306-8860 surname: Chen fullname: Chen, Jie email: dr.jie.chen@ieee.org organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Susanto orcidid: 0000-0003-0831-6934 surname: Rahardja fullname: Rahardja, Susanto organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China |
| BookMark | eNp9kM9LwzAUx4NMcJv-AeKl4Lmz-dEmOY6hmzBU1KG3kqav0rklNWnV_fembHjw4OkF3vfz3stnhAbGGkDoHCcTjBN5tZw_Pk1IQsiEYsYo4UdoiNNUxEnK8aB_szROpXg9QSPv10lCmBB8iF4ewGlo2k5toqX1Pp5Z41unagNlNC0_wXnl6tCcdq0Fo20JLrqD9su6dx9V1kWLXRNCDehAbaKV2dbftXk7RceV2ng4O9QxWt1cP88W8fJ-fjubLmNNJG3jVMtSigJEVRQZYZUIV8mMl4IUMisTrDXJKKGUc1YyoSRJi0KpknLgTBYS0zG63M9tnP3owLf52nbOhJU5yUhKs4wRFlJ4n9Iu_NFBlTeu3iq3y3GS9_7y3l_e-8sP_gLD_zC6blVbW9Pr2fxLXuzJGgB-N8lMhDajP8zfgIk |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2025_3542228 |
| Cites_doi | 10.1109/TGRS.2018.2856929 10.1109/ICCV.2017.304 10.1109/TGRS.2020.2963848 10.1109/LGRS.2019.2900733 10.1109/36.911111 10.1109/TIP.2018.2836316 10.1109/TGRS.2005.844293 10.1109/LGRS.2020.3047481 10.1109/TIP.2019.2893068 10.1109/TIP.2018.2878958 10.1109/TGRS.2020.2992743 10.1109/IGARSS39084.2020.9324087 10.1109/TNNLS.2021.3082289 10.1109/TGRS.2018.2868690 10.1109/TGRS.2021.3110855 10.1109/TGRS.2018.2890633 10.1109/TNNLS.2021.3114203 10.1109/TGRS.2021.3064958 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2022.3144327 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 5 |
| ExternalDocumentID | 10_1109_LGRS_2022_3144327 9684434 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSFC grantid: 62171380 funderid: 10.13039/501100001809 – fundername: Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University funderid: 10.13039/501100002663 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-5c9d98be8fbb624f8488967d82b96d01cc263233774d48a925bbaad37e749b913 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752013400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Jun 30 08:13:21 EDT 2025 Sat Nov 29 05:54:10 EST 2025 Tue Nov 18 22:37:18 EST 2025 Wed Aug 27 03:00:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-5c9d98be8fbb624f8488967d82b96d01cc263233774d48a925bbaad37e749b913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2306-8860 0000-0003-0831-6934 0000-0003-3258-8358 0000-0002-6476-2501 |
| PQID | 2625366424 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2625366424 crossref_citationtrail_10_1109_LGRS_2022_3144327 crossref_primary_10_1109_LGRS_2022_3144327 ieee_primary_9684434 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 Goodfellow (ref13); 27 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref6 doi: 10.1109/TGRS.2018.2856929 – ident: ref14 doi: 10.1109/ICCV.2017.304 – ident: ref2 doi: 10.1109/TGRS.2020.2963848 – ident: ref11 doi: 10.1109/LGRS.2019.2900733 – ident: ref17 doi: 10.1109/36.911111 – ident: ref15 doi: 10.1109/TIP.2018.2836316 – ident: ref16 doi: 10.1109/TGRS.2005.844293 – ident: ref18 doi: 10.1109/LGRS.2020.3047481 – ident: ref4 doi: 10.1109/TIP.2019.2893068 – ident: ref3 doi: 10.1109/TIP.2018.2878958 – ident: ref8 doi: 10.1109/TGRS.2020.2992743 – ident: ref10 doi: 10.1109/IGARSS39084.2020.9324087 – ident: ref19 doi: 10.1109/TNNLS.2021.3082289 – ident: ref5 doi: 10.1109/TGRS.2018.2868690 – ident: ref1 doi: 10.1109/TGRS.2021.3110855 – ident: ref7 doi: 10.1109/TGRS.2018.2890633 – ident: ref12 doi: 10.1109/TNNLS.2021.3114203 – volume: 27 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref13 article-title: Generative adversarial nets – ident: ref9 doi: 10.1109/TGRS.2021.3064958 |
| SSID | ssj0024887 |
| Score | 2.3661683 |
| Snippet | Recently, the use of a deep autoencoder-based method in blind spectral unmixing has attracted great attention as the method can achieve superior performance.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Ablation Autoencoder Convolutional neural networks Decoding fine structure Frameworks generative adversarial network (GAN) Generators Hyperspectral imaging hyperspectral unmixing Image reconstruction Loss measurement Methods perceptual loss Training |
| Title | Perceptual Loss-Constrained Adversarial Autoencoder Networks for Hyperspectral Unmixing |
| URI | https://ieeexplore.ieee.org/document/9684434 https://www.proquest.com/docview/2625366424 |
| Volume | 19 |
| WOSCitedRecordID | wos000752013400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7aoujFVxWrVXLwJEaTzWYfRxEfh1LEB_YW9hUsaCttIvbfu7tJq6AI3nKYWTY7m8x8uzPzARyRWKFYuFQpSY2jMBOhtIFomItImJS4lk_ak03Qfp8NBvy2ASeLWhhjjE8-M6fu0d_l67Eq3VHZGScM4wQ3oUkpqWq1vvrqMU-G5yKCMOVsUN9gxhE_613f3VskiJAFqFbfEch880GeVOXHn9i7l6v1_01sA9bqMDI4r-y-CQ0z2oKVmtH8ebYFy9eesnfWhqfbKneltPI9O53QcXR6ZgijA8_HPBVuFwbnZTF2bS21mQT9Kjt8GtiYNrixWLUqyZxYscfR6_DDOrxteLy6fLi4CWs6hVBZn16EqeKaM2lYLiVBOGd2yTihmiHJiY5ipVzv9iSxAaHGTHCUSimETqihmEseJzvQGo1HZhcCThCSMlUI5RKbFLE4MTmlLMUy4QLRDkTzBc5U3WvcvdhL5jFHxDNnk8zZJKtt0oHjhcpb1WjjL-G2M8JCsF7_DnTnVszqT3GaIYvwEmJhFt77XWsfVt3Y1blKF1rFpDQHsKTei-F0cuh32Se4v872 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGS3DhjRgM6IEToqxN0zY5TggYokwTbGK3Kq-KSbChrUPs35Ok3UACIXHrwWlTO639JbY_gNPIF8hnJlWKx8pQmDGX60DUzZjHVBiZlk_Skk3ErRbp9Wi7AufzWhillE0-Uxfm0p7ly6GYmK2yOo0IxgFegKUQY-QV1VpfnfWIpcMzMYEbUtIrzzB9j9aTm4dHjQUR0hBV38FQyHzzQpZW5ce_2DqY643_TW0T1stA0mkUlt-Cihpsw2rJaf483YaVG0vaO92Bp3aRvTLR8omejmtYOi03hJKOZWQeM7MOncYkH5rGllKNnFaRHz52dFTrNDVaLYoyR1qsO3jtf2iXtwvd66vOZdMtCRVcob167oaCSkq4IhnnEcIZ0SqjUSwJ4jSSni-E6d4eBDoklJgwikLOGZNBrGJMOfWDPVgcDAdqHxwaIcR5KBDKOFYhIn6gsjgmIeYBZSiugjdTcCrKbuPmxV5Sizo8mhqbpMYmaWmTKpzNh7wVrTb-Et4xRpgLlvqvQm1mxbT8GMcp0hgviDTQwge_jzqB1WbnPkmT29bdIayZ5xS7LDVYzEcTdQTL4j3vj0fHdsV9AqX-0j0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perceptual+Loss-Constrained+Adversarial+Autoencoder+Networks+for+Hyperspectral+Unmixing&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Zhao%2C+Min&rft.au=Wang%2C+Mou&rft.au=Chen%2C+Jie&rft.au=Rahardja%2C+Susanto&rft.date=2022&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2022.3144327&rft.externalDocID=9684434 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |