A Divide-and-Conquer Genetic Programming Algorithm With Ensembles for Image Classification

Genetic programming (GP) has been applied to feature learning in image classification and achieved promising results. However, one major limitation of existing GP-based methods is the high computational cost, which may limit their applications on large-scale image classification tasks. To address th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 25; H. 6; S. 1148 - 1162
Hauptverfasser: Bi, Ying, Xue, Bing, Zhang, Mengjie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Genetic programming (GP) has been applied to feature learning in image classification and achieved promising results. However, one major limitation of existing GP-based methods is the high computational cost, which may limit their applications on large-scale image classification tasks. To address this, this article develops a divide-and-conquer GP algorithm with knowledge transfer (KT) and ensembles to achieve fast feature learning in image classification. In the new algorithm framework, a divide-and-conquer strategy is employed to split the training data and the population into small subsets or groups to reduce computational time. A new KT method is proposed to improve GP learning performance. A new fitness function based on log loss and a new ensemble formulation strategy are developed to build an effective ensemble for image classification. The performance of the proposed approach has been examined on 12 image classification datasets of varying difficulty. The results show that the new approach achieves better classification performance in significantly less computation time than the baseline GP-based algorithm. The comparisons with state-of-the-art algorithms show that the new approach achieves better or comparable performance in almost all the comparisons. Further analysis demonstrates the effectiveness of ensemble formulation and KT in the proposed approach.
AbstractList Genetic programming (GP) has been applied to feature learning in image classification and achieved promising results. However, one major limitation of existing GP-based methods is the high computational cost, which may limit their applications on large-scale image classification tasks. To address this, this article develops a divide-and-conquer GP algorithm with knowledge transfer (KT) and ensembles to achieve fast feature learning in image classification. In the new algorithm framework, a divide-and-conquer strategy is employed to split the training data and the population into small subsets or groups to reduce computational time. A new KT method is proposed to improve GP learning performance. A new fitness function based on log loss and a new ensemble formulation strategy are developed to build an effective ensemble for image classification. The performance of the proposed approach has been examined on 12 image classification datasets of varying difficulty. The results show that the new approach achieves better classification performance in significantly less computation time than the baseline GP-based algorithm. The comparisons with state-of-the-art algorithms show that the new approach achieves better or comparable performance in almost all the comparisons. Further analysis demonstrates the effectiveness of ensemble formulation and KT in the proposed approach.
Author Xue, Bing
Zhang, Mengjie
Bi, Ying
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0003-2758-6067
  surname: Bi
  fullname: Bi, Ying
  email: ying.bi@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 2
  givenname: Bing
  orcidid: 0000-0002-4865-8026
  surname: Xue
  fullname: Xue, Bing
  email: bing.xue@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 3
  givenname: Mengjie
  orcidid: 0000-0003-4463-9538
  surname: Zhang
  fullname: Zhang, Mengjie
  email: mengjie.zhang@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
BookMark eNp9kE1PwzAMhiM0JLbBD0BcInHucJK2aY5TGWPSJDiMD3GpsjQtmdpkJB0S_56OTRw4cLEty69f-xmhgXVWI3RJYEIIiJvV7DmfUKBkwiCjhNATNCQiJhEATQd9DZmIOM9ez9AohA0AiRMihuhtim_Npyl1JG0Z5c5-7LTHc211ZxR-9K72sm2NrfG0qZ033XuLX_qIZzbodt3ogCvn8aKVtcZ5I0MwlVGyM86eo9NKNkFfHPMYPd3NVvl9tHyYL_LpMlJUsC5KhE5ZnGSKK7HmrASWcgVpqUBWVCSKrgmnsaZVVfYdFnOiZcI5KKrKBFTJxuj6sHfrXX996IqN23nbWxY0hVj0NAT0U-QwpbwLweuq2HrTSv9VECj2CIs9wmKPsDgi7DX8j0aZ7ue3zkvT_Ku8OiiN1vrXScSMM0jZN558gEQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s10710_023_09473_z
crossref_primary_10_1109_TEVC_2021_3100576
crossref_primary_10_1109_TTE_2023_3283691
crossref_primary_10_1109_TEVC_2022_3145582
crossref_primary_10_1007_s40747_024_01605_x
crossref_primary_10_1109_TEVC_2022_3159253
crossref_primary_10_1109_TEVC_2023_3290172
crossref_primary_10_3390_app12104836
crossref_primary_10_1109_MCI_2024_3401342
crossref_primary_10_1016_j_swevo_2024_101519
crossref_primary_10_1109_TEVC_2023_3294639
crossref_primary_10_1016_j_asoc_2025_113956
crossref_primary_10_1109_TEVC_2021_3136667
crossref_primary_10_1109_TEVC_2022_3220747
crossref_primary_10_3233_IDA_226774
crossref_primary_10_1109_TEVC_2021_3097043
crossref_primary_10_1016_j_ins_2024_121774
crossref_primary_10_1109_TEVC_2023_3284712
crossref_primary_10_1109_TEVC_2023_3242051
crossref_primary_10_1109_TEVC_2023_3243172
crossref_primary_10_1109_TCYB_2021_3105696
Cites_doi 10.1007/978-3-319-89656-4_7
10.1007/978-3-030-03991-2_25
10.1007/3-540-36605-9_41
10.1109/TEVC.2019.2916183
10.1109/CNNA.2012.6331451
10.1109/5.726791
10.1109/TPAMI.2012.230
10.1109/TEVC.2019.2902626
10.1109/TETCI.2017.2769104
10.1145/1273496.1273556
10.1109/TEVC.2017.2657556
10.1109/CEC.2018.8477911
10.2478/jaiscr-2018-0024
10.1145/1099554.1099688
10.1145/2616498.2616565
10.1109/TEVC.2017.2771451
10.1109/INDS.2011.6024781
10.1109/TCYB.2020.2964566
10.1145/3321707.3321750
10.1109/TEVC.2015.2458037
10.24963/ijcai.2017/293
10.1109/TEVC.2017.2688863
10.1007/978-3-030-44094-7_10
10.1109/TKDE.2009.191
10.1007/978-3-030-58112-1_1
10.1155/2019/9658350
10.1080/03036758.2019.1609052
10.1093/nsr/nwy108
10.1016/j.patcog.2019.05.006
10.1109/CVPR.2005.16
10.1109/TEVC.2017.2785351
10.1007/978-3-319-77553-1_17
10.1145/1961189.1961199
10.1109/JPROC.2017.2761740
10.1162/evco.1995.3.2.199
10.1007/978-3-642-15561-1_16
10.1109/TIP.2015.2475625
10.1109/TEVC.2017.2685639
10.1109/TCYB.2015.2404806
10.1109/LSP.2018.2843295
10.1109/TNNLS.2013.2293418
10.1109/TCYB.2016.2562674
10.1109/TEVC.2020.3002229
10.1007/978-3-030-65927-1
10.1201/b12207
10.1109/TEVC.2016.2555315
10.1016/j.swevo.2018.03.015
10.1016/j.asoc.2017.08.016
10.1109/CVPR.2009.5206848
10.1007/s10107-016-1030-6
10.1007/978-3-642-17298-4_16
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2021.3082112
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 1162
ExternalDocumentID 10_1109_TEVC_2021_3082112
9437306
Genre orig-research
GrantInformation_xml – fundername: Marsden Fund of New Zealand Government
  grantid: VUW1509; VUW1615; VUW1913; VUW1914
  funderid: 10.13039/501100009193
– fundername: MBIE Data Science SSIF Fund
  grantid: RTVU1914
– fundername: Science for Technological Innovation Challenge (SfTI) Fund
  grantid: E3603/2903
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61876169
  funderid: 10.13039/501100001809
– fundername: University Research Fund at Victoria University of Wellington
  grantid: 223805/3986
  funderid: 10.13039/501100001538
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-59e63458c7c9b73d0367c06dc0af295c2b1724e2ffd0af3471ea5770c2cd50cd3
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724477500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 30 05:09:25 EST 2025
Sat Nov 29 03:13:48 EST 2025
Tue Nov 18 21:32:25 EST 2025
Wed Aug 27 05:11:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-59e63458c7c9b73d0367c06dc0af295c2b1724e2ffd0af3471ea5770c2cd50cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4865-8026
0000-0003-2758-6067
0000-0003-4463-9538
PQID 2604921190
PQPubID 85418
PageCount 15
ParticipantIDs ieee_primary_9437306
crossref_primary_10_1109_TEVC_2021_3082112
proquest_journals_2604921190
crossref_citationtrail_10_1109_TEVC_2021_3082112
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref19
ref18
goodfellow (ref3) 2016
xiao (ref46) 2017
rifai (ref48) 2011
koza (ref9) 1992
ref51
ref50
chollet (ref57) 2015
ref45
ref47
ref44
ref43
srivastava (ref58) 2014; 15
mallikarjuna (ref42) 2006
ref49
ref8
ref7
ref6
ref5
ref40
ref35
ref34
ref37
al-sahaf (ref4) 2017; 21
ref36
ref31
ref30
ref33
ref32
ref2
fortin (ref59) 2012; 13
ref1
ref39
pedregosa (ref38) 2011; 12
song (ref16) 2020; 24
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
thomaz (ref41) 2012
ref60
ref62
ref61
References_xml – ident: ref55
  doi: 10.1007/978-3-319-89656-4_7
– ident: ref18
  doi: 10.1007/978-3-030-03991-2_25
– ident: ref14
  doi: 10.1007/3-540-36605-9_41
– ident: ref7
  doi: 10.1109/TEVC.2019.2916183
– ident: ref61
  doi: 10.1109/CNNA.2012.6331451
– ident: ref11
  doi: 10.1109/5.726791
– ident: ref50
  doi: 10.1109/TPAMI.2012.230
– year: 2006
  ident: ref42
  publication-title: THE KTH-TIPS2 Database
– ident: ref25
  doi: 10.1109/TEVC.2019.2902626
– ident: ref27
  doi: 10.1109/TETCI.2017.2769104
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref58
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref45
  doi: 10.1145/1273496.1273556
– ident: ref28
  doi: 10.1109/TEVC.2017.2657556
– ident: ref10
  doi: 10.1109/CEC.2018.8477911
– ident: ref26
  doi: 10.2478/jaiscr-2018-0024
– volume: 24
  start-page: 566
  year: 2020
  ident: ref16
  article-title: A divide-and-conquer evolutionary algorithm for large-scale virtual network embedding
  publication-title: IEEE Trans Evol Comput
– ident: ref34
  doi: 10.1145/1099554.1099688
– ident: ref60
  doi: 10.1145/2616498.2616565
– ident: ref29
  doi: 10.1109/TEVC.2017.2771451
– ident: ref62
  doi: 10.1109/INDS.2011.6024781
– ident: ref20
  doi: 10.1109/TCYB.2020.2964566
– year: 2012
  ident: ref41
  publication-title: FEI Face Database
– ident: ref47
  doi: 10.1145/3321707.3321750
– ident: ref30
  doi: 10.1109/TEVC.2015.2458037
– year: 2017
  ident: ref46
  publication-title: Fashion-mnist a novel image dataset for benchmarking machine learning algorithms
– year: 2016
  ident: ref3
  publication-title: Deep Learning
– ident: ref53
  doi: 10.24963/ijcai.2017/293
– ident: ref33
  doi: 10.1109/TEVC.2017.2688863
– ident: ref36
  doi: 10.1007/978-3-030-44094-7_10
– ident: ref40
  doi: 10.1109/TKDE.2009.191
– ident: ref37
  doi: 10.1007/978-3-030-58112-1_1
– ident: ref1
  doi: 10.1155/2019/9658350
– ident: ref24
  doi: 10.1080/03036758.2019.1609052
– ident: ref56
  doi: 10.1093/nsr/nwy108
– ident: ref22
  doi: 10.1016/j.patcog.2019.05.006
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref38
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– year: 2015
  ident: ref57
  publication-title: Keras
– ident: ref43
  doi: 10.1109/CVPR.2005.16
– ident: ref31
  doi: 10.1109/TEVC.2017.2785351
– start-page: 833
  year: 2011
  ident: ref48
  article-title: Contractive auto-encoders: Explicit invariance during feature extraction
  publication-title: Proc ICML
– year: 1992
  ident: ref9
  publication-title: Genetic Programming On the Programming of Computers by Means of Natural Selection
– ident: ref21
  doi: 10.1007/978-3-319-77553-1_17
– ident: ref39
  doi: 10.1145/1961189.1961199
– ident: ref2
  doi: 10.1109/JPROC.2017.2761740
– ident: ref19
  doi: 10.1162/evco.1995.3.2.199
– ident: ref44
  doi: 10.1007/978-3-642-15561-1_16
– ident: ref51
  doi: 10.1109/TIP.2015.2475625
– volume: 21
  start-page: 83
  year: 2017
  ident: ref4
  article-title: Automatically evolving rotation-invariant texture image descriptors by genetic programming
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2017.2685639
– ident: ref35
  doi: 10.1109/TCYB.2015.2404806
– ident: ref49
  doi: 10.1109/LSP.2018.2843295
– ident: ref5
  doi: 10.1109/TNNLS.2013.2293418
– ident: ref13
  doi: 10.1109/TCYB.2016.2562674
– ident: ref6
  doi: 10.1109/TEVC.2020.3002229
– ident: ref8
  doi: 10.1007/978-3-030-65927-1
– ident: ref32
  doi: 10.1201/b12207
– ident: ref15
  doi: 10.1109/TEVC.2016.2555315
– ident: ref23
  doi: 10.1016/j.swevo.2018.03.015
– volume: 13
  start-page: 2171
  year: 2012
  ident: ref59
  article-title: DEAP: Evolutionary algorithms made easy
  publication-title: J Mach Learn Res
– ident: ref52
  doi: 10.1016/j.asoc.2017.08.016
– ident: ref12
  doi: 10.1109/CVPR.2009.5206848
– ident: ref54
  doi: 10.1007/s10107-016-1030-6
– ident: ref17
  doi: 10.1007/978-3-642-17298-4_16
SSID ssj0014519
Score 2.4881928
Snippet Genetic programming (GP) has been applied to feature learning in image classification and achieved promising results. However, one major limitation of existing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1148
SubjectTerms Algorithms
Classification
Computational efficiency
Computing costs
Computing time
Divide-and-conquer
ensemble learning
Feature extraction
feature learning
Genetic algorithms
genetic programming (GP)
Image classification
Knowledge management
Knowledge transfer
knowledge transfer (KT)
Machine learning
Sociology
Statistics
Task analysis
Training
Training data
Title A Divide-and-Conquer Genetic Programming Algorithm With Ensembles for Image Classification
URI https://ieeexplore.ieee.org/document/9437306
https://www.proquest.com/docview/2604921190
Volume 25
WOSCitedRecordID wos000724477500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBR1WsL_bgSVzdPLd7LLWiIOLBR_ESso-o0KbSh7_fmU1aFEXwEkKyE5Z82Z2ZzMw3AMeoRaK8SCIujMh5XEjNdZGG3OiIuFbQpfD0xY838va21eupuwU4ndfCOOd88pk7o1Mfy7dDM6VfZeeKeHiIX3tRyrSq1ZpHDIgmpUqmV2gxtnp1BDMQ6vy--9hBTzAMzoibJQjCbzrIN1X5sRN79XK5_r-JbcBabUaydoX7Jiy4sgHrsxYNrF6xDVj9wjfYgBUyLStm5i14brMLqsVyPC8t7wxLnNeIEQ013md3Vd7WAOVYu_8yHL1NXgfsCY-sW47dQPfdmKHBy64HuCMx31uTso480NvwcNm971zxutMCN6juJzxRLo3ipGWkUVpGFtWaNCK1iF8RqsSEGu2c2IVFYfFKhArN5YmUwoTGJsLYaAeWymHpdoHluEPYUNrCKhcHttDWSm2jBO1Q6ZROmyBm7z4zNQ05dcPoZ94dESojuDKCK6vhasLJXOS94uD4a_AW4TMfWEPThIMZwFm9SscZ-nKxIoo7sfe71D6s0LOr9JUDWJqMpu4Qls0HYjU68h_gJ2om19c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hhjR4gK2AKLDhhz1NGBwnqevHqhSBKBUPHVS8RPGPAFKbTm3Z3787J602bULiJYoSn2Lli313ubvvAL6hFonzIo25sCLnSaEMN0VLcmti4lpBlyLQF9_31WDQHo303RqcrmphvPch-cyf0WmI5bupfaVfZeeaeHiIX_tDmiRSVNVaq5gBEaVU6fQabcb2qI5hRkKfD3v3XfQFZXRG7CxRJP_SQqGtyj97cVAwlzvvm9on2K4NSdapkP8Ma75swM6ySQOr12wDtv5gHGzAJhmXFTfzLjx22AVVY3mel453pyXOa8aIiBrvs7sqc2uCcqwzfprOXhbPE_aAR9Yr535ixn7O0ORl1xPck1jorkl5RwHqPfhx2Rt2r3jda4FbVPgLnmrfipO0bZXVRsUOFZuyouUQwULq1EqDlk7iZVE4vBKjSvN5qpSw0rpUWBfvw3o5Lf0BsBz3CCeVK5z2SeQK45wyLk7RElVem1YTxPLdZ7YmIqd-GOMsOCRCZwRXRnBlNVxN-L4S-VmxcLw1eJfwWQ2soWnC8RLgrF6n8wy9uUQTyZ04_L_UCXy8Gt72s_714OYINuk5VTLLMawvZq_-C2zYX4jb7Gv4GH8Dy0LbHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Divide-and-Conquer+Genetic+Programming+Algorithm+With+Ensembles+for+Image+Classification&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Bi%2C+Ying&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.date=2021-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=25&rft.issue=6&rft.spage=1148&rft_id=info:doi/10.1109%2FTEVC.2021.3082112&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon