A Divide-and-Conquer Genetic Programming Algorithm With Ensembles for Image Classification
Genetic programming (GP) has been applied to feature learning in image classification and achieved promising results. However, one major limitation of existing GP-based methods is the high computational cost, which may limit their applications on large-scale image classification tasks. To address th...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 25; H. 6; S. 1148 - 1162 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Genetic programming (GP) has been applied to feature learning in image classification and achieved promising results. However, one major limitation of existing GP-based methods is the high computational cost, which may limit their applications on large-scale image classification tasks. To address this, this article develops a divide-and-conquer GP algorithm with knowledge transfer (KT) and ensembles to achieve fast feature learning in image classification. In the new algorithm framework, a divide-and-conquer strategy is employed to split the training data and the population into small subsets or groups to reduce computational time. A new KT method is proposed to improve GP learning performance. A new fitness function based on log loss and a new ensemble formulation strategy are developed to build an effective ensemble for image classification. The performance of the proposed approach has been examined on 12 image classification datasets of varying difficulty. The results show that the new approach achieves better classification performance in significantly less computation time than the baseline GP-based algorithm. The comparisons with state-of-the-art algorithms show that the new approach achieves better or comparable performance in almost all the comparisons. Further analysis demonstrates the effectiveness of ensemble formulation and KT in the proposed approach. |
|---|---|
| AbstractList | Genetic programming (GP) has been applied to feature learning in image classification and achieved promising results. However, one major limitation of existing GP-based methods is the high computational cost, which may limit their applications on large-scale image classification tasks. To address this, this article develops a divide-and-conquer GP algorithm with knowledge transfer (KT) and ensembles to achieve fast feature learning in image classification. In the new algorithm framework, a divide-and-conquer strategy is employed to split the training data and the population into small subsets or groups to reduce computational time. A new KT method is proposed to improve GP learning performance. A new fitness function based on log loss and a new ensemble formulation strategy are developed to build an effective ensemble for image classification. The performance of the proposed approach has been examined on 12 image classification datasets of varying difficulty. The results show that the new approach achieves better classification performance in significantly less computation time than the baseline GP-based algorithm. The comparisons with state-of-the-art algorithms show that the new approach achieves better or comparable performance in almost all the comparisons. Further analysis demonstrates the effectiveness of ensemble formulation and KT in the proposed approach. |
| Author | Xue, Bing Zhang, Mengjie Bi, Ying |
| Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0003-2758-6067 surname: Bi fullname: Bi, Ying email: ying.bi@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 2 givenname: Bing orcidid: 0000-0002-4865-8026 surname: Xue fullname: Xue, Bing email: bing.xue@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 3 givenname: Mengjie orcidid: 0000-0003-4463-9538 surname: Zhang fullname: Zhang, Mengjie email: mengjie.zhang@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand |
| BookMark | eNp9kE1PwzAMhiM0JLbBD0BcInHucJK2aY5TGWPSJDiMD3GpsjQtmdpkJB0S_56OTRw4cLEty69f-xmhgXVWI3RJYEIIiJvV7DmfUKBkwiCjhNATNCQiJhEATQd9DZmIOM9ez9AohA0AiRMihuhtim_Npyl1JG0Z5c5-7LTHc211ZxR-9K72sm2NrfG0qZ033XuLX_qIZzbodt3ogCvn8aKVtcZ5I0MwlVGyM86eo9NKNkFfHPMYPd3NVvl9tHyYL_LpMlJUsC5KhE5ZnGSKK7HmrASWcgVpqUBWVCSKrgmnsaZVVfYdFnOiZcI5KKrKBFTJxuj6sHfrXX996IqN23nbWxY0hVj0NAT0U-QwpbwLweuq2HrTSv9VECj2CIs9wmKPsDgi7DX8j0aZ7ue3zkvT_Ku8OiiN1vrXScSMM0jZN558gEQ |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s10710_023_09473_z crossref_primary_10_1109_TEVC_2021_3100576 crossref_primary_10_1109_TTE_2023_3283691 crossref_primary_10_1109_TEVC_2022_3145582 crossref_primary_10_1007_s40747_024_01605_x crossref_primary_10_1109_TEVC_2022_3159253 crossref_primary_10_1109_TEVC_2023_3290172 crossref_primary_10_3390_app12104836 crossref_primary_10_1109_MCI_2024_3401342 crossref_primary_10_1016_j_swevo_2024_101519 crossref_primary_10_1109_TEVC_2023_3294639 crossref_primary_10_1016_j_asoc_2025_113956 crossref_primary_10_1109_TEVC_2021_3136667 crossref_primary_10_1109_TEVC_2022_3220747 crossref_primary_10_3233_IDA_226774 crossref_primary_10_1109_TEVC_2021_3097043 crossref_primary_10_1016_j_ins_2024_121774 crossref_primary_10_1109_TEVC_2023_3284712 crossref_primary_10_1109_TEVC_2023_3242051 crossref_primary_10_1109_TEVC_2023_3243172 crossref_primary_10_1109_TCYB_2021_3105696 |
| Cites_doi | 10.1007/978-3-319-89656-4_7 10.1007/978-3-030-03991-2_25 10.1007/3-540-36605-9_41 10.1109/TEVC.2019.2916183 10.1109/CNNA.2012.6331451 10.1109/5.726791 10.1109/TPAMI.2012.230 10.1109/TEVC.2019.2902626 10.1109/TETCI.2017.2769104 10.1145/1273496.1273556 10.1109/TEVC.2017.2657556 10.1109/CEC.2018.8477911 10.2478/jaiscr-2018-0024 10.1145/1099554.1099688 10.1145/2616498.2616565 10.1109/TEVC.2017.2771451 10.1109/INDS.2011.6024781 10.1109/TCYB.2020.2964566 10.1145/3321707.3321750 10.1109/TEVC.2015.2458037 10.24963/ijcai.2017/293 10.1109/TEVC.2017.2688863 10.1007/978-3-030-44094-7_10 10.1109/TKDE.2009.191 10.1007/978-3-030-58112-1_1 10.1155/2019/9658350 10.1080/03036758.2019.1609052 10.1093/nsr/nwy108 10.1016/j.patcog.2019.05.006 10.1109/CVPR.2005.16 10.1109/TEVC.2017.2785351 10.1007/978-3-319-77553-1_17 10.1145/1961189.1961199 10.1109/JPROC.2017.2761740 10.1162/evco.1995.3.2.199 10.1007/978-3-642-15561-1_16 10.1109/TIP.2015.2475625 10.1109/TEVC.2017.2685639 10.1109/TCYB.2015.2404806 10.1109/LSP.2018.2843295 10.1109/TNNLS.2013.2293418 10.1109/TCYB.2016.2562674 10.1109/TEVC.2020.3002229 10.1007/978-3-030-65927-1 10.1201/b12207 10.1109/TEVC.2016.2555315 10.1016/j.swevo.2018.03.015 10.1016/j.asoc.2017.08.016 10.1109/CVPR.2009.5206848 10.1007/s10107-016-1030-6 10.1007/978-3-642-17298-4_16 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2021.3082112 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1162 |
| ExternalDocumentID | 10_1109_TEVC_2021_3082112 9437306 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Marsden Fund of New Zealand Government grantid: VUW1509; VUW1615; VUW1913; VUW1914 funderid: 10.13039/501100009193 – fundername: MBIE Data Science SSIF Fund grantid: RTVU1914 – fundername: Science for Technological Innovation Challenge (SfTI) Fund grantid: E3603/2903 – fundername: National Natural Science Foundation of China (NSFC) grantid: 61876169 funderid: 10.13039/501100001809 – fundername: University Research Fund at Victoria University of Wellington grantid: 223805/3986 funderid: 10.13039/501100001538 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-59e63458c7c9b73d0367c06dc0af295c2b1724e2ffd0af3471ea5770c2cd50cd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724477500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Nov 30 05:09:25 EST 2025 Sat Nov 29 03:13:48 EST 2025 Tue Nov 18 21:32:25 EST 2025 Wed Aug 27 05:11:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-59e63458c7c9b73d0367c06dc0af295c2b1724e2ffd0af3471ea5770c2cd50cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4865-8026 0000-0003-2758-6067 0000-0003-4463-9538 |
| PQID | 2604921190 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9437306 crossref_primary_10_1109_TEVC_2021_3082112 proquest_journals_2604921190 crossref_citationtrail_10_1109_TEVC_2021_3082112 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref19 ref18 goodfellow (ref3) 2016 xiao (ref46) 2017 rifai (ref48) 2011 koza (ref9) 1992 ref51 ref50 chollet (ref57) 2015 ref45 ref47 ref44 ref43 srivastava (ref58) 2014; 15 mallikarjuna (ref42) 2006 ref49 ref8 ref7 ref6 ref5 ref40 ref35 ref34 ref37 al-sahaf (ref4) 2017; 21 ref36 ref31 ref30 ref33 ref32 ref2 fortin (ref59) 2012; 13 ref1 ref39 pedregosa (ref38) 2011; 12 song (ref16) 2020; 24 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 thomaz (ref41) 2012 ref60 ref62 ref61 |
| References_xml | – ident: ref55 doi: 10.1007/978-3-319-89656-4_7 – ident: ref18 doi: 10.1007/978-3-030-03991-2_25 – ident: ref14 doi: 10.1007/3-540-36605-9_41 – ident: ref7 doi: 10.1109/TEVC.2019.2916183 – ident: ref61 doi: 10.1109/CNNA.2012.6331451 – ident: ref11 doi: 10.1109/5.726791 – ident: ref50 doi: 10.1109/TPAMI.2012.230 – year: 2006 ident: ref42 publication-title: THE KTH-TIPS2 Database – ident: ref25 doi: 10.1109/TEVC.2019.2902626 – ident: ref27 doi: 10.1109/TETCI.2017.2769104 – volume: 15 start-page: 1929 year: 2014 ident: ref58 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref45 doi: 10.1145/1273496.1273556 – ident: ref28 doi: 10.1109/TEVC.2017.2657556 – ident: ref10 doi: 10.1109/CEC.2018.8477911 – ident: ref26 doi: 10.2478/jaiscr-2018-0024 – volume: 24 start-page: 566 year: 2020 ident: ref16 article-title: A divide-and-conquer evolutionary algorithm for large-scale virtual network embedding publication-title: IEEE Trans Evol Comput – ident: ref34 doi: 10.1145/1099554.1099688 – ident: ref60 doi: 10.1145/2616498.2616565 – ident: ref29 doi: 10.1109/TEVC.2017.2771451 – ident: ref62 doi: 10.1109/INDS.2011.6024781 – ident: ref20 doi: 10.1109/TCYB.2020.2964566 – year: 2012 ident: ref41 publication-title: FEI Face Database – ident: ref47 doi: 10.1145/3321707.3321750 – ident: ref30 doi: 10.1109/TEVC.2015.2458037 – year: 2017 ident: ref46 publication-title: Fashion-mnist a novel image dataset for benchmarking machine learning algorithms – year: 2016 ident: ref3 publication-title: Deep Learning – ident: ref53 doi: 10.24963/ijcai.2017/293 – ident: ref33 doi: 10.1109/TEVC.2017.2688863 – ident: ref36 doi: 10.1007/978-3-030-44094-7_10 – ident: ref40 doi: 10.1109/TKDE.2009.191 – ident: ref37 doi: 10.1007/978-3-030-58112-1_1 – ident: ref1 doi: 10.1155/2019/9658350 – ident: ref24 doi: 10.1080/03036758.2019.1609052 – ident: ref56 doi: 10.1093/nsr/nwy108 – ident: ref22 doi: 10.1016/j.patcog.2019.05.006 – volume: 12 start-page: 2825 year: 2011 ident: ref38 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – year: 2015 ident: ref57 publication-title: Keras – ident: ref43 doi: 10.1109/CVPR.2005.16 – ident: ref31 doi: 10.1109/TEVC.2017.2785351 – start-page: 833 year: 2011 ident: ref48 article-title: Contractive auto-encoders: Explicit invariance during feature extraction publication-title: Proc ICML – year: 1992 ident: ref9 publication-title: Genetic Programming On the Programming of Computers by Means of Natural Selection – ident: ref21 doi: 10.1007/978-3-319-77553-1_17 – ident: ref39 doi: 10.1145/1961189.1961199 – ident: ref2 doi: 10.1109/JPROC.2017.2761740 – ident: ref19 doi: 10.1162/evco.1995.3.2.199 – ident: ref44 doi: 10.1007/978-3-642-15561-1_16 – ident: ref51 doi: 10.1109/TIP.2015.2475625 – volume: 21 start-page: 83 year: 2017 ident: ref4 article-title: Automatically evolving rotation-invariant texture image descriptors by genetic programming publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2017.2685639 – ident: ref35 doi: 10.1109/TCYB.2015.2404806 – ident: ref49 doi: 10.1109/LSP.2018.2843295 – ident: ref5 doi: 10.1109/TNNLS.2013.2293418 – ident: ref13 doi: 10.1109/TCYB.2016.2562674 – ident: ref6 doi: 10.1109/TEVC.2020.3002229 – ident: ref8 doi: 10.1007/978-3-030-65927-1 – ident: ref32 doi: 10.1201/b12207 – ident: ref15 doi: 10.1109/TEVC.2016.2555315 – ident: ref23 doi: 10.1016/j.swevo.2018.03.015 – volume: 13 start-page: 2171 year: 2012 ident: ref59 article-title: DEAP: Evolutionary algorithms made easy publication-title: J Mach Learn Res – ident: ref52 doi: 10.1016/j.asoc.2017.08.016 – ident: ref12 doi: 10.1109/CVPR.2009.5206848 – ident: ref54 doi: 10.1007/s10107-016-1030-6 – ident: ref17 doi: 10.1007/978-3-642-17298-4_16 |
| SSID | ssj0014519 |
| Score | 2.4881928 |
| Snippet | Genetic programming (GP) has been applied to feature learning in image classification and achieved promising results. However, one major limitation of existing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1148 |
| SubjectTerms | Algorithms Classification Computational efficiency Computing costs Computing time Divide-and-conquer ensemble learning Feature extraction feature learning Genetic algorithms genetic programming (GP) Image classification Knowledge management Knowledge transfer knowledge transfer (KT) Machine learning Sociology Statistics Task analysis Training Training data |
| Title | A Divide-and-Conquer Genetic Programming Algorithm With Ensembles for Image Classification |
| URI | https://ieeexplore.ieee.org/document/9437306 https://www.proquest.com/docview/2604921190 |
| Volume | 25 |
| WOSCitedRecordID | wos000724477500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBR1WsL_bgSVzdPLd7LLWiIOLBR_ESso-o0KbSh7_fmU1aFEXwEkKyE5Z82Z2ZzMw3AMeoRaK8SCIujMh5XEjNdZGG3OiIuFbQpfD0xY838va21eupuwU4ndfCOOd88pk7o1Mfy7dDM6VfZeeKeHiIX3tRyrSq1ZpHDIgmpUqmV2gxtnp1BDMQ6vy--9hBTzAMzoibJQjCbzrIN1X5sRN79XK5_r-JbcBabUaydoX7Jiy4sgHrsxYNrF6xDVj9wjfYgBUyLStm5i14brMLqsVyPC8t7wxLnNeIEQ013md3Vd7WAOVYu_8yHL1NXgfsCY-sW47dQPfdmKHBy64HuCMx31uTso480NvwcNm971zxutMCN6juJzxRLo3ipGWkUVpGFtWaNCK1iF8RqsSEGu2c2IVFYfFKhArN5YmUwoTGJsLYaAeWymHpdoHluEPYUNrCKhcHttDWSm2jBO1Q6ZROmyBm7z4zNQ05dcPoZ94dESojuDKCK6vhasLJXOS94uD4a_AW4TMfWEPThIMZwFm9SscZ-nKxIoo7sfe71D6s0LOr9JUDWJqMpu4Qls0HYjU68h_gJ2om19c |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hhjR4gK2AKLDhhz1NGBwnqevHqhSBKBUPHVS8RPGPAFKbTm3Z3787J602bULiJYoSn2Lli313ubvvAL6hFonzIo25sCLnSaEMN0VLcmti4lpBlyLQF9_31WDQHo303RqcrmphvPch-cyf0WmI5bupfaVfZeeaeHiIX_tDmiRSVNVaq5gBEaVU6fQabcb2qI5hRkKfD3v3XfQFZXRG7CxRJP_SQqGtyj97cVAwlzvvm9on2K4NSdapkP8Ma75swM6ySQOr12wDtv5gHGzAJhmXFTfzLjx22AVVY3mel453pyXOa8aIiBrvs7sqc2uCcqwzfprOXhbPE_aAR9Yr535ixn7O0ORl1xPck1jorkl5RwHqPfhx2Rt2r3jda4FbVPgLnmrfipO0bZXVRsUOFZuyouUQwULq1EqDlk7iZVE4vBKjSvN5qpSw0rpUWBfvw3o5Lf0BsBz3CCeVK5z2SeQK45wyLk7RElVem1YTxPLdZ7YmIqd-GOMsOCRCZwRXRnBlNVxN-L4S-VmxcLw1eJfwWQ2soWnC8RLgrF6n8wy9uUQTyZ04_L_UCXy8Gt72s_714OYINuk5VTLLMawvZq_-C2zYX4jb7Gv4GH8Dy0LbHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Divide-and-Conquer+Genetic+Programming+Algorithm+With+Ensembles+for+Image+Classification&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Bi%2C+Ying&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.date=2021-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=25&rft.issue=6&rft.spage=1148&rft_id=info:doi/10.1109%2FTEVC.2021.3082112&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |