Deep Variational Autoencoder for Mapping Functional Brain Networks
In the neuroimaging and brain mapping communities, researchers have proposed a variety of computational methods to map functional brain networks (FBNs). Recently, it has been proven that deep learning (DL) can be applied on functional magnetic resonance image (fMRI) data with superb representation p...
Uložené v:
| Vydané v: | IEEE transactions on cognitive and developmental systems Ročník 13; číslo 4; s. 841 - 852 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2379-8920, 2379-8939 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the neuroimaging and brain mapping communities, researchers have proposed a variety of computational methods to map functional brain networks (FBNs). Recently, it has been proven that deep learning (DL) can be applied on functional magnetic resonance image (fMRI) data with superb representation power over the traditional machine learning methods. However, due to the lack of labeled data and the high dimension of fMRI volume images, DL suffers from overfitting in both supervised and unsupervised training processes. In this work, we proposed a novel generative model: deep variational autoencoder (DVAE) to tackle the challenge of insufficient data and incomplete supervision. The experimental results showed that the representations learned by DVAE are interpretable and meaningful compared to those learned from well-known sparse dictionary learning (SDL). Besides, the organization of some FBN patterns derived from different layers in DVAE was observed in a hierarchical fashion. Furthermore, we showed that DVAE has better performance on small dataset over autoencoder (AE). By using attention deficit hyperactivity disorder (ADHD)-200 dataset as our test bed, we constructed a DVAE-based modeling and classification pipeline in which all subjects' functional connectivities estimated by FBNs were taken as input features to train a classifier. Finally, the results achieved by our pipeline reached state-of-the-art classification accuracies on three ADHD-200 sites compared with other fMRI-based methods. |
|---|---|
| AbstractList | In the neuroimaging and brain mapping communities, researchers have proposed a variety of computational methods to map functional brain networks (FBNs). Recently, it has been proven that deep learning (DL) can be applied on functional magnetic resonance image (fMRI) data with superb representation power over the traditional machine learning methods. However, due to the lack of labeled data and the high dimension of fMRI volume images, DL suffers from overfitting in both supervised and unsupervised training processes. In this work, we proposed a novel generative model: deep variational autoencoder (DVAE) to tackle the challenge of insufficient data and incomplete supervision. The experimental results showed that the representations learned by DVAE are interpretable and meaningful compared to those learned from well-known sparse dictionary learning (SDL). Besides, the organization of some FBN patterns derived from different layers in DVAE was observed in a hierarchical fashion. Furthermore, we showed that DVAE has better performance on small dataset over autoencoder (AE). By using attention deficit hyperactivity disorder (ADHD)-200 dataset as our test bed, we constructed a DVAE-based modeling and classification pipeline in which all subjects' functional connectivities estimated by FBNs were taken as input features to train a classifier. Finally, the results achieved by our pipeline reached state-of-the-art classification accuracies on three ADHD-200 sites compared with other fMRI-based methods. |
| Author | Qiang, Ning Ge, Bao Sun, Yifei Gao, Jie Liang, Hongtao Dong, Qinglin Ge, Fangfei Zhang, Shu Liu, Tianming |
| Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0001-8321-866X surname: Qiang fullname: Qiang, Ning email: qn315@snnu.edu.cn organization: School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China – sequence: 2 givenname: Qinglin orcidid: 0000-0002-0049-937X surname: Dong fullname: Dong, Qinglin email: qinglin@uga.edu organization: Department of Computer Science and Bioimaging Research Center, Cortical Architecture Imaging and Discovery Lab, University of Georgia, Athens, GA, USA – sequence: 3 givenname: Fangfei surname: Ge fullname: Ge, Fangfei email: gfflvlxy@gmail.com organization: Department of Computer Science and Bioimaging Research Center, Cortical Architecture Imaging and Discovery Lab, University of Georgia, Athens, GA, USA – sequence: 4 givenname: Hongtao orcidid: 0000-0003-2817-6289 surname: Liang fullname: Liang, Hongtao email: lht@snnu.edu.cn organization: School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China – sequence: 5 givenname: Bao surname: Ge fullname: Ge, Bao email: bob_ge@snnu.edu.cn organization: School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China – sequence: 6 givenname: Shu surname: Zhang fullname: Zhang, Shu email: shuzhang8967@163.com organization: School of Computer Science, Northwestern Polyteachnical university, Xi'an, China – sequence: 7 givenname: Yifei surname: Sun fullname: Sun, Yifei email: yifeis@snnu.edu.cn organization: School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China – sequence: 8 givenname: Jie orcidid: 0000-0001-6852-6330 surname: Gao fullname: Gao, Jie email: gaojie@snnu.edu.cn organization: School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China – sequence: 9 givenname: Tianming orcidid: 0000-0002-8132-9048 surname: Liu fullname: Liu, Tianming email: tianming.liu@gmail.com organization: Department of Computer Science and Bioimaging Research Center, Cortical Architecture Imaging and Discovery Lab, University of Georgia, Athens, GA, USA |
| BookMark | eNp9kD1PwzAQhi0EEqX0ByCWSMwpti-O47EfFJAKDBRWy3EuKKXEwU6E-PektOrAwHQ3vM99PGfkuHY1EnLB6Jgxqq5Xs_nzmFNOx0C5YCCPyICDVHGmQB0fek5PySiENaWUpSCzRA7IdI7YRK_GV6atXG020aRrHdbWFeij0vnowTRNVb9Fi662-8jUm6qOHrH9cv49nJOT0mwCjvZ1SF4WN6vZXbx8ur2fTZax5QraWKSCI8uAobRAE1A2t9RKYwpMrSgSgTnNBSgwmZQKQBkoSpSYy0zyAjIYkqvd3Ma7zw5Dq9eu8_09QfOUZkIkQvI-xXYp610IHkvd-OrD-G_NqN7a0ltbemtL7231jPzD2Kr99dH2n27-JS93ZIWIh0296USmFH4AVlV4UQ |
| CODEN | ITCDA4 |
| CitedBy_id | crossref_primary_10_1016_j_neuroscience_2025_02_019 crossref_primary_10_21833_ijaas_2025_08_024 crossref_primary_10_1088_1741_2552_ac1179 crossref_primary_10_1016_j_neuroimage_2025_121177 crossref_primary_10_1117_1_JEI_33_2_023032 crossref_primary_10_1016_j_compbiomed_2024_108611 crossref_primary_10_1073_pnas_2202024119 crossref_primary_10_1145_3591468 crossref_primary_10_1007_s41870_024_01895_x crossref_primary_10_1016_j_bspc_2023_104733 crossref_primary_10_3389_fnins_2023_1183145 crossref_primary_10_1038_s41598_024_74282_y crossref_primary_10_1088_1741_2552_ad48bd crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1109_ACCESS_2024_3522397 crossref_primary_10_1016_j_compbiomed_2023_107395 crossref_primary_10_1016_j_neuroimage_2024_120519 crossref_primary_10_1016_j_media_2023_102892 crossref_primary_10_1088_1741_2552_ad2cea |
| Cites_doi | 10.1016/j.jneumeth.2019.108319 10.1109/ISBI.2018.8363526 10.1109/ISBI.2016.7493210 10.1155/2014/380531 10.1038/nature06976 10.1109/TBME.2019.2945231 10.1002/hbm.23693 10.1109/RBME.2012.2211076 10.1098/rstb.2005.1634 10.1016/j.compmedimag.2017.10.002 10.1016/j.biopsych.2009.04.036 10.1016/j.media.2019.101622 10.1016/j.eswa.2017.08.044 10.1016/j.neuroimage.2015.10.081 10.1073/pnas.0504136102 10.1109/ISBI.2015.7163807 10.3389/fnins.2014.00229 10.1109/ISBI.2018.8363528 10.1016/j.plrev.2014.03.005 10.1007/978-3-030-32254-0_54 10.1109/TMI.2017.2715285 10.1007/978-3-319-24888-2_8 10.1002/hbm.24005 10.1016/j.neuroimage.2008.10.057 10.1016/j.neuroimage.2014.07.051 10.1016/j.neuroimage.2013.04.007 10.1017/S0140525X11001567 10.3389/fncir.2014.00064 10.1002/jmri.20009 10.1016/j.media.2014.10.011 10.1016/j.neuroimage.2014.03.048 10.1016/j.neuroimage.2016.04.003 10.1006/nimg.1999.0518 10.1073/pnas.0135058100 10.1073/pnas.0905267106 10.1109/TMI.2018.2877576 10.1016/j.neuroimage.2013.05.039 10.1016/j.neuroimage.2006.01.021 10.3389/fninf.2014.00014 10.1007/978-3-319-66179-7_48 10.1109/TBME.2014.2369495 10.1002/hbm.1048 10.1016/j.tins.2005.11.004 10.1007/978-3-030-32248-9_89 10.1038/mp.2013.78 10.1016/j.nicl.2016.06.004 10.1016/j.neuroimage.2016.06.034 10.1109/TMI.2010.2097275 10.1007/978-3-030-00931-1_21 10.1016/j.pscychresns.2015.07.012 10.1109/ISBI.2016.7493213 10.1016/j.neucom.2019.02.070 10.1109/TPAMI.2013.50 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCDS.2020.3025137 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2379-8939 |
| EndPage | 852 |
| ExternalDocumentID | 10_1109_TCDS_2020_3025137 9204760 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Founds for the Central Universities grantid: GK202003016 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61976131 funderid: 10.13039/501100001809 – fundername: Fundamental Research Founds for the Central Universities funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Shaanxi grantid: 2019JQ-026 funderid: 10.13039/501100007128 – fundername: National Natural Science Foundation of China grantid: 61703256 funderid: 10.13039/501100001809 – fundername: National Institutes of Health grantid: AG042599 funderid: 10.13039/100000002 – fundername: Fundamental Research Founds for Central Universities grantid: GK201903016 funderid: 10.13039/501100012226 – fundername: National Science Foundation grantid: DBI-1564736 funderid: 10.13039/100000001 – fundername: Fundamental Research Founds for the Central Universities grantid: GK201803023 funderid: 10.13039/501100012226 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-5652e1831e7c30439cbc0c7aade6c5d45eb0b5393a8779339a3dfe7eb7872d383 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728925200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2379-8920 |
| IngestDate | Sun Nov 30 04:10:18 EST 2025 Sat Nov 29 02:22:09 EST 2025 Tue Nov 18 22:44:19 EST 2025 Wed Aug 27 05:07:55 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-5652e1831e7c30439cbc0c7aade6c5d45eb0b5393a8779339a3dfe7eb7872d383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8321-866X 0000-0003-2817-6289 0000-0002-8132-9048 0000-0002-0049-937X 0000-0001-6852-6330 |
| PQID | 2608554572 |
| PQPubID | 85513 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TCDS_2020_3025137 ieee_primary_9204760 crossref_citationtrail_10_1109_TCDS_2020_3025137 proquest_journals_2608554572 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cognitive and developmental systems |
| PublicationTitleAbbrev | TCDS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref50 costa (ref42) 2017 ref45 ref48 abadi (ref51) 2015 ref41 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 logothetis (ref1) 2008; 453 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 guibas (ref43) 2017 ref39 ref38 calimeri (ref44) 2017 ref24 ref26 ref25 ref20 huettel (ref2) 2004 ref22 ref21 ref28 ref27 ref29 lee (ref23) 2011; 30 ref60 doersch (ref46) 2016 pu (ref47) 2016 |
| References_xml | – ident: ref35 doi: 10.1016/j.jneumeth.2019.108319 – ident: ref19 doi: 10.1109/ISBI.2018.8363526 – ident: ref18 doi: 10.1109/ISBI.2016.7493210 – ident: ref7 doi: 10.1155/2014/380531 – volume: 453 start-page: 869 year: 2008 ident: ref1 article-title: What we can do and what we cannot do with fMRI publication-title: Nature doi: 10.1038/nature06976 – ident: ref52 doi: 10.1109/TBME.2019.2945231 – ident: ref25 doi: 10.1002/hbm.23693 – ident: ref11 doi: 10.1109/RBME.2012.2211076 – ident: ref13 doi: 10.1098/rstb.2005.1634 – ident: ref58 doi: 10.1016/j.compmedimag.2017.10.002 – ident: ref9 doi: 10.1016/j.biopsych.2009.04.036 – ident: ref34 doi: 10.1016/j.media.2019.101622 – ident: ref59 doi: 10.1016/j.eswa.2017.08.044 – ident: ref24 doi: 10.1016/j.neuroimage.2015.10.081 – ident: ref5 doi: 10.1073/pnas.0504136102 – ident: ref20 doi: 10.1109/ISBI.2015.7163807 – ident: ref31 doi: 10.3389/fnins.2014.00229 – year: 2015 ident: ref51 publication-title: TensorFlow Large-Scale Machine Learning on Heterogeneous Systems – ident: ref27 doi: 10.1109/ISBI.2018.8363528 – ident: ref4 doi: 10.1016/j.plrev.2014.03.005 – ident: ref37 doi: 10.1007/978-3-030-32254-0_54 – ident: ref28 doi: 10.1109/TMI.2017.2715285 – ident: ref57 doi: 10.1007/978-3-319-24888-2_8 – ident: ref26 doi: 10.1002/hbm.24005 – ident: ref10 doi: 10.1016/j.neuroimage.2008.10.057 – ident: ref50 doi: 10.1016/j.neuroimage.2014.07.051 – year: 2016 ident: ref46 publication-title: Tutorial on variational autoencoders – ident: ref54 doi: 10.1016/j.neuroimage.2013.04.007 – ident: ref6 doi: 10.1017/S0140525X11001567 – ident: ref8 doi: 10.3389/fncir.2014.00064 – ident: ref39 doi: 10.1002/jmri.20009 – ident: ref15 doi: 10.1016/j.media.2014.10.011 – ident: ref30 doi: 10.1016/j.neuroimage.2014.03.048 – year: 2017 ident: ref43 publication-title: Synthetic medical images from dual generative adversarial networks – start-page: 2352 year: 2016 ident: ref47 article-title: Variational autoencoder for deep learning of images, labels and captions publication-title: Advances in neural information processing systems – ident: ref29 doi: 10.1016/j.neuroimage.2016.04.003 – ident: ref14 doi: 10.1006/nimg.1999.0518 – ident: ref3 doi: 10.1073/pnas.0135058100 – year: 2017 ident: ref42 publication-title: Towards Adversarial Retinal Image Synthesis – ident: ref55 doi: 10.1073/pnas.0905267106 – ident: ref33 doi: 10.1109/TMI.2018.2877576 – ident: ref40 doi: 10.1016/j.neuroimage.2013.05.039 – start-page: 626 year: 2017 ident: ref44 article-title: Biomedical data augmentation using generative adversarial neural networks publication-title: Proc Int Conf Artif Neural Netw – ident: ref60 doi: 10.1016/j.neuroimage.2006.01.021 – ident: ref53 doi: 10.3389/fninf.2014.00014 – ident: ref41 doi: 10.1007/978-3-319-66179-7_48 – ident: ref17 doi: 10.1109/TBME.2014.2369495 – ident: ref12 doi: 10.1002/hbm.1048 – ident: ref49 doi: 10.1016/j.tins.2005.11.004 – ident: ref38 doi: 10.1007/978-3-030-32248-9_89 – year: 2004 ident: ref2 publication-title: Functional Magnetic Resonance Imaging – ident: ref56 doi: 10.1038/mp.2013.78 – ident: ref21 doi: 10.1016/j.nicl.2016.06.004 – ident: ref48 doi: 10.1016/j.neuroimage.2016.06.034 – volume: 30 start-page: 1076 year: 2011 ident: ref23 article-title: A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2010.2097275 – ident: ref32 doi: 10.1007/978-3-030-00931-1_21 – ident: ref22 doi: 10.1016/j.pscychresns.2015.07.012 – ident: ref16 doi: 10.1109/ISBI.2016.7493213 – ident: ref36 doi: 10.1016/j.neucom.2019.02.070 – ident: ref45 doi: 10.1109/TPAMI.2013.50 |
| SSID | ssj0001637847 |
| Score | 2.3811913 |
| Snippet | In the neuroimaging and brain mapping communities, researchers have proposed a variety of computational methods to map functional brain networks (FBNs).... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 841 |
| SubjectTerms | Attention deficit hyperactivity disorder Attention deficit hyperactivity disorder (ADHD) Biological system modeling Brain Brain modeling Classification Data models Datasets Deep learning deep learning (DL) Feature extraction Functional magnetic resonance imaging generative learning Machine learning Magnetic resonance imaging Mapping Medical imaging Representations resting-state functional magnetic resonance image (rfMRI) Unsupervised learning variational autoencoder (VAE) |
| Title | Deep Variational Autoencoder for Mapping Functional Brain Networks |
| URI | https://ieeexplore.ieee.org/document/9204760 https://www.proquest.com/docview/2608554572 |
| Volume | 13 |
| WOSCitedRecordID | wos000728925200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2379-8939 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001637847 issn: 2379-8920 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePDiq4rVKjmIB3HtNtltNsc-LB60CNbS25JNpiJoW9qt4L93kk2roAje9jADy2RnZ77JzDeEnIsI4jFGmoAJBkGkBAToRSaQYaKUjLmJHfH88E70-8loJB9K5Go9CwMArvkMru2ju8s3U720pbK6ZGEkmgjQN4QQxazWVz2lyUXi9okxLmSQoKy_xGyEsj7odB8RDDLEqDaptlvPv4Uht1flx8_YRZjezv_ebZds-0yStoqj3yMlmOyTSmuCKPrtg15Q19vpiuYV0u4CzOgQcbGv_dHWMp9aDksDc4p5K71XlqjhmfYwznmRtt0eQftFn_jigDz1bgad28BvTwg0hvA8wEyNATpsA4TmdgBWZzrUQikDTR2bKIYszGIuuUoEOimXipsxCMjQhZlB4HpIypPpBI4IjRRwllje1FhHUjcyqxMZxFpZxsc6qZJwZcxUe2pxu-HiNXUQI5SptX9q7Z96-1fJ5VplVvBq_CVcsQZfC3pbV0ltdWKp97xFivjMdt7Fgh3_rnVCtpjtS3EtKTVSzudLOCWb-j1_WczP3Ef1CSsNx_s |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxtBEB8kFvSlWlNp6tc-SB-kZy77kb19jB9BMYZCU_Ht2NudSEETyUeh_72zmzUVKoJv9zADx-zNzfxmZ34DcKglqiFFmoxrjpm0GjPyIp-ZvLDWKOFVJJ6_6el-v7i9NT9W4PtyFgYRY_MZHofHeJfvx24eSmVNw3Op2wTQV5WUvLWY1vpXUWkLXcSNYlxokxUkna4xW7lpDk7PfhIc5IRSQ1od9p6_CERxs8p_v-MYY7ob73u7TfiYcknWWRz-J1jB0RbUOyPC0Q9_2TcWuztj2bwOJ2eIj-yGkHGq_rHOfDYOLJYeJ4wyV3ZtA1XDHetSpEsiJ2F_BOsvOsWnn-FX93xwepGl_QmZoyA-yyhX40gu20LtRBiBdZXLnbbWY9spLxVWeaWEEbbQ5KbCWOGHqLEiJ-aeoOs21EbjEX4BJi0KXgTmVOWkca0q6EhPaKuqxNAVDcifjVm6RC4edlzclxFk5KYM9i-D_ctk_wYcLVUeF8wabwnXg8GXgsnWDdh9PrEy-d60JIQWeu-U5l9f1zqAtYvBda_sXfavdmCdhy6V2KCyC7XZZI578MH9mf2eTvbjB_YEvs7LQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Variational+Autoencoder+for+Mapping+Functional+Brain+Networks&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Qiang%2C+Ning&rft.au=Dong%2C+Qinglin&rft.au=Ge%2C+Fangfei&rft.au=Liang%2C+Hongtao&rft.date=2021-12-01&rft.issn=2379-8920&rft.eissn=2379-8939&rft.volume=13&rft.issue=4&rft.spage=841&rft.epage=852&rft_id=info:doi/10.1109%2FTCDS.2020.3025137&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCDS_2020_3025137 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |