Deep Variational Autoencoder for Mapping Functional Brain Networks

In the neuroimaging and brain mapping communities, researchers have proposed a variety of computational methods to map functional brain networks (FBNs). Recently, it has been proven that deep learning (DL) can be applied on functional magnetic resonance image (fMRI) data with superb representation p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cognitive and developmental systems Ročník 13; číslo 4; s. 841 - 852
Hlavní autori: Qiang, Ning, Dong, Qinglin, Ge, Fangfei, Liang, Hongtao, Ge, Bao, Zhang, Shu, Sun, Yifei, Gao, Jie, Liu, Tianming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2379-8920, 2379-8939
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the neuroimaging and brain mapping communities, researchers have proposed a variety of computational methods to map functional brain networks (FBNs). Recently, it has been proven that deep learning (DL) can be applied on functional magnetic resonance image (fMRI) data with superb representation power over the traditional machine learning methods. However, due to the lack of labeled data and the high dimension of fMRI volume images, DL suffers from overfitting in both supervised and unsupervised training processes. In this work, we proposed a novel generative model: deep variational autoencoder (DVAE) to tackle the challenge of insufficient data and incomplete supervision. The experimental results showed that the representations learned by DVAE are interpretable and meaningful compared to those learned from well-known sparse dictionary learning (SDL). Besides, the organization of some FBN patterns derived from different layers in DVAE was observed in a hierarchical fashion. Furthermore, we showed that DVAE has better performance on small dataset over autoencoder (AE). By using attention deficit hyperactivity disorder (ADHD)-200 dataset as our test bed, we constructed a DVAE-based modeling and classification pipeline in which all subjects' functional connectivities estimated by FBNs were taken as input features to train a classifier. Finally, the results achieved by our pipeline reached state-of-the-art classification accuracies on three ADHD-200 sites compared with other fMRI-based methods.
AbstractList In the neuroimaging and brain mapping communities, researchers have proposed a variety of computational methods to map functional brain networks (FBNs). Recently, it has been proven that deep learning (DL) can be applied on functional magnetic resonance image (fMRI) data with superb representation power over the traditional machine learning methods. However, due to the lack of labeled data and the high dimension of fMRI volume images, DL suffers from overfitting in both supervised and unsupervised training processes. In this work, we proposed a novel generative model: deep variational autoencoder (DVAE) to tackle the challenge of insufficient data and incomplete supervision. The experimental results showed that the representations learned by DVAE are interpretable and meaningful compared to those learned from well-known sparse dictionary learning (SDL). Besides, the organization of some FBN patterns derived from different layers in DVAE was observed in a hierarchical fashion. Furthermore, we showed that DVAE has better performance on small dataset over autoencoder (AE). By using attention deficit hyperactivity disorder (ADHD)-200 dataset as our test bed, we constructed a DVAE-based modeling and classification pipeline in which all subjects' functional connectivities estimated by FBNs were taken as input features to train a classifier. Finally, the results achieved by our pipeline reached state-of-the-art classification accuracies on three ADHD-200 sites compared with other fMRI-based methods.
Author Qiang, Ning
Ge, Bao
Sun, Yifei
Gao, Jie
Liang, Hongtao
Dong, Qinglin
Ge, Fangfei
Zhang, Shu
Liu, Tianming
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0001-8321-866X
  surname: Qiang
  fullname: Qiang, Ning
  email: qn315@snnu.edu.cn
  organization: School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
– sequence: 2
  givenname: Qinglin
  orcidid: 0000-0002-0049-937X
  surname: Dong
  fullname: Dong, Qinglin
  email: qinglin@uga.edu
  organization: Department of Computer Science and Bioimaging Research Center, Cortical Architecture Imaging and Discovery Lab, University of Georgia, Athens, GA, USA
– sequence: 3
  givenname: Fangfei
  surname: Ge
  fullname: Ge, Fangfei
  email: gfflvlxy@gmail.com
  organization: Department of Computer Science and Bioimaging Research Center, Cortical Architecture Imaging and Discovery Lab, University of Georgia, Athens, GA, USA
– sequence: 4
  givenname: Hongtao
  orcidid: 0000-0003-2817-6289
  surname: Liang
  fullname: Liang, Hongtao
  email: lht@snnu.edu.cn
  organization: School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
– sequence: 5
  givenname: Bao
  surname: Ge
  fullname: Ge, Bao
  email: bob_ge@snnu.edu.cn
  organization: School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
– sequence: 6
  givenname: Shu
  surname: Zhang
  fullname: Zhang, Shu
  email: shuzhang8967@163.com
  organization: School of Computer Science, Northwestern Polyteachnical university, Xi'an, China
– sequence: 7
  givenname: Yifei
  surname: Sun
  fullname: Sun, Yifei
  email: yifeis@snnu.edu.cn
  organization: School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
– sequence: 8
  givenname: Jie
  orcidid: 0000-0001-6852-6330
  surname: Gao
  fullname: Gao, Jie
  email: gaojie@snnu.edu.cn
  organization: School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
– sequence: 9
  givenname: Tianming
  orcidid: 0000-0002-8132-9048
  surname: Liu
  fullname: Liu, Tianming
  email: tianming.liu@gmail.com
  organization: Department of Computer Science and Bioimaging Research Center, Cortical Architecture Imaging and Discovery Lab, University of Georgia, Athens, GA, USA
BookMark eNp9kD1PwzAQhi0EEqX0ByCWSMwpti-O47EfFJAKDBRWy3EuKKXEwU6E-PektOrAwHQ3vM99PGfkuHY1EnLB6Jgxqq5Xs_nzmFNOx0C5YCCPyICDVHGmQB0fek5PySiENaWUpSCzRA7IdI7YRK_GV6atXG020aRrHdbWFeij0vnowTRNVb9Fi662-8jUm6qOHrH9cv49nJOT0mwCjvZ1SF4WN6vZXbx8ur2fTZax5QraWKSCI8uAobRAE1A2t9RKYwpMrSgSgTnNBSgwmZQKQBkoSpSYy0zyAjIYkqvd3Ma7zw5Dq9eu8_09QfOUZkIkQvI-xXYp610IHkvd-OrD-G_NqN7a0ltbemtL7231jPzD2Kr99dH2n27-JS93ZIWIh0296USmFH4AVlV4UQ
CODEN ITCDA4
CitedBy_id crossref_primary_10_1016_j_neuroscience_2025_02_019
crossref_primary_10_21833_ijaas_2025_08_024
crossref_primary_10_1088_1741_2552_ac1179
crossref_primary_10_1016_j_neuroimage_2025_121177
crossref_primary_10_1117_1_JEI_33_2_023032
crossref_primary_10_1016_j_compbiomed_2024_108611
crossref_primary_10_1073_pnas_2202024119
crossref_primary_10_1145_3591468
crossref_primary_10_1007_s41870_024_01895_x
crossref_primary_10_1016_j_bspc_2023_104733
crossref_primary_10_3389_fnins_2023_1183145
crossref_primary_10_1038_s41598_024_74282_y
crossref_primary_10_1088_1741_2552_ad48bd
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1109_ACCESS_2024_3522397
crossref_primary_10_1016_j_compbiomed_2023_107395
crossref_primary_10_1016_j_neuroimage_2024_120519
crossref_primary_10_1016_j_media_2023_102892
crossref_primary_10_1088_1741_2552_ad2cea
Cites_doi 10.1016/j.jneumeth.2019.108319
10.1109/ISBI.2018.8363526
10.1109/ISBI.2016.7493210
10.1155/2014/380531
10.1038/nature06976
10.1109/TBME.2019.2945231
10.1002/hbm.23693
10.1109/RBME.2012.2211076
10.1098/rstb.2005.1634
10.1016/j.compmedimag.2017.10.002
10.1016/j.biopsych.2009.04.036
10.1016/j.media.2019.101622
10.1016/j.eswa.2017.08.044
10.1016/j.neuroimage.2015.10.081
10.1073/pnas.0504136102
10.1109/ISBI.2015.7163807
10.3389/fnins.2014.00229
10.1109/ISBI.2018.8363528
10.1016/j.plrev.2014.03.005
10.1007/978-3-030-32254-0_54
10.1109/TMI.2017.2715285
10.1007/978-3-319-24888-2_8
10.1002/hbm.24005
10.1016/j.neuroimage.2008.10.057
10.1016/j.neuroimage.2014.07.051
10.1016/j.neuroimage.2013.04.007
10.1017/S0140525X11001567
10.3389/fncir.2014.00064
10.1002/jmri.20009
10.1016/j.media.2014.10.011
10.1016/j.neuroimage.2014.03.048
10.1016/j.neuroimage.2016.04.003
10.1006/nimg.1999.0518
10.1073/pnas.0135058100
10.1073/pnas.0905267106
10.1109/TMI.2018.2877576
10.1016/j.neuroimage.2013.05.039
10.1016/j.neuroimage.2006.01.021
10.3389/fninf.2014.00014
10.1007/978-3-319-66179-7_48
10.1109/TBME.2014.2369495
10.1002/hbm.1048
10.1016/j.tins.2005.11.004
10.1007/978-3-030-32248-9_89
10.1038/mp.2013.78
10.1016/j.nicl.2016.06.004
10.1016/j.neuroimage.2016.06.034
10.1109/TMI.2010.2097275
10.1007/978-3-030-00931-1_21
10.1016/j.pscychresns.2015.07.012
10.1109/ISBI.2016.7493213
10.1016/j.neucom.2019.02.070
10.1109/TPAMI.2013.50
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2020.3025137
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 852
ExternalDocumentID 10_1109_TCDS_2020_3025137
9204760
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Founds for the Central Universities
  grantid: GK202003016
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61976131
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Founds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Shaanxi
  grantid: 2019JQ-026
  funderid: 10.13039/501100007128
– fundername: National Natural Science Foundation of China
  grantid: 61703256
  funderid: 10.13039/501100001809
– fundername: National Institutes of Health
  grantid: AG042599
  funderid: 10.13039/100000002
– fundername: Fundamental Research Founds for Central Universities
  grantid: GK201903016
  funderid: 10.13039/501100012226
– fundername: National Science Foundation
  grantid: DBI-1564736
  funderid: 10.13039/100000001
– fundername: Fundamental Research Founds for the Central Universities
  grantid: GK201803023
  funderid: 10.13039/501100012226
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-5652e1831e7c30439cbc0c7aade6c5d45eb0b5393a8779339a3dfe7eb7872d383
IEDL.DBID RIE
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728925200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2379-8920
IngestDate Sun Nov 30 04:10:18 EST 2025
Sat Nov 29 02:22:09 EST 2025
Tue Nov 18 22:44:19 EST 2025
Wed Aug 27 05:07:55 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-5652e1831e7c30439cbc0c7aade6c5d45eb0b5393a8779339a3dfe7eb7872d383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8321-866X
0000-0003-2817-6289
0000-0002-8132-9048
0000-0002-0049-937X
0000-0001-6852-6330
PQID 2608554572
PQPubID 85513
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCDS_2020_3025137
ieee_primary_9204760
crossref_citationtrail_10_1109_TCDS_2020_3025137
proquest_journals_2608554572
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref50
costa (ref42) 2017
ref45
ref48
abadi (ref51) 2015
ref41
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
logothetis (ref1) 2008; 453
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
guibas (ref43) 2017
ref39
ref38
calimeri (ref44) 2017
ref24
ref26
ref25
ref20
huettel (ref2) 2004
ref22
ref21
ref28
ref27
ref29
lee (ref23) 2011; 30
ref60
doersch (ref46) 2016
pu (ref47) 2016
References_xml – ident: ref35
  doi: 10.1016/j.jneumeth.2019.108319
– ident: ref19
  doi: 10.1109/ISBI.2018.8363526
– ident: ref18
  doi: 10.1109/ISBI.2016.7493210
– ident: ref7
  doi: 10.1155/2014/380531
– volume: 453
  start-page: 869
  year: 2008
  ident: ref1
  article-title: What we can do and what we cannot do with fMRI
  publication-title: Nature
  doi: 10.1038/nature06976
– ident: ref52
  doi: 10.1109/TBME.2019.2945231
– ident: ref25
  doi: 10.1002/hbm.23693
– ident: ref11
  doi: 10.1109/RBME.2012.2211076
– ident: ref13
  doi: 10.1098/rstb.2005.1634
– ident: ref58
  doi: 10.1016/j.compmedimag.2017.10.002
– ident: ref9
  doi: 10.1016/j.biopsych.2009.04.036
– ident: ref34
  doi: 10.1016/j.media.2019.101622
– ident: ref59
  doi: 10.1016/j.eswa.2017.08.044
– ident: ref24
  doi: 10.1016/j.neuroimage.2015.10.081
– ident: ref5
  doi: 10.1073/pnas.0504136102
– ident: ref20
  doi: 10.1109/ISBI.2015.7163807
– ident: ref31
  doi: 10.3389/fnins.2014.00229
– year: 2015
  ident: ref51
  publication-title: TensorFlow Large-Scale Machine Learning on Heterogeneous Systems
– ident: ref27
  doi: 10.1109/ISBI.2018.8363528
– ident: ref4
  doi: 10.1016/j.plrev.2014.03.005
– ident: ref37
  doi: 10.1007/978-3-030-32254-0_54
– ident: ref28
  doi: 10.1109/TMI.2017.2715285
– ident: ref57
  doi: 10.1007/978-3-319-24888-2_8
– ident: ref26
  doi: 10.1002/hbm.24005
– ident: ref10
  doi: 10.1016/j.neuroimage.2008.10.057
– ident: ref50
  doi: 10.1016/j.neuroimage.2014.07.051
– year: 2016
  ident: ref46
  publication-title: Tutorial on variational autoencoders
– ident: ref54
  doi: 10.1016/j.neuroimage.2013.04.007
– ident: ref6
  doi: 10.1017/S0140525X11001567
– ident: ref8
  doi: 10.3389/fncir.2014.00064
– ident: ref39
  doi: 10.1002/jmri.20009
– ident: ref15
  doi: 10.1016/j.media.2014.10.011
– ident: ref30
  doi: 10.1016/j.neuroimage.2014.03.048
– year: 2017
  ident: ref43
  publication-title: Synthetic medical images from dual generative adversarial networks
– start-page: 2352
  year: 2016
  ident: ref47
  article-title: Variational autoencoder for deep learning of images, labels and captions
  publication-title: Advances in neural information processing systems
– ident: ref29
  doi: 10.1016/j.neuroimage.2016.04.003
– ident: ref14
  doi: 10.1006/nimg.1999.0518
– ident: ref3
  doi: 10.1073/pnas.0135058100
– year: 2017
  ident: ref42
  publication-title: Towards Adversarial Retinal Image Synthesis
– ident: ref55
  doi: 10.1073/pnas.0905267106
– ident: ref33
  doi: 10.1109/TMI.2018.2877576
– ident: ref40
  doi: 10.1016/j.neuroimage.2013.05.039
– start-page: 626
  year: 2017
  ident: ref44
  article-title: Biomedical data augmentation using generative adversarial neural networks
  publication-title: Proc Int Conf Artif Neural Netw
– ident: ref60
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: ref53
  doi: 10.3389/fninf.2014.00014
– ident: ref41
  doi: 10.1007/978-3-319-66179-7_48
– ident: ref17
  doi: 10.1109/TBME.2014.2369495
– ident: ref12
  doi: 10.1002/hbm.1048
– ident: ref49
  doi: 10.1016/j.tins.2005.11.004
– ident: ref38
  doi: 10.1007/978-3-030-32248-9_89
– year: 2004
  ident: ref2
  publication-title: Functional Magnetic Resonance Imaging
– ident: ref56
  doi: 10.1038/mp.2013.78
– ident: ref21
  doi: 10.1016/j.nicl.2016.06.004
– ident: ref48
  doi: 10.1016/j.neuroimage.2016.06.034
– volume: 30
  start-page: 1076
  year: 2011
  ident: ref23
  article-title: A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2010.2097275
– ident: ref32
  doi: 10.1007/978-3-030-00931-1_21
– ident: ref22
  doi: 10.1016/j.pscychresns.2015.07.012
– ident: ref16
  doi: 10.1109/ISBI.2016.7493213
– ident: ref36
  doi: 10.1016/j.neucom.2019.02.070
– ident: ref45
  doi: 10.1109/TPAMI.2013.50
SSID ssj0001637847
Score 2.3811913
Snippet In the neuroimaging and brain mapping communities, researchers have proposed a variety of computational methods to map functional brain networks (FBNs)....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 841
SubjectTerms Attention deficit hyperactivity disorder
Attention deficit hyperactivity disorder (ADHD)
Biological system modeling
Brain
Brain modeling
Classification
Data models
Datasets
Deep learning
deep learning (DL)
Feature extraction
Functional magnetic resonance imaging
generative learning
Machine learning
Magnetic resonance imaging
Mapping
Medical imaging
Representations
resting-state functional magnetic resonance image (rfMRI)
Unsupervised learning
variational autoencoder (VAE)
Title Deep Variational Autoencoder for Mapping Functional Brain Networks
URI https://ieeexplore.ieee.org/document/9204760
https://www.proquest.com/docview/2608554572
Volume 13
WOSCitedRecordID wos000728925200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2379-8939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001637847
  issn: 2379-8920
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePDiq4rVKjmIB3HtNtltNsc-LB60CNbS25JNpiJoW9qt4L93kk2roAje9jADy2RnZ77JzDeEnIsI4jFGmoAJBkGkBAToRSaQYaKUjLmJHfH88E70-8loJB9K5Go9CwMArvkMru2ju8s3U720pbK6ZGEkmgjQN4QQxazWVz2lyUXi9okxLmSQoKy_xGyEsj7odB8RDDLEqDaptlvPv4Uht1flx8_YRZjezv_ebZds-0yStoqj3yMlmOyTSmuCKPrtg15Q19vpiuYV0u4CzOgQcbGv_dHWMp9aDksDc4p5K71XlqjhmfYwznmRtt0eQftFn_jigDz1bgad28BvTwg0hvA8wEyNATpsA4TmdgBWZzrUQikDTR2bKIYszGIuuUoEOimXipsxCMjQhZlB4HpIypPpBI4IjRRwllje1FhHUjcyqxMZxFpZxsc6qZJwZcxUe2pxu-HiNXUQI5SptX9q7Z96-1fJ5VplVvBq_CVcsQZfC3pbV0ltdWKp97xFivjMdt7Fgh3_rnVCtpjtS3EtKTVSzudLOCWb-j1_WczP3Ef1CSsNx_s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxtBEB8kFvSlWlNp6tc-SB-kZy77kb19jB9BMYZCU_Ht2NudSEETyUeh_72zmzUVKoJv9zADx-zNzfxmZ34DcKglqiFFmoxrjpm0GjPyIp-ZvLDWKOFVJJ6_6el-v7i9NT9W4PtyFgYRY_MZHofHeJfvx24eSmVNw3Op2wTQV5WUvLWY1vpXUWkLXcSNYlxokxUkna4xW7lpDk7PfhIc5IRSQ1od9p6_CERxs8p_v-MYY7ob73u7TfiYcknWWRz-J1jB0RbUOyPC0Q9_2TcWuztj2bwOJ2eIj-yGkHGq_rHOfDYOLJYeJ4wyV3ZtA1XDHetSpEsiJ2F_BOsvOsWnn-FX93xwepGl_QmZoyA-yyhX40gu20LtRBiBdZXLnbbWY9spLxVWeaWEEbbQ5KbCWOGHqLEiJ-aeoOs21EbjEX4BJi0KXgTmVOWkca0q6EhPaKuqxNAVDcifjVm6RC4edlzclxFk5KYM9i-D_ctk_wYcLVUeF8wabwnXg8GXgsnWDdh9PrEy-d60JIQWeu-U5l9f1zqAtYvBda_sXfavdmCdhy6V2KCyC7XZZI578MH9mf2eTvbjB_YEvs7LQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Variational+Autoencoder+for+Mapping+Functional+Brain+Networks&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Qiang%2C+Ning&rft.au=Dong%2C+Qinglin&rft.au=Ge%2C+Fangfei&rft.au=Liang%2C+Hongtao&rft.date=2021-12-01&rft.issn=2379-8920&rft.eissn=2379-8939&rft.volume=13&rft.issue=4&rft.spage=841&rft.epage=852&rft_id=info:doi/10.1109%2FTCDS.2020.3025137&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCDS_2020_3025137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon