Online Resource Allocation, Content Placement and Request Routing for Cost-Efficient Edge Caching in Cloud Radio Access Networks
In this paper, we advocate edge caching in cloud radio access networks (C-RAN) to facilitate the ever-increasing mobile multimedia services. In our framework, central offices will cooperatively allocate cloud resources to cache popular contents and satisfy user requests for those contents, so as to...
Uložené v:
| Vydané v: | IEEE journal on selected areas in communications Ročník 36; číslo 8; s. 1751 - 1767 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0733-8716, 1558-0008 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we advocate edge caching in cloud radio access networks (C-RAN) to facilitate the ever-increasing mobile multimedia services. In our framework, central offices will cooperatively allocate cloud resources to cache popular contents and satisfy user requests for those contents, so as to minimize the system costs in terms of storage, VM reconfiguration, content access latency, and content migration. However, this joint resource allocation, content placement and request routing, is nontrivial, since it needs to be continuously adjusted to accommodate system dynamics, such as user movement and content slashdot effect, while taking into account the time-correlated adjustment costs for VM reconfiguration and content migration. To this end, we build a comprehensive model to capture the key components of edge caching in C-RAN and formulate a joint optimization problem, aiming at minimizing the system costs over time and meanwhile satisfying the time-varying user requests and respecting various practical constraints (e.g., storage and bandwidth). Then, we propose a novel online approximation algorithm by resorting to the regularization, rounding, and decomposition technique, which can be proved to have a parameterized competitive ratio with a polynomial running time. Extensive trace-driven simulations corroborate the efficiency, flexibility, and lightweight of our proposed online algorithm; for instance, it achieves an empirical competitive ratio around 2 - 4 and gains over 30% improvement compared with many state-of-the-art algorithms in various system settings. |
|---|---|
| AbstractList | In this paper, we advocate edge caching in cloud radio access networks (C-RAN) to facilitate the ever-increasing mobile multimedia services. In our framework, central offices will cooperatively allocate cloud resources to cache popular contents and satisfy user requests for those contents, so as to minimize the system costs in terms of storage, VM reconfiguration, content access latency, and content migration. However, this joint resource allocation, content placement and request routing, is nontrivial, since it needs to be continuously adjusted to accommodate system dynamics, such as user movement and content slashdot effect, while taking into account the time-correlated adjustment costs for VM reconfiguration and content migration. To this end, we build a comprehensive model to capture the key components of edge caching in C-RAN and formulate a joint optimization problem, aiming at minimizing the system costs over time and meanwhile satisfying the time-varying user requests and respecting various practical constraints (e.g., storage and bandwidth). Then, we propose a novel online approximation algorithm by resorting to the regularization, rounding, and decomposition technique, which can be proved to have a parameterized competitive ratio with a polynomial running time. Extensive trace-driven simulations corroborate the efficiency, flexibility, and lightweight of our proposed online algorithm; for instance, it achieves an empirical competitive ratio around 2 – 4 and gains over 30% improvement compared with many state-of-the-art algorithms in various system settings. |
| Author | Pu, Lingjun Jiao, Lei Wang, Lin Xie, Qinyi Xu, Jingdong Chen, Xu |
| Author_xml | – sequence: 1 givenname: Lingjun orcidid: 0000-0002-3063-8887 surname: Pu fullname: Pu, Lingjun email: pulj@nankai.edu.cn organization: College of Computer and Control Engineering, Nankai University, Tianjin, China – sequence: 2 givenname: Lei orcidid: 0000-0002-3964-3172 surname: Jiao fullname: Jiao, Lei email: jiao@cs.uoregon.edu organization: Department of Computer and Information Science, University of Oregon, Eugene, OR, USA – sequence: 3 givenname: Xu orcidid: 0000-0001-9943-6020 surname: Chen fullname: Chen, Xu email: chenxu35@mail.sysu.edu.cn organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China – sequence: 4 givenname: Lin orcidid: 0000-0001-7181-6128 surname: Wang fullname: Wang, Lin email: wang@tk.tu-darmstadt.de organization: Department of Computer Science, TU Darmstadt, Darmstadt, Germany – sequence: 5 givenname: Qinyi orcidid: 0000-0003-4806-9050 surname: Xie fullname: Xie, Qinyi email: xieqy@nankai.edu.cn organization: Department of Computer Science, TU Darmstadt, Darmstadt, Germany – sequence: 6 givenname: Jingdong surname: Xu fullname: Xu, Jingdong email: xujd@nankai.edu.cn organization: Department of Computer Science, TU Darmstadt, Darmstadt, Germany |
| BookMark | eNp9kMtO3DAUQC1EJQbaD6jYWGLbDH7EsbMcRdMHQgVBu47uONdgCDa1Paq649ObMIgFC1a25HPs63NI9kMMSMhnzpacs_b07HrVLQXjZilMXTei3iMLrpSpGGNmnyyYlrIymjcH5DDnO8Z4XRuxIE8XYfQB6RXmuE0W6Woco4XiY_hCuxgKhkIvR7D4MO8gDBP6Z4u50Ku4LT7cUBfTROZSrZ3z1s_YerhB2oG9nc99oN0Yt5MIg490ZS3mTH9i-RvTff5IPjgYM356WY_I76_rX9336vzi249udV5Z0cpSKcVBOaGtGqTeQM1hAIHG2QEYR22Ro1EDtAIlGttuYKOtdUbCpjUKnJNH5GR372OKz_P3d9OHw_RkL7jQrZZt00yU3lE2xZwTut768lyjJPBjz1k_5-7n3P2cu3_JPZn8jfmY_AOkf-86xzvHI-Irb6SuWaPkfws-j3U |
| CODEN | ISACEM |
| CitedBy_id | crossref_primary_10_1109_JSAC_2021_3118430 crossref_primary_10_1109_TSC_2021_3091462 crossref_primary_10_1016_j_comnet_2022_108997 crossref_primary_10_1109_JSAC_2018_2844578 crossref_primary_10_1109_TMC_2021_3087198 crossref_primary_10_1109_TMC_2022_3195765 crossref_primary_10_1109_TMM_2021_3066050 crossref_primary_10_1109_JIOT_2023_3300696 crossref_primary_10_1109_TCOMM_2020_3015478 crossref_primary_10_1155_2020_8837751 crossref_primary_10_1109_TMC_2025_3562209 crossref_primary_10_1109_TWC_2020_3003459 crossref_primary_10_1109_JSAC_2019_2959182 crossref_primary_10_1109_JSAC_2019_2933780 crossref_primary_10_1109_TII_2022_3177415 crossref_primary_10_1109_TMC_2023_3238356 crossref_primary_10_1007_s11276_024_03749_7 crossref_primary_10_1109_JSAC_2020_3020645 crossref_primary_10_1109_TNSM_2019_2961560 crossref_primary_10_1109_JSEN_2020_3048593 crossref_primary_10_1002_spe_3025 crossref_primary_10_1109_TIFS_2023_3235152 crossref_primary_10_1145_3582883 crossref_primary_10_1109_TNSE_2020_3047417 crossref_primary_10_1109_TVT_2021_3064032 crossref_primary_10_1109_TMC_2021_3107918 crossref_primary_10_1016_j_comnet_2019_106901 crossref_primary_10_1109_TGCN_2022_3146145 crossref_primary_10_1016_j_comnet_2020_107316 crossref_primary_10_1109_TNET_2020_3025985 crossref_primary_10_1016_j_comnet_2023_109836 crossref_primary_10_1109_TNSM_2021_3062461 crossref_primary_10_1109_JIOT_2025_3551237 crossref_primary_10_1109_ACCESS_2019_2896637 crossref_primary_10_1109_JIOT_2020_3008173 crossref_primary_10_1155_2022_1237619 crossref_primary_10_1016_j_ins_2019_07_069 crossref_primary_10_1109_TCC_2019_2932386 crossref_primary_10_1109_TCC_2021_3107022 crossref_primary_10_1109_TVT_2022_3192917 crossref_primary_10_1109_ACCESS_2019_2960191 crossref_primary_10_1109_ACCESS_2021_3135832 crossref_primary_10_1016_j_future_2022_11_022 crossref_primary_10_1142_S0218126625501300 crossref_primary_10_1109_TPDS_2023_3276724 crossref_primary_10_1109_TPDS_2023_3305460 crossref_primary_10_1109_TMC_2022_3149870 crossref_primary_10_1109_TCOMM_2019_2908574 crossref_primary_10_1007_s42486_021_00066_2 crossref_primary_10_1109_JIOT_2024_3420952 crossref_primary_10_1109_JIOT_2019_2935120 crossref_primary_10_1109_COMST_2023_3293231 crossref_primary_10_1109_TMC_2020_2983924 crossref_primary_10_1109_JIOT_2025_3546596 crossref_primary_10_1007_s11276_025_03928_0 crossref_primary_10_1109_TPDS_2022_3195205 crossref_primary_10_1016_j_future_2020_02_072 crossref_primary_10_1109_TCOMM_2020_3022692 |
| Cites_doi | 10.1109/TNET.2012.2226216 10.1109/TC.2015.2435781 10.1109/SAHCN.2018.8397141 10.1109/TMC.2016.2575837 10.1109/COMST.2014.2355255 10.1109/TWC.2016.2602824 10.1109/TNET.2017.2707142 10.1109/TNET.2014.2308254 10.1145/1147954.1147956 10.1109/MNET.2017.1600307 10.1109/INFOCOM.2017.8057029 10.1145/2934328.2934329 10.1109/TMC.2016.2597851 10.1109/INFOCOM.2016.7524427 10.1017/CBO9780511804441 10.1007/s10107-004-0559-y 10.1109/TWC.2017.2683482 10.1137/1.9781611973402.32 10.1109/TWC.2017.2734646 10.1109/TNET.2016.2623950 10.1145/2465529.2465551 10.1007/s11704-011-1192-6 10.1109/JSAC.2017.2680958 10.1023/B:JOCO.0000038913.96607.c2 10.1109/MCOM.2016.7565183 10.1109/INFOCOM.2017.8056983 10.1109/TPDS.2014.2371831 10.1109/INFOCOM.2015.7218465 10.1109/MCOM.2016.7537172 10.1109/TMC.2015.2474364 10.1109/IWQoS.2015.7404698 10.1145/2942358.2942363 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/JSAC.2018.2844624 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0008 |
| EndPage | 1767 |
| ExternalDocumentID | 10_1109_JSAC_2018_2844624 8374065 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61702287; U1711265 funderid: 10.13039/501100001809 – fundername: Program for Guangdong Introducing Innovative and Enterpreneurial Teams grantid: 2017ZT07X355 – fundername: Open Project Fund of Guangdong Key Laboratory of Big Data Analysis and Processing grantid: 2017003 – fundername: Fundamental Research Funds for the Central Universities grantid: 7933; 17lgjc40 – fundername: National Key Research and Development Program of China grantid: 2017YFB1001703 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c293t-551a5f27c5d37ba41ada2e8fcda01e7ce1e85da92e3e8c9bab7ccf83ab985aff3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 88 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449113400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0733-8716 |
| IngestDate | Mon Jun 30 10:16:26 EDT 2025 Tue Nov 18 22:33:11 EST 2025 Sat Nov 29 03:23:00 EST 2025 Wed Aug 27 02:53:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-551a5f27c5d37ba41ada2e8fcda01e7ce1e85da92e3e8c9bab7ccf83ab985aff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7181-6128 0000-0002-3063-8887 0000-0001-9943-6020 0000-0003-4806-9050 0000-0002-3964-3172 |
| PQID | 2127973966 |
| PQPubID | 85481 |
| PageCount | 17 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSAC_2018_2844624 proquest_journals_2127973966 crossref_primary_10_1109_JSAC_2018_2844624 ieee_primary_8374065 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-01 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal on selected areas in communications |
| PublicationTitleAbbrev | J-SAC |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | (ref34) 2018 ref13 ref12 ref15 ref14 ref30 ref33 ref11 ref32 ref10 (ref39) 2018 ref2 ref38 ref16 ref19 ref18 dudík (ref31) 2007; 8 shukla (ref17) 2017 carr (ref35) 2000 li (ref37) 2012; 6 (ref36) 2018 ref24 ref23 ref26 ref25 ref20 ref22 ref21 (ref1) 2017 ref28 ref27 ref29 ref8 ref7 (ref40) 2018 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref9 doi: 10.1109/TNET.2012.2226216 – year: 2018 ident: ref36 publication-title: Shanghai Taxi Trajectory Traces – ident: ref12 doi: 10.1109/TC.2015.2435781 – ident: ref21 doi: 10.1109/SAHCN.2018.8397141 – volume: 8 start-page: 1217 year: 2007 ident: ref31 article-title: Maximum entropy density estimation with generalized regularization and an application to species distribution modeling publication-title: J Mach Learn Res – ident: ref15 doi: 10.1109/TMC.2016.2575837 – ident: ref2 doi: 10.1109/COMST.2014.2355255 – ident: ref22 doi: 10.1109/TWC.2016.2602824 – year: 2018 ident: ref39 publication-title: Statistics and Social Networks of YouTube Videos – ident: ref10 doi: 10.1109/TNET.2017.2707142 – ident: ref11 doi: 10.1109/TNET.2014.2308254 – ident: ref30 doi: 10.1145/1147954.1147956 – ident: ref28 doi: 10.1109/MNET.2017.1600307 – ident: ref16 doi: 10.1109/INFOCOM.2017.8057029 – ident: ref25 doi: 10.1145/2934328.2934329 – year: 2017 ident: ref17 article-title: Hold'em caching: Proactive retention-aware caching with multi-path routing for wireless edge networks publication-title: Proc ACM Int Symp Mobile Ad Hoc Network Comput – year: 2017 ident: ref1 publication-title: Cisco Visual Networking Index Global Mobile Data Traffic Forecast Update – ident: ref7 doi: 10.1109/TMC.2016.2597851 – ident: ref14 doi: 10.1109/INFOCOM.2016.7524427 – ident: ref32 doi: 10.1017/CBO9780511804441 – ident: ref33 doi: 10.1007/s10107-004-0559-y – start-page: 106 year: 2000 ident: ref35 article-title: Strengthening integrality gaps for capacitated network design and covering problems publication-title: Proc ACM-SIAM Symp Discrete Algorithms – ident: ref27 doi: 10.1109/TWC.2017.2683482 – ident: ref26 doi: 10.1137/1.9781611973402.32 – ident: ref8 doi: 10.1109/TWC.2017.2734646 – ident: ref38 doi: 10.1109/TNET.2016.2623950 – ident: ref24 doi: 10.1145/2465529.2465551 – volume: 6 start-page: 111 year: 2012 ident: ref37 article-title: Prediction of urban human mobility using large-scale taxi traces and its applications publication-title: Frontiers Comput Sci doi: 10.1007/s11704-011-1192-6 – ident: ref13 doi: 10.1109/JSAC.2017.2680958 – ident: ref29 doi: 10.1023/B:JOCO.0000038913.96607.c2 – year: 2018 ident: ref40 publication-title: The opportunistic network environment simulator – ident: ref3 doi: 10.1109/MCOM.2016.7565183 – ident: ref23 doi: 10.1109/INFOCOM.2017.8056983 – ident: ref19 doi: 10.1109/TPDS.2014.2371831 – ident: ref5 doi: 10.1109/INFOCOM.2015.7218465 – ident: ref4 doi: 10.1109/MCOM.2016.7537172 – year: 2018 ident: ref34 publication-title: Online technical report – ident: ref6 doi: 10.1109/TMC.2015.2474364 – ident: ref20 doi: 10.1109/IWQoS.2015.7404698 – ident: ref18 doi: 10.1145/2942358.2942363 |
| SSID | ssj0014482 |
| Score | 2.5442283 |
| Snippet | In this paper, we advocate edge caching in cloud radio access networks (C-RAN) to facilitate the ever-increasing mobile multimedia services. In our framework,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1751 |
| SubjectTerms | Algorithms approximation algorithm Approximation algorithms Base stations C-RAN Caching Cellular networks Computer simulation content placement Cost engineering Costs edge caching Migration Multimedia Multimedia communication Optimization Placement Polynomials Reconfiguration Regularization request routing Resource allocation Resource management Rounding Routing Run time (computers) State of the art System dynamics Time correlation functions |
| Title | Online Resource Allocation, Content Placement and Request Routing for Cost-Efficient Edge Caching in Cloud Radio Access Networks |
| URI | https://ieeexplore.ieee.org/document/8374065 https://www.proquest.com/docview/2127973966 |
| Volume | 36 |
| WOSCitedRecordID | wos000449113400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0008 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014482 issn: 0733-8716 databaseCode: RIE dateStart: 19830101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20eNCD32L9IgdP4ra7m90mOZbSIh6KoIK3JZtkpVC20m49-9OdyW6Logje9jAJgbfJm8lM3gBcC2kt8qxFz81QgKJMoAzGPMiECbdGmDAufLMJMR7Llxf1sAG367cwzjlffOY69Olz-XZmlnRV1sVgCvkn3YRNIXr1W611xgDDDJ8xEJwHFAQ0GcwoVN37x_6AirhkB8_ipBcn3zjIN1X5cRJ7ehnt_W9h-7DbuJGsX-N-ABuuPISdL-KCR_BRq4iy1QU960-JuAiIW-ZFqcqKPdAtOk3OdGnR1K-NUZkQzsHQoUXLRRUMvdAEmQ3tq2ODugKTTUo2mM6WOFDbyYz1ffNFNq4ryxfH8DwaPg3ugqbfQmCQ9KsAnSedFrEwqeUi10mkrY6dLIzVYeSEcZGTqdUqdtxJo3KdC2MKyXWuZKqLgp9Aq5yV7hQYydYXSWJiJ6Ikj7XmMu8lEbpzPW5dFLUhXCGQmUaMnHpiTDMflIQqI9AyAi1rQGvDzXrIW63E8ZfxEaG0NmwAasPFCuas2auLjDTuleAY9539PuoctmnuuuzvAlrVfOkuYcu8V5PF_Mr_hp-UE9tu |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB2xsNLCAZZlEeVrfdjTikASO7V9rKoiPiukZSVukWM7q0pVimjKmZ_OjJNWIBAStxzGjqWXeOZ5xm8AfkvlHPpZh5GbJYKibaQtch70hII7K22clqHZhBwO1d2dvlmCo8VdGO99KD7zx_QYcvluYmd0VHaCZAr9T_YFVjIh0ri5rbXIGSDRCDkDyXlENKDNYSaxPrn42-tTGZc6xt1YdFPxyguFtipv9uLgYE43Pre077DeBpKs1yC_CUu--gFrL-QFt-Cp0RFl8yN61huT6yIojliQpapqdkPn6DQ5M5VD07A2RoVCOAfDkBYtp3U0CFITZDZw_z3rNzWYbFSx_ngyw4HGjSasF9ovsmFTWz79Cf9OB7f9s6jtuBBZdPt1hOGTycpU2sxxWRiRGGdSr0rrTJx4aX3iVeaMTj33yurCFNLaUnFTaJWZsuTbsFxNKr8DjITrSyFs6mUiitQYroquSDCg63Lnk6QD8RyB3LZy5NQVY5wHWhLrnEDLCbS8Ba0DfxZD7hstjo-MtwilhWELUAf25zDn7d86zUnlXkuOzG_3_VG_4NvZ7fVVfnU-vNyDVXpPUwS4D8v1w8wfwFf7WI-mD4fhk3wGIj7etQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Resource+Allocation%2C+Content+Placement+and+Request+Routing+for+Cost-Efficient+Edge+Caching+in+Cloud+Radio+Access+Networks&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Pu%2C+Lingjun&rft.au=Jiao%2C+Lei&rft.au=Chen%2C+Xu&rft.au=Wang%2C+Lin&rft.date=2018-08-01&rft.pub=IEEE&rft.issn=0733-8716&rft.volume=36&rft.issue=8&rft.spage=1751&rft.epage=1767&rft_id=info:doi/10.1109%2FJSAC.2018.2844624&rft.externalDocID=8374065 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon |