LBSN2Vec++: Heterogeneous Hypergraph Embedding for Location-Based Social Networks

Location-Based Social Networks (LBSNs) have been widely used as a primary data source for studying the impact of mobility and social relationships on each other. Traditional approaches manually define features to characterize users' mobility homophily and social proximity, and show that mobilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 34; H. 4; S. 1843 - 1855
Hauptverfasser: Yang, Dingqi, Qu, Bingqing, Yang, Jie, Cudre-Mauroux, Philippe
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1041-4347, 1558-2191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Location-Based Social Networks (LBSNs) have been widely used as a primary data source for studying the impact of mobility and social relationships on each other. Traditional approaches manually define features to characterize users' mobility homophily and social proximity, and show that mobility and social features can help friendship and location prediction tasks, respectively. However, these hand-crafted features not only require tedious human efforts, but also are difficult to generalize. Against this background, we propose in this paper LBSN2Vec++, a heterogeneous hypergraph embedding approach designed specifically for LBSN data for automatic feature learning. Specifically, LBSN data intrinsically forms a heterogeneous hypergraph including both user-user homogeneous edges (friendships) and user-time-POI-semantic heterogeneous hyperedges (check-ins). Based on this hypergraph, we first propose a random-walk-with-stay scheme to jointly sample user check-ins and social relationships, and then learn node embeddings from the sampled (hyper)edges by not only preserving the <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="yang-ieq1-2997869.gif"/> </inline-formula>-wise node proximity captured by the hyperedges, but also considering embedding space transformation between node domains to fully grasp the complex structural characteristics of the LBSN heterogeneous hypergraph. Using real-world LBSN datasets collected in six cities all over the world, our extensive evaluation shows that LBSN2Vec++ significantly and consistently outperforms both state-of-the-art graph embedding techniques by up to 68 percent and the best-performing hand-crafted features in the literature by up to 70.14 percent on friendship and location prediction tasks.
AbstractList Location-Based Social Networks (LBSNs) have been widely used as a primary data source for studying the impact of mobility and social relationships on each other. Traditional approaches manually define features to characterize users' mobility homophily and social proximity, and show that mobility and social features can help friendship and location prediction tasks, respectively. However, these hand-crafted features not only require tedious human efforts, but also are difficult to generalize. Against this background, we propose in this paper LBSN2Vec++, a heterogeneous hypergraph embedding approach designed specifically for LBSN data for automatic feature learning. Specifically, LBSN data intrinsically forms a heterogeneous hypergraph including both user-user homogeneous edges (friendships) and user-time-POI-semantic heterogeneous hyperedges (check-ins). Based on this hypergraph, we first propose a random-walk-with-stay scheme to jointly sample user check-ins and social relationships, and then learn node embeddings from the sampled (hyper)edges by not only preserving the <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="yang-ieq1-2997869.gif"/> </inline-formula>-wise node proximity captured by the hyperedges, but also considering embedding space transformation between node domains to fully grasp the complex structural characteristics of the LBSN heterogeneous hypergraph. Using real-world LBSN datasets collected in six cities all over the world, our extensive evaluation shows that LBSN2Vec++ significantly and consistently outperforms both state-of-the-art graph embedding techniques by up to 68 percent and the best-performing hand-crafted features in the literature by up to 70.14 percent on friendship and location prediction tasks.
Location-Based Social Networks (LBSNs) have been widely used as a primary data source for studying the impact of mobility and social relationships on each other. Traditional approaches manually define features to characterize users’ mobility homophily and social proximity, and show that mobility and social features can help friendship and location prediction tasks, respectively. However, these hand-crafted features not only require tedious human efforts, but also are difficult to generalize. Against this background, we propose in this paper LBSN2Vec++, a heterogeneous hypergraph embedding approach designed specifically for LBSN data for automatic feature learning. Specifically, LBSN data intrinsically forms a heterogeneous hypergraph including both user-user homogeneous edges (friendships) and user-time-POI-semantic heterogeneous hyperedges (check-ins). Based on this hypergraph, we first propose a random-walk-with-stay scheme to jointly sample user check-ins and social relationships, and then learn node embeddings from the sampled (hyper)edges by not only preserving the [Formula Omitted]-wise node proximity captured by the hyperedges, but also considering embedding space transformation between node domains to fully grasp the complex structural characteristics of the LBSN heterogeneous hypergraph. Using real-world LBSN datasets collected in six cities all over the world, our extensive evaluation shows that LBSN2Vec++ significantly and consistently outperforms both state-of-the-art graph embedding techniques by up to 68 percent and the best-performing hand-crafted features in the literature by up to 70.14 percent on friendship and location prediction tasks.
Author Qu, Bingqing
Yang, Jie
Yang, Dingqi
Cudre-Mauroux, Philippe
Author_xml – sequence: 1
  givenname: Dingqi
  orcidid: 0000-0002-6831-0422
  surname: Yang
  fullname: Yang, Dingqi
  email: dingqi.yang@unifr.ch
  organization: University of Fribourg, Fribourg, Switzerland
– sequence: 2
  givenname: Bingqing
  surname: Qu
  fullname: Qu, Bingqing
  email: bingqing.qu@unifr.ch
  organization: University of Fribourg, Fribourg, Switzerland
– sequence: 3
  givenname: Jie
  orcidid: 0000-0002-0350-0313
  surname: Yang
  fullname: Yang, Jie
  email: jie@exascale.info
  organization: Delft University of Technology, Delft, CD, Netherlands
– sequence: 4
  givenname: Philippe
  orcidid: 0000-0003-2588-4212
  surname: Cudre-Mauroux
  fullname: Cudre-Mauroux, Philippe
  email: philippe.cudre-mauroux@unifr.ch
  organization: Delft University of Technology, Delft, CD, Netherlands
BookMark eNp9kE1PwkAQQDcGExH9AcZLE4-kuF_tdr0JohgJxoBem2E7xSJ0626J4d9bhHjw4Gnn8N7M5p2SVmlLJOSC0R5jVF_Pnu6GPU457XGtVRLrI9JmUZSEnGnWamYqWSiFVCfk1PslpTRRCWuTl3F_OuFvaLrdm2CENTq7wBLtxgejbYVu4aB6D4brOWZZUS6C3LpgbA3UhS3DPnjMgqk1BayCCdZf1n34M3Kcw8rj-eHtkNf74WwwCsfPD4-D23FouBZ1GAmVZRwiITHicR6DlnGUZVIaaQwwoIonpoHYnAHkAHIupKCg5jlkVORUdMjVfm_l7OcGfZ0u7caVzcmUx0JJkahIN5TaU8ZZ7x3mqSnqn9_XDopVymi665fu-qW7fumhX2OyP2blijW47b_O5d4pEPGX11RrnUTiG9BgfMY
CODEN ITKEEH
CitedBy_id crossref_primary_10_3389_fpubh_2024_1448901
crossref_primary_10_1109_TKDE_2022_3150792
crossref_primary_10_1080_08839514_2024_2427545
crossref_primary_10_1145_3543146_3543173
crossref_primary_10_1038_s41598_023_32074_w
crossref_primary_10_1080_13658816_2025_2456558
crossref_primary_10_1109_TBDATA_2023_3275374
crossref_primary_10_1109_TSC_2022_3187038
crossref_primary_10_1109_TKDE_2021_3088148
crossref_primary_10_1111_tgis_12733
crossref_primary_10_1145_3708999
crossref_primary_10_1007_s11280_023_01137_3
crossref_primary_10_1016_j_jmsy_2024_06_011
crossref_primary_10_1016_j_ins_2022_12_024
crossref_primary_10_1109_TKDE_2023_3304137
crossref_primary_10_1007_s42486_022_00121_6
crossref_primary_10_1109_TKDE_2021_3111997
crossref_primary_10_1109_TKDE_2024_3509024
crossref_primary_10_3390_app112311447
crossref_primary_10_1038_s41598_021_87034_z
crossref_primary_10_1109_TCSS_2022_3231601
crossref_primary_10_1109_TIT_2023_3343347
crossref_primary_10_1109_TMC_2024_3480983
crossref_primary_10_1109_TPAMI_2024_3524377
crossref_primary_10_1145_3565028
crossref_primary_10_1016_j_ins_2023_01_022
crossref_primary_10_1007_s11280_022_01092_5
crossref_primary_10_1088_2632_072X_ad0e23
Cites_doi 10.1145/2736277.2741093
10.1145/2020408.2020575
10.1145/2481492.2481505
10.1609/icwsm.v5i1.14094
10.1145/3295499
10.1016/j.physa.2010.11.027
10.1007/978-3-319-25255-1_5
10.1109/TSMC.2014.2327053
10.1145/2020408.2020579
10.1145/3209686
10.1145/2623330.2623732
10.1145/3132847.3132953
10.1145/2806416.2806512
10.37236/5714
10.1145/3292500.3330869
10.1109/TKDE.2018.2807452
10.1109/BigMM.2019.000-4
10.1145/2020408.2020581
10.1145/3127875
10.1145/3159652.3159706
10.1007/978-1-4614-1629-6_8
10.1145/3269206.3271777
10.1145/2783258.2783350
10.1080/13658816.2018.1447671
10.1609/aaai.v32i1.11266
10.1016/S0378-8733(03)00009-1
10.1002/asi.20591
10.1145/2433396.2433444
10.1137/1.9781611972733.4
10.1109/ICPR.2016.7900016
10.1145/3132847.3133075
10.1145/2487575.2487608
10.1016/j.jnca.2015.05.010
10.1145/2124295.2124380
10.1145/3308558.3313635
10.1109/IJCNN.2019.8851949
10.1609/aaai.v31i1.10500
10.1145/2814575
10.1145/2939672.2939751
10.1145/3178876.3186120
10.1145/1571941.1572114
10.1137/1.9781611972832.19
10.1145/3097983.3098036
10.1109/TPAMI.2013.50
10.1016/j.neucom.2016.07.030
10.1609/icwsm.v6i1.14240
10.1109/ICDM.2016.0111
10.1145/3097983.3098067
10.1145/2370216.2370421
10.1109/ICDM.2012.113
10.1007/BF02289026
10.1145/2939672.2939754
10.1145/2983323.2983711
10.1145/2808797.2808884
10.1145/2629557
10.1109/ICDM.2018.00104
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2020.2997869
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1855
ExternalDocumentID 10_1109_TKDE_2020_2997869
9099985
Genre orig-research
GrantInformation_xml – fundername: European Research Council
  grantid: 683253/GraphInt
  funderid: 10.13039/501100000781
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
1OL
5VS
9M8
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-537dd2a534e526f6a9465dd44c4cca1a0728c5371b1aafaa4b3430a7bfad03f03
IEDL.DBID RIE
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766623600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 09 07:59:23 EST 2025
Tue Nov 18 21:39:51 EST 2025
Sat Nov 29 02:36:02 EST 2025
Wed Aug 27 02:49:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-537dd2a534e526f6a9465dd44c4cca1a0728c5371b1aafaa4b3430a7bfad03f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0350-0313
0000-0002-6831-0422
0000-0003-2588-4212
PQID 2637438759
PQPubID 85438
PageCount 13
ParticipantIDs ieee_primary_9099985
crossref_citationtrail_10_1109_TKDE_2020_2997869
crossref_primary_10_1109_TKDE_2020_2997869
proquest_journals_2637438759
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
Scellato (ref4)
ref21
ref28
ref27
ref29
Hopcroft (ref56) 2014
Feng (ref45)
References_xml – ident: ref23
  doi: 10.1145/2736277.2741093
– ident: ref3
  doi: 10.1145/2020408.2020575
– ident: ref38
  doi: 10.1145/2481492.2481505
– ident: ref5
  doi: 10.1609/icwsm.v5i1.14094
– ident: ref51
  doi: 10.1145/3295499
– ident: ref57
  doi: 10.1016/j.physa.2010.11.027
– ident: ref6
  doi: 10.1007/978-3-319-25255-1_5
– ident: ref59
  doi: 10.1109/TSMC.2014.2327053
– ident: ref2
  doi: 10.1145/2020408.2020579
– ident: ref54
  doi: 10.1145/3209686
– ident: ref22
  doi: 10.1145/2623330.2623732
– ident: ref31
  doi: 10.1145/3132847.3132953
– ident: ref19
  doi: 10.1145/2806416.2806512
– ident: ref27
  doi: 10.37236/5714
– ident: ref53
  doi: 10.1145/3292500.3330869
– ident: ref18
  doi: 10.1109/TKDE.2018.2807452
– ident: ref33
  doi: 10.1109/BigMM.2019.000-4
– ident: ref15
  doi: 10.1145/2020408.2020581
– ident: ref55
  doi: 10.1145/3127875
– ident: ref21
  doi: 10.1145/3159652.3159706
– ident: ref1
  doi: 10.1007/978-1-4614-1629-6_8
– ident: ref32
  doi: 10.1145/3269206.3271777
– ident: ref42
  doi: 10.1145/2783258.2783350
– volume-title: Proc. 3rd Conf. Online Soc. Netw.
  ident: ref4
  article-title: Distance matters: Geo-social metrics for online social networks
– ident: ref50
  doi: 10.1080/13658816.2018.1447671
– ident: ref28
  doi: 10.1609/aaai.v32i1.11266
– ident: ref13
  doi: 10.1016/S0378-8733(03)00009-1
– ident: ref37
  doi: 10.1002/asi.20591
– ident: ref40
  doi: 10.1145/2433396.2433444
– ident: ref44
  doi: 10.1137/1.9781611972733.4
– ident: ref8
  doi: 10.1109/ICPR.2016.7900016
– ident: ref48
  doi: 10.1145/3132847.3133075
– ident: ref41
  doi: 10.1145/2487575.2487608
– ident: ref35
  doi: 10.1016/j.jnca.2015.05.010
– ident: ref7
  doi: 10.1145/2124295.2124380
– ident: ref16
  doi: 10.1145/3308558.3313635
– ident: ref47
  doi: 10.1109/IJCNN.2019.8851949
– ident: ref52
  doi: 10.1609/aaai.v31i1.10500
– ident: ref36
  doi: 10.1145/2814575
– ident: ref20
  doi: 10.1145/2939672.2939751
– ident: ref25
  doi: 10.1145/3178876.3186120
– ident: ref58
  doi: 10.1145/1571941.1572114
– ident: ref43
  doi: 10.1137/1.9781611972832.19
– ident: ref30
  doi: 10.1145/3097983.3098036
– ident: ref17
  doi: 10.1109/TPAMI.2013.50
– start-page: 3558
  volume-title: Proc. 33rd AAAI Conf. Artif. Intell.
  ident: ref45
  article-title: Hypergraph ne1ural networks
– ident: ref26
  doi: 10.1016/j.neucom.2016.07.030
– ident: ref11
  doi: 10.1609/icwsm.v6i1.14240
– ident: ref29
  doi: 10.1109/ICDM.2016.0111
– ident: ref34
  doi: 10.1145/3097983.3098067
– ident: ref39
  doi: 10.1145/2370216.2370421
– ident: ref10
  doi: 10.1109/ICDM.2012.113
– ident: ref14
  doi: 10.1007/BF02289026
– ident: ref24
  doi: 10.1145/2939672.2939754
– ident: ref49
  doi: 10.1145/2983323.2983711
– ident: ref9
  doi: 10.1145/2808797.2808884
– ident: ref12
  doi: 10.1145/2629557
– ident: ref46
  doi: 10.1109/ICDM.2018.00104
– volume-title: Foundations of Data Science
  year: 2014
  ident: ref56
SSID ssj0008781
Score 2.6297495
Snippet Location-Based Social Networks (LBSNs) have been widely used as a primary data source for studying the impact of mobility and social relationships on each...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1843
SubjectTerms Correlation
Data models
Embedding
graph embedding
Graph theory
Graphs
heterogeneous hypergraph
location-based social network
Marine vehicles
Nodes
Predictive models
Semantics
Social network services
Social networks
social relationship
Task analysis
User mobility
Title LBSN2Vec++: Heterogeneous Hypergraph Embedding for Location-Based Social Networks
URI https://ieeexplore.ieee.org/document/9099985
https://www.proquest.com/docview/2637438759
Volume 34
WOSCitedRecordID wos000766623600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPOjBt1hf5OBJXc1uks3Gm49KwVIUH3hbsnmAoK201d_vJLstgiJ428MElnxJZr5kZj6AAyNMCORFwp1XSFC0SzSjPqGsErbiXvgoBvPUlb1e8fysbmfgeFoL45yLyWfuJHzGt3w7MB_hquxUhXCmELMwK6Wsa7Wmp24hoyApsgvkRIzL5gUzper04eaqjUwwoyd49soi5DZ_80FRVOXHSRzdy_Xy_35sBZaaMJKc17ivwozrr8HyRKKBNDt2DRa_9Rtch7vuxX0ve3Lm6OiMdEIizADXj0PyTzrIR4exezVpv1XOBpdGMKAl3UF9qZdcoL-zpC7nJb06e3y0AY_X7YfLTtJoKiQGHfs4EUxam2nBuBNZ7nOteC6s5dxwxDLVVGaFQaO0SrX2WvOKcUa1rLy2lHnKNmGuP-i7LSBWVEJon2IQhywRJ7rKhWaOKkddpkTRAjqZ5dI0DceD7sVrGYkHVWUApgzAlA0wLTicDnmvu238ZbwekJgaNiC0YHcCZdnsx1GZ5QxDJeRmavv3UTuwkIXChpiTswtz4-GH24N58zl-GQ3341L7Apn0z6s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4tFAl6KOWlbktbHzgVAo4fScyttLvaijSiYkHcIscPCandrXaX_v6OnewKCVSptxzGUuTP9sxnz8wHcGSkCYG8TITzCgmKdonm1CeUN9I2wksfxWBuy7yqirs7ddWDk1UtjHMuJp-50_AZ3_Lt1DyEq7IzFcKZQq7BCykES9tqrdW5W-RRkhT5BbIiLvLuDTOl6mx8-XWAXJDRUzx98yJkNz_yQlFW5clZHB3McPv_fu01vOoCSfK5RX4Hem6yC9tLkQbS7dldePmo4-Ae_Cgvrit268zx8TkZhVSYKa4gh_SfjJCRzmL_ajL41TgbnBrBkJaU0_ZaL7lAj2dJW9BLqjZ_fL4PN8PB-Mso6VQVEoOufZFInlvLtOTCSZb5TCuRSWuFMALRTDXNWWHQKG1Srb3WouGCU503XlvKPeUHsD6ZTtwbIFY2UmqfYhiHPBEnusmk5o4qRx1TsugDXc5ybbqW40H54mcdqQdVdQCmDsDUHTB9-LQa8rvtt_Ev472AxMqwA6EPh0so625HzmuWcQyWkJ2pt8-P-gibo_H3si6_VZfvYIuFMoeYoXMI64vZg3sPG-bP4n4--xCX3V-SRtLy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LBSN2Vec%2B%2B%3A+Heterogeneous+Hypergraph+Embedding+for+Location-Based+Social+Networks&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Yang%2C+Dingqi&rft.au=Qu%2C+Bingqing&rft.au=Yang%2C+Jie&rft.au=Cudre-Mauroux%2C+Philippe&rft.date=2022-04-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=34&rft.issue=4&rft.spage=1843&rft.epage=1855&rft_id=info:doi/10.1109%2FTKDE.2020.2997869&rft.externalDocID=9099985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon