LBSN2Vec++: Heterogeneous Hypergraph Embedding for Location-Based Social Networks
Location-Based Social Networks (LBSNs) have been widely used as a primary data source for studying the impact of mobility and social relationships on each other. Traditional approaches manually define features to characterize users' mobility homophily and social proximity, and show that mobilit...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on knowledge and data engineering Jg. 34; H. 4; S. 1843 - 1855 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Location-Based Social Networks (LBSNs) have been widely used as a primary data source for studying the impact of mobility and social relationships on each other. Traditional approaches manually define features to characterize users' mobility homophily and social proximity, and show that mobility and social features can help friendship and location prediction tasks, respectively. However, these hand-crafted features not only require tedious human efforts, but also are difficult to generalize. Against this background, we propose in this paper LBSN2Vec++, a heterogeneous hypergraph embedding approach designed specifically for LBSN data for automatic feature learning. Specifically, LBSN data intrinsically forms a heterogeneous hypergraph including both user-user homogeneous edges (friendships) and user-time-POI-semantic heterogeneous hyperedges (check-ins). Based on this hypergraph, we first propose a random-walk-with-stay scheme to jointly sample user check-ins and social relationships, and then learn node embeddings from the sampled (hyper)edges by not only preserving the <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="yang-ieq1-2997869.gif"/> </inline-formula>-wise node proximity captured by the hyperedges, but also considering embedding space transformation between node domains to fully grasp the complex structural characteristics of the LBSN heterogeneous hypergraph. Using real-world LBSN datasets collected in six cities all over the world, our extensive evaluation shows that LBSN2Vec++ significantly and consistently outperforms both state-of-the-art graph embedding techniques by up to 68 percent and the best-performing hand-crafted features in the literature by up to 70.14 percent on friendship and location prediction tasks. |
|---|---|
| AbstractList | Location-Based Social Networks (LBSNs) have been widely used as a primary data source for studying the impact of mobility and social relationships on each other. Traditional approaches manually define features to characterize users' mobility homophily and social proximity, and show that mobility and social features can help friendship and location prediction tasks, respectively. However, these hand-crafted features not only require tedious human efforts, but also are difficult to generalize. Against this background, we propose in this paper LBSN2Vec++, a heterogeneous hypergraph embedding approach designed specifically for LBSN data for automatic feature learning. Specifically, LBSN data intrinsically forms a heterogeneous hypergraph including both user-user homogeneous edges (friendships) and user-time-POI-semantic heterogeneous hyperedges (check-ins). Based on this hypergraph, we first propose a random-walk-with-stay scheme to jointly sample user check-ins and social relationships, and then learn node embeddings from the sampled (hyper)edges by not only preserving the <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="yang-ieq1-2997869.gif"/> </inline-formula>-wise node proximity captured by the hyperedges, but also considering embedding space transformation between node domains to fully grasp the complex structural characteristics of the LBSN heterogeneous hypergraph. Using real-world LBSN datasets collected in six cities all over the world, our extensive evaluation shows that LBSN2Vec++ significantly and consistently outperforms both state-of-the-art graph embedding techniques by up to 68 percent and the best-performing hand-crafted features in the literature by up to 70.14 percent on friendship and location prediction tasks. Location-Based Social Networks (LBSNs) have been widely used as a primary data source for studying the impact of mobility and social relationships on each other. Traditional approaches manually define features to characterize users’ mobility homophily and social proximity, and show that mobility and social features can help friendship and location prediction tasks, respectively. However, these hand-crafted features not only require tedious human efforts, but also are difficult to generalize. Against this background, we propose in this paper LBSN2Vec++, a heterogeneous hypergraph embedding approach designed specifically for LBSN data for automatic feature learning. Specifically, LBSN data intrinsically forms a heterogeneous hypergraph including both user-user homogeneous edges (friendships) and user-time-POI-semantic heterogeneous hyperedges (check-ins). Based on this hypergraph, we first propose a random-walk-with-stay scheme to jointly sample user check-ins and social relationships, and then learn node embeddings from the sampled (hyper)edges by not only preserving the [Formula Omitted]-wise node proximity captured by the hyperedges, but also considering embedding space transformation between node domains to fully grasp the complex structural characteristics of the LBSN heterogeneous hypergraph. Using real-world LBSN datasets collected in six cities all over the world, our extensive evaluation shows that LBSN2Vec++ significantly and consistently outperforms both state-of-the-art graph embedding techniques by up to 68 percent and the best-performing hand-crafted features in the literature by up to 70.14 percent on friendship and location prediction tasks. |
| Author | Qu, Bingqing Yang, Jie Yang, Dingqi Cudre-Mauroux, Philippe |
| Author_xml | – sequence: 1 givenname: Dingqi orcidid: 0000-0002-6831-0422 surname: Yang fullname: Yang, Dingqi email: dingqi.yang@unifr.ch organization: University of Fribourg, Fribourg, Switzerland – sequence: 2 givenname: Bingqing surname: Qu fullname: Qu, Bingqing email: bingqing.qu@unifr.ch organization: University of Fribourg, Fribourg, Switzerland – sequence: 3 givenname: Jie orcidid: 0000-0002-0350-0313 surname: Yang fullname: Yang, Jie email: jie@exascale.info organization: Delft University of Technology, Delft, CD, Netherlands – sequence: 4 givenname: Philippe orcidid: 0000-0003-2588-4212 surname: Cudre-Mauroux fullname: Cudre-Mauroux, Philippe email: philippe.cudre-mauroux@unifr.ch organization: Delft University of Technology, Delft, CD, Netherlands |
| BookMark | eNp9kE1PwkAQQDcGExH9AcZLE4-kuF_tdr0JohgJxoBem2E7xSJ0626J4d9bhHjw4Gnn8N7M5p2SVmlLJOSC0R5jVF_Pnu6GPU457XGtVRLrI9JmUZSEnGnWamYqWSiFVCfk1PslpTRRCWuTl3F_OuFvaLrdm2CENTq7wBLtxgejbYVu4aB6D4brOWZZUS6C3LpgbA3UhS3DPnjMgqk1BayCCdZf1n34M3Kcw8rj-eHtkNf74WwwCsfPD4-D23FouBZ1GAmVZRwiITHicR6DlnGUZVIaaQwwoIonpoHYnAHkAHIupKCg5jlkVORUdMjVfm_l7OcGfZ0u7caVzcmUx0JJkahIN5TaU8ZZ7x3mqSnqn9_XDopVymi665fu-qW7fumhX2OyP2blijW47b_O5d4pEPGX11RrnUTiG9BgfMY |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_3389_fpubh_2024_1448901 crossref_primary_10_1109_TKDE_2022_3150792 crossref_primary_10_1080_08839514_2024_2427545 crossref_primary_10_1145_3543146_3543173 crossref_primary_10_1038_s41598_023_32074_w crossref_primary_10_1080_13658816_2025_2456558 crossref_primary_10_1109_TBDATA_2023_3275374 crossref_primary_10_1109_TSC_2022_3187038 crossref_primary_10_1109_TKDE_2021_3088148 crossref_primary_10_1111_tgis_12733 crossref_primary_10_1145_3708999 crossref_primary_10_1007_s11280_023_01137_3 crossref_primary_10_1016_j_jmsy_2024_06_011 crossref_primary_10_1016_j_ins_2022_12_024 crossref_primary_10_1109_TKDE_2023_3304137 crossref_primary_10_1007_s42486_022_00121_6 crossref_primary_10_1109_TKDE_2021_3111997 crossref_primary_10_1109_TKDE_2024_3509024 crossref_primary_10_3390_app112311447 crossref_primary_10_1038_s41598_021_87034_z crossref_primary_10_1109_TCSS_2022_3231601 crossref_primary_10_1109_TIT_2023_3343347 crossref_primary_10_1109_TMC_2024_3480983 crossref_primary_10_1109_TPAMI_2024_3524377 crossref_primary_10_1145_3565028 crossref_primary_10_1016_j_ins_2023_01_022 crossref_primary_10_1007_s11280_022_01092_5 crossref_primary_10_1088_2632_072X_ad0e23 |
| Cites_doi | 10.1145/2736277.2741093 10.1145/2020408.2020575 10.1145/2481492.2481505 10.1609/icwsm.v5i1.14094 10.1145/3295499 10.1016/j.physa.2010.11.027 10.1007/978-3-319-25255-1_5 10.1109/TSMC.2014.2327053 10.1145/2020408.2020579 10.1145/3209686 10.1145/2623330.2623732 10.1145/3132847.3132953 10.1145/2806416.2806512 10.37236/5714 10.1145/3292500.3330869 10.1109/TKDE.2018.2807452 10.1109/BigMM.2019.000-4 10.1145/2020408.2020581 10.1145/3127875 10.1145/3159652.3159706 10.1007/978-1-4614-1629-6_8 10.1145/3269206.3271777 10.1145/2783258.2783350 10.1080/13658816.2018.1447671 10.1609/aaai.v32i1.11266 10.1016/S0378-8733(03)00009-1 10.1002/asi.20591 10.1145/2433396.2433444 10.1137/1.9781611972733.4 10.1109/ICPR.2016.7900016 10.1145/3132847.3133075 10.1145/2487575.2487608 10.1016/j.jnca.2015.05.010 10.1145/2124295.2124380 10.1145/3308558.3313635 10.1109/IJCNN.2019.8851949 10.1609/aaai.v31i1.10500 10.1145/2814575 10.1145/2939672.2939751 10.1145/3178876.3186120 10.1145/1571941.1572114 10.1137/1.9781611972832.19 10.1145/3097983.3098036 10.1109/TPAMI.2013.50 10.1016/j.neucom.2016.07.030 10.1609/icwsm.v6i1.14240 10.1109/ICDM.2016.0111 10.1145/3097983.3098067 10.1145/2370216.2370421 10.1109/ICDM.2012.113 10.1007/BF02289026 10.1145/2939672.2939754 10.1145/2983323.2983711 10.1145/2808797.2808884 10.1145/2629557 10.1109/ICDM.2018.00104 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2020.2997869 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 1855 |
| ExternalDocumentID | 10_1109_TKDE_2020_2997869 9099985 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Research Council grantid: 683253/GraphInt funderid: 10.13039/501100000781 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB 1OL 5VS 9M8 AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L H~9 ICLAB IFJZH RNI RZB TAF VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-537dd2a534e526f6a9465dd44c4cca1a0728c5371b1aafaa4b3430a7bfad03f03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766623600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Nov 09 07:59:23 EST 2025 Tue Nov 18 21:39:51 EST 2025 Sat Nov 29 02:36:02 EST 2025 Wed Aug 27 02:49:22 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-537dd2a534e526f6a9465dd44c4cca1a0728c5371b1aafaa4b3430a7bfad03f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0350-0313 0000-0002-6831-0422 0000-0003-2588-4212 |
| PQID | 2637438759 |
| PQPubID | 85438 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9099985 crossref_citationtrail_10_1109_TKDE_2020_2997869 crossref_primary_10_1109_TKDE_2020_2997869 proquest_journals_2637438759 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 Scellato (ref4) ref21 ref28 ref27 ref29 Hopcroft (ref56) 2014 Feng (ref45) |
| References_xml | – ident: ref23 doi: 10.1145/2736277.2741093 – ident: ref3 doi: 10.1145/2020408.2020575 – ident: ref38 doi: 10.1145/2481492.2481505 – ident: ref5 doi: 10.1609/icwsm.v5i1.14094 – ident: ref51 doi: 10.1145/3295499 – ident: ref57 doi: 10.1016/j.physa.2010.11.027 – ident: ref6 doi: 10.1007/978-3-319-25255-1_5 – ident: ref59 doi: 10.1109/TSMC.2014.2327053 – ident: ref2 doi: 10.1145/2020408.2020579 – ident: ref54 doi: 10.1145/3209686 – ident: ref22 doi: 10.1145/2623330.2623732 – ident: ref31 doi: 10.1145/3132847.3132953 – ident: ref19 doi: 10.1145/2806416.2806512 – ident: ref27 doi: 10.37236/5714 – ident: ref53 doi: 10.1145/3292500.3330869 – ident: ref18 doi: 10.1109/TKDE.2018.2807452 – ident: ref33 doi: 10.1109/BigMM.2019.000-4 – ident: ref15 doi: 10.1145/2020408.2020581 – ident: ref55 doi: 10.1145/3127875 – ident: ref21 doi: 10.1145/3159652.3159706 – ident: ref1 doi: 10.1007/978-1-4614-1629-6_8 – ident: ref32 doi: 10.1145/3269206.3271777 – ident: ref42 doi: 10.1145/2783258.2783350 – volume-title: Proc. 3rd Conf. Online Soc. Netw. ident: ref4 article-title: Distance matters: Geo-social metrics for online social networks – ident: ref50 doi: 10.1080/13658816.2018.1447671 – ident: ref28 doi: 10.1609/aaai.v32i1.11266 – ident: ref13 doi: 10.1016/S0378-8733(03)00009-1 – ident: ref37 doi: 10.1002/asi.20591 – ident: ref40 doi: 10.1145/2433396.2433444 – ident: ref44 doi: 10.1137/1.9781611972733.4 – ident: ref8 doi: 10.1109/ICPR.2016.7900016 – ident: ref48 doi: 10.1145/3132847.3133075 – ident: ref41 doi: 10.1145/2487575.2487608 – ident: ref35 doi: 10.1016/j.jnca.2015.05.010 – ident: ref7 doi: 10.1145/2124295.2124380 – ident: ref16 doi: 10.1145/3308558.3313635 – ident: ref47 doi: 10.1109/IJCNN.2019.8851949 – ident: ref52 doi: 10.1609/aaai.v31i1.10500 – ident: ref36 doi: 10.1145/2814575 – ident: ref20 doi: 10.1145/2939672.2939751 – ident: ref25 doi: 10.1145/3178876.3186120 – ident: ref58 doi: 10.1145/1571941.1572114 – ident: ref43 doi: 10.1137/1.9781611972832.19 – ident: ref30 doi: 10.1145/3097983.3098036 – ident: ref17 doi: 10.1109/TPAMI.2013.50 – start-page: 3558 volume-title: Proc. 33rd AAAI Conf. Artif. Intell. ident: ref45 article-title: Hypergraph ne1ural networks – ident: ref26 doi: 10.1016/j.neucom.2016.07.030 – ident: ref11 doi: 10.1609/icwsm.v6i1.14240 – ident: ref29 doi: 10.1109/ICDM.2016.0111 – ident: ref34 doi: 10.1145/3097983.3098067 – ident: ref39 doi: 10.1145/2370216.2370421 – ident: ref10 doi: 10.1109/ICDM.2012.113 – ident: ref14 doi: 10.1007/BF02289026 – ident: ref24 doi: 10.1145/2939672.2939754 – ident: ref49 doi: 10.1145/2983323.2983711 – ident: ref9 doi: 10.1145/2808797.2808884 – ident: ref12 doi: 10.1145/2629557 – ident: ref46 doi: 10.1109/ICDM.2018.00104 – volume-title: Foundations of Data Science year: 2014 ident: ref56 |
| SSID | ssj0008781 |
| Score | 2.6297495 |
| Snippet | Location-Based Social Networks (LBSNs) have been widely used as a primary data source for studying the impact of mobility and social relationships on each... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1843 |
| SubjectTerms | Correlation Data models Embedding graph embedding Graph theory Graphs heterogeneous hypergraph location-based social network Marine vehicles Nodes Predictive models Semantics Social network services Social networks social relationship Task analysis User mobility |
| Title | LBSN2Vec++: Heterogeneous Hypergraph Embedding for Location-Based Social Networks |
| URI | https://ieeexplore.ieee.org/document/9099985 https://www.proquest.com/docview/2637438759 |
| Volume | 34 |
| WOSCitedRecordID | wos000766623600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPOjBt1hf5OBJXc1uks3Gm49KwVIUH3hbsnmAoK201d_vJLstgiJ428MElnxJZr5kZj6AAyNMCORFwp1XSFC0SzSjPqGsErbiXvgoBvPUlb1e8fysbmfgeFoL45yLyWfuJHzGt3w7MB_hquxUhXCmELMwK6Wsa7Wmp24hoyApsgvkRIzL5gUzper04eaqjUwwoyd49soi5DZ_80FRVOXHSRzdy_Xy_35sBZaaMJKc17ivwozrr8HyRKKBNDt2DRa_9Rtch7vuxX0ve3Lm6OiMdEIizADXj0PyTzrIR4exezVpv1XOBpdGMKAl3UF9qZdcoL-zpC7nJb06e3y0AY_X7YfLTtJoKiQGHfs4EUxam2nBuBNZ7nOteC6s5dxwxDLVVGaFQaO0SrX2WvOKcUa1rLy2lHnKNmGuP-i7LSBWVEJon2IQhywRJ7rKhWaOKkddpkTRAjqZ5dI0DceD7sVrGYkHVWUApgzAlA0wLTicDnmvu238ZbwekJgaNiC0YHcCZdnsx1GZ5QxDJeRmavv3UTuwkIXChpiTswtz4-GH24N58zl-GQ3341L7Apn0z6s |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4tFAl6KOWlbktbHzgVAo4fScyttLvaijSiYkHcIscPCandrXaX_v6OnewKCVSptxzGUuTP9sxnz8wHcGSkCYG8TITzCgmKdonm1CeUN9I2wksfxWBuy7yqirs7ddWDk1UtjHMuJp-50_AZ3_Lt1DyEq7IzFcKZQq7BCykES9tqrdW5W-RRkhT5BbIiLvLuDTOl6mx8-XWAXJDRUzx98yJkNz_yQlFW5clZHB3McPv_fu01vOoCSfK5RX4Hem6yC9tLkQbS7dldePmo4-Ae_Cgvrit268zx8TkZhVSYKa4gh_SfjJCRzmL_ajL41TgbnBrBkJaU0_ZaL7lAj2dJW9BLqjZ_fL4PN8PB-Mso6VQVEoOufZFInlvLtOTCSZb5TCuRSWuFMALRTDXNWWHQKG1Srb3WouGCU503XlvKPeUHsD6ZTtwbIFY2UmqfYhiHPBEnusmk5o4qRx1TsugDXc5ybbqW40H54mcdqQdVdQCmDsDUHTB9-LQa8rvtt_Ev472AxMqwA6EPh0so625HzmuWcQyWkJ2pt8-P-gibo_H3si6_VZfvYIuFMoeYoXMI64vZg3sPG-bP4n4--xCX3V-SRtLy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LBSN2Vec%2B%2B%3A+Heterogeneous+Hypergraph+Embedding+for+Location-Based+Social+Networks&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Yang%2C+Dingqi&rft.au=Qu%2C+Bingqing&rft.au=Yang%2C+Jie&rft.au=Cudre-Mauroux%2C+Philippe&rft.date=2022-04-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=34&rft.issue=4&rft.spage=1843&rft.epage=1855&rft_id=info:doi/10.1109%2FTKDE.2020.2997869&rft.externalDocID=9099985 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |