Delay-Tolerant OCO With Long-Term Constraints: Algorithm and Its Application to Network Resource Allocation
We consider online convex optimization (OCO) with multi-slot feedback delay. An agent selects a sequence of online decisions to minimize the accumulation of time-varying convex loss functions, subject to short-term and long-term constraints that may be time-varying. Both the convex loss function and...
Gespeichert in:
| Veröffentlicht in: | IEEE/ACM transactions on networking Jg. 31; H. 1; S. 147 - 163 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1063-6692, 1558-2566 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We consider online convex optimization (OCO) with multi-slot feedback delay. An agent selects a sequence of online decisions to minimize the accumulation of time-varying convex loss functions, subject to short-term and long-term constraints that may be time-varying. Both the convex loss function and the long-term constraint function may experience multiple time slots of feedback delay to be received by the agent. Existing works on OCO under this general setting has focused on the static regret, which measures the gap of losses between an online decision sequence and a time-invariant static offline benchmark. In this work, besides the static regret, we also consider a more practically meaningful metric, the dynamic regret, where the benchmark is a time-varying online optimal decision sequence. We propose an efficient algorithm, termed Delay-Tolerant Constrained-OCO (DTC-OCO), which uses a novel double regularization together with a new penalty mechanism on the long-term constraint violation, to tackle the asynchrony between information feedback and decision updates. We obtain upper bounds for its static regret, dynamic regret, and constraint violation, proving that they are sublinear under mild conditions. Furthermore, we consider a variation of DTC-OCO with multi-step gradient descent, and show it provides improved dynamic regret and constraint violation bounds for strongly convex loss functions. For numerical demonstration, we apply DTC-OCO to a general network resource allocation problem. Our simulation results suggest substantial performance gain by DTC-OCO over the current best alternative. |
|---|---|
| AbstractList | We consider online convex optimization (OCO) with multi-slot feedback delay. An agent selects a sequence of online decisions to minimize the accumulation of time-varying convex loss functions, subject to short-term and long-term constraints that may be time-varying. Both the convex loss function and the long-term constraint function may experience multiple time slots of feedback delay to be received by the agent. Existing works on OCO under this general setting has focused on the static regret, which measures the gap of losses between an online decision sequence and a time-invariant static offline benchmark. In this work, besides the static regret, we also consider a more practically meaningful metric, the dynamic regret, where the benchmark is a time-varying online optimal decision sequence. We propose an efficient algorithm, termed Delay-Tolerant Constrained-OCO (DTC-OCO), which uses a novel double regularization together with a new penalty mechanism on the long-term constraint violation, to tackle the asynchrony between information feedback and decision updates. We obtain upper bounds for its static regret, dynamic regret, and constraint violation, proving that they are sublinear under mild conditions. Furthermore, we consider a variation of DTC-OCO with multi-step gradient descent, and show it provides improved dynamic regret and constraint violation bounds for strongly convex loss functions. For numerical demonstration, we apply DTC-OCO to a general network resource allocation problem. Our simulation results suggest substantial performance gain by DTC-OCO over the current best alternative. |
| Author | Wang, Juncheng Abou-Zeid, Hatem Boudreau, Gary Dong, Min Liang, Ben |
| Author_xml | – sequence: 1 givenname: Juncheng orcidid: 0000-0003-1375-8382 surname: Wang fullname: Wang, Juncheng email: jcwang@ece.utoronto.ca organization: Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada – sequence: 2 givenname: Min orcidid: 0000-0002-7223-8865 surname: Dong fullname: Dong, Min email: min.dong@ontariotechu.ca organization: Department of Electrical, Computer, and Software Engineering, Ontario Tech University, Oshawa, Canada – sequence: 3 givenname: Ben orcidid: 0000-0002-1800-1322 surname: Liang fullname: Liang, Ben email: liang@ece.utoronto.ca organization: Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada – sequence: 4 givenname: Gary orcidid: 0000-0003-3539-9624 surname: Boudreau fullname: Boudreau, Gary email: gary.boudreau@ericsson.com organization: Ericsson Canada, Ottawa, Canada – sequence: 5 givenname: Hatem surname: Abou-Zeid fullname: Abou-Zeid, Hatem email: hatem.abouzeid@ucalgary.ca organization: Ericsson Canada, Ottawa, Canada |
| BookMark | eNp9kE1LAzEQhoMo-PkDxEvA89Z8uNnEW1nrB5QWZMXjko0T3XabrEmK-O_d2uLBg6cZmPeZeec9RvvOO0DonJIRpURdVbNJNWKEsRGnUjKZ76EjmucyY7kQ-0NPBM-EUOwQHce4IIRywsQRWt5Cp7-yyncQtEt4Xs7xS5ve8dS7t6yCsMKldzEF3boUb_C4e_NhmK-wdq_4MUU87vuuNTq13uHk8QzSpw9L_ATRr4OBgej8dnyKDqzuIpzt6gl6vptU5UM2nd8_luNpZpjiKcuZVU2huaXCUHttXq0VQkJjdCOpErTh0jZAORiuDCfWALO20FIaLgulLT9Bl9u9ffAfa4ipXgxW3HCyZkUhCnUtORlUxVZlgo8xgK1Nm358bp7takrqTbL1Jtl6k2y9S3Yg6R-yD-1Kh69_mYst0wLAr15JTmku-TfnbIff |
| CODEN | IEANEP |
| CitedBy_id | crossref_primary_10_26599_TST_2024_9010140 crossref_primary_10_1109_TWC_2023_3293502 crossref_primary_10_1109_TNET_2024_3495522 crossref_primary_10_1109_TON_2025_3530460 crossref_primary_10_1016_j_eswa_2025_127871 |
| Cites_doi | 10.1109/JSTSP.2018.2827302 10.1145/3393691.3394209 10.1109/NOMS.2010.5488484 10.1109/TAC.2017.2743462 10.1002/9780470512531 10.1561/2400000013 10.1109/TSP.2018.2890368 10.1109/TSP.2017.2679690 10.1287/opre.2015.1408 10.1109/JSTSP.2015.2404790 10.1109/TSP.2020.2964200 10.1109/TAC.2020.3030743 10.1109/INFOCOM42981.2021.9488698 10.1007/s10994-007-5016-8 10.1109/CDC.2016.7799379 10.1109/TSP.2017.2750109 10.1109/INFCOM.2010.5462170 10.1109/JSTSP.2018.2797423 10.1109/INFOCOM41043.2020.9155347 10.1109/TCNS.2015.2505149 10.1561/1300000001 10.1109/INFOCOM.2018.8486305 10.1007/978-3-031-79995-2 10.1561/2200000018 10.1109/TWC.2017.2690442 10.1109/TAC.2011.2161027 10.1109/TWC.2013.072513.121842 10.1109/71.993206 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TNET.2022.3188285 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2566 |
| EndPage | 163 |
| ExternalDocumentID | 10_1109_TNET_2022_3188285 9831158 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ontario Centre of Innovation – fundername: Ericsson Canada – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 10.13039/501100000038 |
| GroupedDBID | -DZ -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 85S 8US 97E 9M8 AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABPPZ ABQJQ ABVLG ACGFS ACGOD ACIWK ACM ADBCU ADL AEBYY AEFXT AEJOY AENSD AETEA AETIX AFWIH AFWXC AGQYO AGSQL AHBIQ AI. AIBXA AIKLT AKJIK AKQYR AKRVB ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 D0L EBS EJD FEDTE GUFHI HF~ HGAVV HZ~ H~9 I07 ICLAB IEDLZ IES IFIPE IFJZH IPLJI JAVBF LAI LHSKQ M43 MVM O9- OCL P1C P2P PQQKQ RIA RIE RNS ROL TN5 UPT UQL VH1 XOL YR2 ZCA AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-52f9b7a3f16c1f4cdff668ebcab81961b38fbe13ec39c30fce2ff7a88c3879af3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000829067600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6692 |
| IngestDate | Sun Nov 09 07:38:05 EST 2025 Tue Nov 18 22:11:38 EST 2025 Sat Nov 29 03:05:26 EST 2025 Wed Aug 27 02:14:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-52f9b7a3f16c1f4cdff668ebcab81961b38fbe13ec39c30fce2ff7a88c3879af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7223-8865 0000-0002-1800-1322 0000-0003-1375-8382 0000-0003-3539-9624 |
| PQID | 2776794830 |
| PQPubID | 32020 |
| PageCount | 17 |
| ParticipantIDs | ieee_primary_9831158 proquest_journals_2776794830 crossref_citationtrail_10_1109_TNET_2022_3188285 crossref_primary_10_1109_TNET_2022_3188285 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Feb. 2023-2-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-Feb. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE/ACM transactions on networking |
| PublicationTitleAbbrev | TNET |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref37 ref36 ref31 ref30 ref33 ref10 Zinkevich (ref4) ref2 Zhang (ref11) ref1 Eshraghi (ref32) ref17 McMahan (ref21) ref39 ref16 ref38 ref18 Yu (ref14) 2020; 21 ref24 ref23 Yu (ref15) ref26 Langford (ref19) ref25 Mannor (ref28) 2009; 10 ref41 ref22 Zhang (ref34) ref27 Jadbabaie (ref7); 38 ref29 ref8 Mahdavi (ref12) 2012; 13 ref9 ref3 ref6 ref5 ref40 Jenatton (ref13) Quanrud (ref20) |
| References_xml | – ident: ref18 doi: 10.1109/JSTSP.2018.2827302 – start-page: 2331 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref19 article-title: Slow learners are fast – ident: ref16 doi: 10.1145/3393691.3394209 – start-page: 1323 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref34 article-title: Adaptive online learning in dynamic environments – ident: ref38 doi: 10.1109/NOMS.2010.5488484 – ident: ref31 doi: 10.1109/TAC.2017.2743462 – start-page: 1270 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref20 article-title: Online learning with adversarial delays – start-page: 402 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref13 article-title: Adaptive algorithms for online convex optimization with long-term constraints – ident: ref37 doi: 10.1002/9780470512531 – ident: ref3 doi: 10.1561/2400000013 – ident: ref10 doi: 10.1109/TSP.2018.2890368 – start-page: 928 volume-title: Proc. Intel. Conf. Mach. Learn. (ICML) ident: ref4 article-title: Online convex programming and generalized infinitesimal gradient ascent – ident: ref36 doi: 10.1109/TSP.2017.2679690 – ident: ref23 doi: 10.1287/opre.2015.1408 – ident: ref6 doi: 10.1109/JSTSP.2015.2404790 – volume: 38 start-page: 398 volume-title: Proc. Int. Conf. Artif. Intell. Statist. (AISTATS) ident: ref7 article-title: Online optimization: Competing with dynamic comparators – ident: ref33 doi: 10.1109/TSP.2020.2964200 – start-page: 1427 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref15 article-title: Online convex optimization with stochastic constraints – start-page: 693 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref21 article-title: Delay-tolerant algorithms for asynchronous distributed online learning – ident: ref22 doi: 10.1109/TAC.2020.3030743 – ident: ref1 doi: 10.1109/INFOCOM42981.2021.9488698 – ident: ref5 doi: 10.1007/s10994-007-5016-8 – ident: ref8 doi: 10.1109/CDC.2016.7799379 – ident: ref17 doi: 10.1109/TSP.2017.2750109 – ident: ref25 doi: 10.1109/INFCOM.2010.5462170 – ident: ref9 doi: 10.1109/JSTSP.2018.2797423 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref11 article-title: Improved dynamic regret for non-degenerate functions – ident: ref27 doi: 10.1109/INFOCOM41043.2020.9155347 – volume: 10 start-page: 569 year: 2009 ident: ref28 article-title: Online learning with sample path constraints publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 2503 year: 2012 ident: ref12 article-title: Trading regret for efficiency: Online convex optimization with long term constraints publication-title: J. Mach. Learn. Res. – ident: ref30 doi: 10.1109/TCNS.2015.2505149 – volume: 21 start-page: 1 year: 2020 ident: ref14 article-title: A low complexity algorithm with O√T) regret and O(1) constraint violations for online convex optimization with long term constraints publication-title: J. Mach. Learn. Res. – ident: ref35 doi: 10.1561/1300000001 – ident: ref40 doi: 10.1109/INFOCOM.2018.8486305 – ident: ref24 doi: 10.1007/978-3-031-79995-2 – ident: ref2 doi: 10.1561/2200000018 – ident: ref26 doi: 10.1109/TWC.2017.2690442 – start-page: 2933 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref32 article-title: Distributed online optimization over a heterogeneous network with any-batch mirror descent – ident: ref29 doi: 10.1109/TAC.2011.2161027 – ident: ref41 doi: 10.1109/TWC.2013.072513.121842 – ident: ref39 doi: 10.1109/71.993206 |
| SSID | ssj0013026 |
| Score | 2.4547582 |
| Snippet | We consider online convex optimization (OCO) with multi-slot feedback delay. An agent selects a sequence of online decisions to minimize the accumulation of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 147 |
| SubjectTerms | Algorithms Benchmark testing Benchmarks Computational geometry constraint violation Constraints Convexity Decision theory Delay Delays dynamic regret Feedback Heuristic algorithms long-term constraint Mathematical analysis multi-slot delay Online convex optimization online network resource allocation Optimization Regularization Resource allocation Resource management Upper bounds Wireless communication |
| Title | Delay-Tolerant OCO With Long-Term Constraints: Algorithm and Its Application to Network Resource Allocation |
| URI | https://ieeexplore.ieee.org/document/9831158 https://www.proquest.com/docview/2776794830 |
| Volume | 31 |
| WOSCitedRecordID | wos000829067600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2566 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013026 issn: 1063-6692 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPOjBb3F1lRw8idG26aaJt2VVFGT1UD9uJUkTFddWdqvgvzdJu6uiCN4Kk4G2r81kMpP3AHbzXNhlQxxiFcsOjqmhWBgaYCFNrjWLiPBkOjcXSb_P7u741RTsT87CaK1985k-cJe-lp-X6tVtlR1y5rhh2DRMJwmtz2p9VgwCL61mMxyCKeVRU8EMA36Y9k9SmwlGkU1QmWNs-xaDvKjKj5nYh5fTxf_d2BIsNMtI1K1xX4YpXazA_BdywVV4OtYD8Y7TcqBtPKrQZe8S3T5WD-iiLO5xamdk5NQ6vUZENTpC3cF9ObT2ZySKHJ1XI9T9LG6jqkT9umMcjXf8rYeLhM68BtenJ2nvDDfSCljZ-F7Z9NNwmQhiQqpCE6vcGEqZa4ySdolAQ0mYkTokWhGuSGCUjoxJBGOKsIQLQ9ZhpigLvQEosCabVMXSIh5TJaXOqelEggrTSXIVtSAYv-xMNbzj7tEGmc8_Ap45fDKHT9bg04K9ictLTbrx1-BVB8hkYINFC9pjRLPmtxxlkeMu4jEjwebvXlsw5_Tk67bsNsxUw1e9DbPqrXocDXf8F_cB0t3VjA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB2VFgl6oEBBbCngQ08IU8f2Oja3VWnVim3KIUBvke3YpWJJ0G5aqX-P7WS3IBASt0jjkZK8xOPxjN8D2KtrHZYNPMOWmzHmwgusvSBYG187JynTiUzn8zQvCnl-rj6uwZvVWRjnXGo-c2_jZarl1629iltl-0pGbhh5BzbGnFPSn9a6rRmQJK4WchyGhVB0qGFmRO2XxWEZckFKQ4oqI2fbb1Eoyar8MRenAHO09X-39hAeDAtJNOmRfwRrrnkMm7_QC27Dt_dupm9w2c5ciEgdOjs4Q18uu69o2jYXuAxzMop6nUklolu8Q5PZRTsP9u9INzU66RZoclveRl2Lir5nHC33_INHjIXR_AQ-HR2WB8d4EFfANkT4LiSgXplcM58Jm3lua--FkLE1yoRFgsgMk964jDnLlGXEW0e9z7WUlslcac-ewnrTNu4ZIBJMIa3iJmDOhTXG1cKPqRbaj_Pa0hGQ5cuu7MA8Hh9tVqUMhKgq4lNFfKoBnxG8Xrn86Gk3_jV4OwKyGjhgMYLdJaLV8GMuKhrZixSXjOz83esV3DsuT6fV9KT48BzuR3X5vkl7F9a7-ZV7AXftdXe5mL9MX99PFQ3Y0w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delay-Tolerant+OCO+With+Long-Term+Constraints%3A+Algorithm+and+Its+Application+to+Network+Resource+Allocation&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Wang%2C+Juncheng&rft.au=Dong%2C+Min&rft.au=Liang%2C+Ben&rft.au=Boudreau%2C+Gary&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=1063-6692&rft.volume=31&rft.issue=1&rft.spage=147&rft.epage=163&rft_id=info:doi/10.1109%2FTNET.2022.3188285&rft.externalDocID=9831158 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon |