Appraisal of Resistivity Inversion Models with Convolutional Variational Encoder-Decoder Network

Recovering the actual subsurface electrical resistivity properties from the electrical resistivity tomography data is challenging because the inverse problem is nonlinear and ill-posed. This paper proposes a Variational Encoder-Decoder (VED) based network to obtain resistivity model, which maps the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 60; s. 1
Hlavní autoři: Wilson, Bibin, Singh, Anand, Sethi, Amit
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recovering the actual subsurface electrical resistivity properties from the electrical resistivity tomography data is challenging because the inverse problem is nonlinear and ill-posed. This paper proposes a Variational Encoder-Decoder (VED) based network to obtain resistivity model, which maps the apparent resistivity data (input) to true resistivity data (output). Since deep learning (DL) models are highly dependent on training sets and providing a meaningful geological resistivity model is complex, we have first developed an algorithm to construct many realistic resistivity synthetic models. Our algorithm automatically constructs an apparent resistivity pseudo-section from these resistivity models. We further computed the resistivity from two different neural architectures for comparison - UNet, and attention UNet with and without input depth encoding apparent data. In the end, we have compared our deep learning results with traditional inversion and borewell data on apparent resistivity datasets collected for aquifer mapping in the hard rock terrain of the West Medinipur district of West Bengal, India. A detailed qualitative and quantitative evaluation reveals that our VED approach is the most effective for the inversion compared to other approaches considered.
AbstractList Recovering the actual subsurface electrical resistivity properties from the electrical resistivity tomography data is challenging because the inverse problem is nonlinear and ill-posed. This paper proposes a Variational Encoder-Decoder (VED) based network to obtain resistivity model, which maps the apparent resistivity data (input) to true resistivity data (output). Since deep learning (DL) models are highly dependent on training sets and providing a meaningful geological resistivity model is complex, we have first developed an algorithm to construct many realistic resistivity synthetic models. Our algorithm automatically constructs an apparent resistivity pseudo-section from these resistivity models. We further computed the resistivity from two different neural architectures for comparison - UNet, and attention UNet with and without input depth encoding apparent data. In the end, we have compared our deep learning results with traditional inversion and borewell data on apparent resistivity datasets collected for aquifer mapping in the hard rock terrain of the West Medinipur district of West Bengal, India. A detailed qualitative and quantitative evaluation reveals that our VED approach is the most effective for the inversion compared to other approaches considered.
Recovering the actual subsurface electrical resistivity properties from the electrical resistivity tomography data is challenging because the inverse problem is nonlinear and ill-posed. This article proposes a variational encoder-decoder (VED)-based network to obtain resistivity model, which maps the apparent resistivity data (input) to true resistivity data (output). Since deep learning (DL) models are highly dependent on training sets and providing a meaningful geological resistivity model is complex, we have first developed an algorithm to construct many realistic resistivity synthetic models. Our algorithm automatically constructs an apparent resistivity pseudo-section from these resistivity models. We further computed the resistivity from two different neural architectures for comparison–UNet, and attention UNet with and without input depth encoding apparent data. In the end, we have compared our DL results with traditional inversion and borewell data on apparent resistivity datasets collected for aquifer mapping in the hard rock terrain of the West Medinipur district of West Bengal, India. A detailed qualitative and quantitative evaluation reveals that our VED approach is the most effective for the inversion compared to other approaches considered.
Author Singh, Anand
Wilson, Bibin
Sethi, Amit
Author_xml – sequence: 1
  givenname: Bibin
  surname: Wilson
  fullname: Wilson, Bibin
  organization: Department of Earth Sciences, Indian Institute of Technology Bombay, Maharashtra, India
– sequence: 2
  givenname: Anand
  orcidid: 0000-0003-4736-3514
  surname: Singh
  fullname: Singh, Anand
  organization: Department of Earth Sciences, Indian Institute of Technology Bombay, Maharashtra, India
– sequence: 3
  givenname: Amit
  surname: Sethi
  fullname: Sethi, Amit
  organization: Department of Electrical Engineering, Indian Institute of Technology Bombay, Maharashtra, India
BookMark eNp9kE1PAjEQhhuDiYD-AONlE8-LnXbbbY8EEUlQEyRe191uNxbXLbYFwr93-YgHD55m0rzPdObpoU5jG43QNeABAJZ3i8n8dUAwIQNKIGUCn6EuMCZizJOkg7oYJI-JkOQC9bxfYgwJg7SL3oerlcuNz-vIVtFce-OD2Ziwi6bNRjtvbBM92VLXPtqa8BGNbLOx9Tq07y3yljuTn_pxo9qci-_1oUbPOmyt-7xE51Vee311qn20eBgvRo_x7GUyHQ1nsSKShrhdRhJVgZZKlLxIeJUqTjEoIRLIQTFeQplTUVFeMJZiIoROMS6AyoJLTfvo9jh25ez3WvuQLe3atXv5jKQ0oYIDS9sUHFPKWe-drrKVM1-522WAs73HbO8x23vMTh5bJv3DKBMOR4dWXP0veXMkjdb69ycpKQAT9AfsyYLn
CODEN IGRSD2
CitedBy_id crossref_primary_10_1002_nsg_12332
crossref_primary_10_1109_TGRS_2025_3576680
crossref_primary_10_1016_j_seppur_2025_134115
Cites_doi 10.1088/0957-0233/17/9/006
10.1109/TGRS.2020.2969040
10.1016/j.earscirev.2014.04.002
10.1109/CVPR.2016.90
10.3997/2214-4609.201402682
10.1190/1.3273851
10.1515/acgeo-2015-0071
10.1093/gji/ggu001
10.1137/1.9780898719635
10.1190/geo2017-0040.1
10.1190/1.2348091
10.1190/1.1444302
10.3997/1873-0604.2016047
10.1137/1.9780898717921
10.1109/ICCSP.2017.8286426
10.1190/geo2018-0249.1
10.1109/TMI.2018.2833635
10.1111/j.1365-2478.1996.tb00162.x
10.1093/gji/ggab024
10.1190/1.3581356
10.1007/978-3-319-46475-6_43
10.1016/j.cageo.2011.08.029
10.1190/1.2402499
10.1093/gji/ggaa161
10.1016/j.jappgeo.2005.12.003
10.1016/j.pepi.2008.06.022
10.1109/LRA.2019.2891028
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2022.3217580
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2022_3217580
9931158
Genre orig-research
GrantInformation_xml – fundername: Indian Institute of Technology Bombay
  grantid: RD/0518-IRCCSH0-022
  funderid: 10.13039/501100005808
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
AARMG
ABAZT
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-51792cf1e9c8d6b46f7c6301c8841a1c56d1da38f36b5570288e700b139b69e3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880753700039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:21:24 EDT 2025
Tue Nov 18 22:35:25 EST 2025
Sat Nov 29 02:50:26 EST 2025
Tue Nov 25 14:44:27 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-51792cf1e9c8d6b46f7c6301c8841a1c56d1da38f36b5570288e700b139b69e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4736-3514
PQID 2734386157
PQPubID 85465
PageCount 1
ParticipantIDs crossref_primary_10_1109_TGRS_2022_3217580
crossref_citationtrail_10_1109_TGRS_2022_3217580
ieee_primary_9931158
proquest_journals_2734386157
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
bank (ref33) 2004
ref34
ref37
ref15
ref36
ref14
ref30
ref11
choi (ref23) 2018
ref32
ref10
ref2
ref1
ref17
ref38
ref16
kingma (ref24) 2013
ref18
choromanska (ref28) 2015
wu (ref29) 2018
bhunia (ref43) 2012; 2
oktay (ref41) 2018
miyashita (ref22) 2016
ref26
ref20
pati (ref42) 2013
kawaguchi (ref27) 2016; 29
günther (ref25) 2004
rücker (ref12) 2010
ref8
ref7
ref9
ref4
ref3
li (ref31) 2019
ref6
ref5
li (ref21) 2019
ref40
tikhonov (ref39) 1977
krizhevsky (ref19) 2012; 25
References_xml – ident: ref14
  doi: 10.1088/0957-0233/17/9/006
– ident: ref17
  doi: 10.1109/TGRS.2020.2969040
– start-page: 192
  year: 2015
  ident: ref28
  article-title: The loss surfaces of multilayer networks
  publication-title: Artificial Intelligence and Statistics
– ident: ref1
  doi: 10.1016/j.earscirev.2014.04.002
– ident: ref36
  doi: 10.1109/CVPR.2016.90
– ident: ref7
  doi: 10.3997/2214-4609.201402682
– ident: ref11
  doi: 10.1190/1.3273851
– ident: ref6
  doi: 10.1515/acgeo-2015-0071
– ident: ref13
  doi: 10.1093/gji/ggu001
– volume: 2
  start-page: 41
  year: 2012
  ident: ref43
  article-title: Assessment of groundwater potential zone in Paschim Medinipur district, West Bengal-A meso-scale study using GIS and remote sensing approach
  publication-title: Assessment
– ident: ref32
  doi: 10.1137/1.9780898719635
– ident: ref40
  doi: 10.1190/geo2017-0040.1
– ident: ref34
  doi: 10.1190/1.2348091
– volume: 25
  start-page: 84
  year: 2012
  ident: ref19
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref9
  doi: 10.1190/1.1444302
– year: 2018
  ident: ref41
  article-title: Attention U-Net: Learning where to look for the pancreas
  publication-title: arXiv 1804 03999
– year: 2004
  ident: ref33
  publication-title: PLTMG A Software Package for Solving Elliptic Partial Differential Equations User s Guide 6 0
– volume: 29
  start-page: 1
  year: 2016
  ident: ref27
  article-title: Deep learning without poor local minima
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref16
  doi: 10.3997/1873-0604.2016047
– ident: ref2
  doi: 10.1137/1.9780898717921
– year: 2013
  ident: ref42
  article-title: Ground water year book of West Bengal and Andaman and Nicobar islands
– year: 2016
  ident: ref22
  article-title: Convolutional neural networks using logarithmic data representation
  publication-title: arXiv 1603 01025
– ident: ref35
  doi: 10.1109/ICCSP.2017.8286426
– ident: ref30
  doi: 10.1190/geo2018-0249.1
– ident: ref20
  doi: 10.1109/TMI.2018.2833635
– year: 2004
  ident: ref25
  article-title: Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements
– year: 1977
  ident: ref39
  publication-title: Solutions of Ill-posed Problems
– ident: ref5
  doi: 10.1111/j.1365-2478.1996.tb00162.x
– year: 2010
  ident: ref12
  article-title: Advanced electrical resistivity modelling and inversion using unstructured discretization
– ident: ref18
  doi: 10.1093/gji/ggab024
– year: 2013
  ident: ref24
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv 1312 6114
– ident: ref4
  doi: 10.1190/1.3581356
– ident: ref38
  doi: 10.1007/978-3-319-46475-6_43
– ident: ref10
  doi: 10.1016/j.cageo.2011.08.029
– ident: ref8
  doi: 10.1190/1.2402499
– year: 2018
  ident: ref23
  article-title: PACT: Parameterized clipping activation for quantized neural networks
  publication-title: arXiv 1805 06085
– year: 2019
  ident: ref31
  article-title: Deep-learning inversion of seismic data
  publication-title: arXiv 1901 07733
– ident: ref15
  doi: 10.1093/gji/ggaa161
– year: 2018
  ident: ref29
  article-title: InversionNet: A real-time and accurate full waveform inversion with CNNs and continuous CRFs
  publication-title: arXiv 1811 07875
– ident: ref26
  doi: 10.1016/j.jappgeo.2005.12.003
– ident: ref3
  doi: 10.1016/j.pepi.2008.06.022
– ident: ref37
  doi: 10.1109/LRA.2019.2891028
– year: 2019
  ident: ref21
  article-title: Additive powers-of-two quantization: An efficient non-uniform discretization for neural networks
  publication-title: arXiv 1909 13144
SSID ssj0014517
Score 2.4208796
Snippet Recovering the actual subsurface electrical resistivity properties from the electrical resistivity tomography data is challenging because the inverse problem...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Aquifers
Coders
Conductivity
Conductivity Distribution
Data models
Deep learning
Electrical resistivity
Electrical Resistivity Tomography
Encoders-Decoders
Feature extraction
Geophysical measurements
Inverse Problem
Inverse problems
Machine learning
Mathematical models
Tomography
Title Appraisal of Resistivity Inversion Models with Convolutional Variational Encoder-Decoder Network
URI https://ieeexplore.ieee.org/document/9931158
https://www.proquest.com/docview/2734386157
Volume 60
WOSCitedRecordID wos000880753700039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7aoqAHH1WxvsjBkxi7j3STPUp9HaRILdLbms1OQZCtdKu_30w2LQVF8LR7yCzLfsnON5PMNwDnVAxpabTihdaCCx0InmupuZC9BHNNndOcuv6jHAzUeJw-NeByWQuDiO7wGV7RrdvLL6bmk1JlXetLLYFRTWhKKetareWOgeiFvjQ64TaIiPwOZhik3dH98NlGglF0FVsC3iMFyBUf5Jqq_PgTO_dyt_2_F9uBLU8j2XWN-y40sGzD5oq4YBvW3eFOU-3Bq6WaM_1WWYPphA2xonVNPSMYqWy4fBmjnmjvFaO0LOtPyy8_I63Ji42mfcaQ3ZZUAj_jN-iubFAfIt-H0d3tqP_AfWcFbqx7n3PS5YrMJMTUqCLJRTKRJrFL3SglQh2aXlKEhY7VJE5y0uiKlEIZBLmli3mSYnwArXJa4iGwvNDWNC0EFii0wDRFyxFQoBJ5LGTUgWDxqTPjVcep-cV75qKPIM0InYzQyTw6HbhYmnzUkht_Dd4jOJYDPRIdOFngmflFWWWk5BMrS-Hk0e9Wx7BBz64zLCfQms8-8RTWzNf8rZqdufn2DaKB0sk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WF-rB1yquzxw8idntI23To-j6wHURXcRbTdNZEKQr29XfbyaNi6AIntpDhpZ-SeebSeYbgCMqhjQ0WvJCKcGF8gTPVaK4SKIYc0Wd06y6fi_p9-XTU3rXgJNpLQwi2sNn2KZbu5dfjPQ7pco6xpcaAiNnYC4SIvDraq3pnoGIfFccHXMTRgRuD9P30s7g8v7BxIJB0A4NBY9IA_KbF7JtVX78i62DuVj936utwYojkuy0Rn4dGlhuwPI3ecENWLDHO3XVhGdDNsfqpTIGoyG7x4pWNnWNYKSzYTNmjLqivVaMErPsbFR-uDlpTB5NPO1yhqxbUhH8mJ-jvbJ-fYx8EwYX3cHZFXe9Fbg2Dn7CSZkr0EMfUy2LOBfxMNGxWexaSuErX0dx4RcqlMMwzkmlK5ASE8_LDWHM4xTDLZgtRyVuA8sLZUzTQmCBQglMUzQsAQVKkYciCVrgfX3qTDvdcWp_8ZrZ-MNLM0InI3Qyh04Ljqcmb7Xoxl-DmwTHdKBDogV7X3hmbllWGWn5hNKQuGTnd6tDWLwa3Pay3nX_ZheW6Dl1vmUPZifjd9yHef0xeanGB3bufQLBCNYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Appraisal+of+Resistivity+Inversion+Models+With+Convolutional+Variational+Encoder%E2%80%93Decoder+Network&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wilson%2C+Bibin&rft.au=Singh%2C+Anand&rft.au=Sethi%2C+Amit&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTGRS.2022.3217580&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3217580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon