Appraisal of Resistivity Inversion Models with Convolutional Variational Encoder-Decoder Network
Recovering the actual subsurface electrical resistivity properties from the electrical resistivity tomography data is challenging because the inverse problem is nonlinear and ill-posed. This paper proposes a Variational Encoder-Decoder (VED) based network to obtain resistivity model, which maps the...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recovering the actual subsurface electrical resistivity properties from the electrical resistivity tomography data is challenging because the inverse problem is nonlinear and ill-posed. This paper proposes a Variational Encoder-Decoder (VED) based network to obtain resistivity model, which maps the apparent resistivity data (input) to true resistivity data (output). Since deep learning (DL) models are highly dependent on training sets and providing a meaningful geological resistivity model is complex, we have first developed an algorithm to construct many realistic resistivity synthetic models. Our algorithm automatically constructs an apparent resistivity pseudo-section from these resistivity models. We further computed the resistivity from two different neural architectures for comparison - UNet, and attention UNet with and without input depth encoding apparent data. In the end, we have compared our deep learning results with traditional inversion and borewell data on apparent resistivity datasets collected for aquifer mapping in the hard rock terrain of the West Medinipur district of West Bengal, India. A detailed qualitative and quantitative evaluation reveals that our VED approach is the most effective for the inversion compared to other approaches considered. |
|---|---|
| AbstractList | Recovering the actual subsurface electrical resistivity properties from the electrical resistivity tomography data is challenging because the inverse problem is nonlinear and ill-posed. This paper proposes a Variational Encoder-Decoder (VED) based network to obtain resistivity model, which maps the apparent resistivity data (input) to true resistivity data (output). Since deep learning (DL) models are highly dependent on training sets and providing a meaningful geological resistivity model is complex, we have first developed an algorithm to construct many realistic resistivity synthetic models. Our algorithm automatically constructs an apparent resistivity pseudo-section from these resistivity models. We further computed the resistivity from two different neural architectures for comparison - UNet, and attention UNet with and without input depth encoding apparent data. In the end, we have compared our deep learning results with traditional inversion and borewell data on apparent resistivity datasets collected for aquifer mapping in the hard rock terrain of the West Medinipur district of West Bengal, India. A detailed qualitative and quantitative evaluation reveals that our VED approach is the most effective for the inversion compared to other approaches considered. Recovering the actual subsurface electrical resistivity properties from the electrical resistivity tomography data is challenging because the inverse problem is nonlinear and ill-posed. This article proposes a variational encoder-decoder (VED)-based network to obtain resistivity model, which maps the apparent resistivity data (input) to true resistivity data (output). Since deep learning (DL) models are highly dependent on training sets and providing a meaningful geological resistivity model is complex, we have first developed an algorithm to construct many realistic resistivity synthetic models. Our algorithm automatically constructs an apparent resistivity pseudo-section from these resistivity models. We further computed the resistivity from two different neural architectures for comparison–UNet, and attention UNet with and without input depth encoding apparent data. In the end, we have compared our DL results with traditional inversion and borewell data on apparent resistivity datasets collected for aquifer mapping in the hard rock terrain of the West Medinipur district of West Bengal, India. A detailed qualitative and quantitative evaluation reveals that our VED approach is the most effective for the inversion compared to other approaches considered. |
| Author | Singh, Anand Wilson, Bibin Sethi, Amit |
| Author_xml | – sequence: 1 givenname: Bibin surname: Wilson fullname: Wilson, Bibin organization: Department of Earth Sciences, Indian Institute of Technology Bombay, Maharashtra, India – sequence: 2 givenname: Anand orcidid: 0000-0003-4736-3514 surname: Singh fullname: Singh, Anand organization: Department of Earth Sciences, Indian Institute of Technology Bombay, Maharashtra, India – sequence: 3 givenname: Amit surname: Sethi fullname: Sethi, Amit organization: Department of Electrical Engineering, Indian Institute of Technology Bombay, Maharashtra, India |
| BookMark | eNp9kE1PAjEQhhuDiYD-AONlE8-LnXbbbY8EEUlQEyRe191uNxbXLbYFwr93-YgHD55m0rzPdObpoU5jG43QNeABAJZ3i8n8dUAwIQNKIGUCn6EuMCZizJOkg7oYJI-JkOQC9bxfYgwJg7SL3oerlcuNz-vIVtFce-OD2Ziwi6bNRjtvbBM92VLXPtqa8BGNbLOx9Tq07y3yljuTn_pxo9qci-_1oUbPOmyt-7xE51Vee311qn20eBgvRo_x7GUyHQ1nsSKShrhdRhJVgZZKlLxIeJUqTjEoIRLIQTFeQplTUVFeMJZiIoROMS6AyoJLTfvo9jh25ez3WvuQLe3atXv5jKQ0oYIDS9sUHFPKWe-drrKVM1-522WAs73HbO8x23vMTh5bJv3DKBMOR4dWXP0veXMkjdb69ycpKQAT9AfsyYLn |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1002_nsg_12332 crossref_primary_10_1109_TGRS_2025_3576680 crossref_primary_10_1016_j_seppur_2025_134115 |
| Cites_doi | 10.1088/0957-0233/17/9/006 10.1109/TGRS.2020.2969040 10.1016/j.earscirev.2014.04.002 10.1109/CVPR.2016.90 10.3997/2214-4609.201402682 10.1190/1.3273851 10.1515/acgeo-2015-0071 10.1093/gji/ggu001 10.1137/1.9780898719635 10.1190/geo2017-0040.1 10.1190/1.2348091 10.1190/1.1444302 10.3997/1873-0604.2016047 10.1137/1.9780898717921 10.1109/ICCSP.2017.8286426 10.1190/geo2018-0249.1 10.1109/TMI.2018.2833635 10.1111/j.1365-2478.1996.tb00162.x 10.1093/gji/ggab024 10.1190/1.3581356 10.1007/978-3-319-46475-6_43 10.1016/j.cageo.2011.08.029 10.1190/1.2402499 10.1093/gji/ggaa161 10.1016/j.jappgeo.2005.12.003 10.1016/j.pepi.2008.06.022 10.1109/LRA.2019.2891028 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2022.3217580 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TGRS_2022_3217580 9931158 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Indian Institute of Technology Bombay grantid: RD/0518-IRCCSH0-022 funderid: 10.13039/501100005808 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD AARMG ABAZT C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-51792cf1e9c8d6b46f7c6301c8841a1c56d1da38f36b5570288e700b139b69e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880753700039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:21:24 EDT 2025 Tue Nov 18 22:35:25 EST 2025 Sat Nov 29 02:50:26 EST 2025 Tue Nov 25 14:44:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-51792cf1e9c8d6b46f7c6301c8841a1c56d1da38f36b5570288e700b139b69e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4736-3514 |
| PQID | 2734386157 |
| PQPubID | 85465 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2022_3217580 crossref_citationtrail_10_1109_TGRS_2022_3217580 ieee_primary_9931158 proquest_journals_2734386157 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 bank (ref33) 2004 ref34 ref37 ref15 ref36 ref14 ref30 ref11 choi (ref23) 2018 ref32 ref10 ref2 ref1 ref17 ref38 ref16 kingma (ref24) 2013 ref18 choromanska (ref28) 2015 wu (ref29) 2018 bhunia (ref43) 2012; 2 oktay (ref41) 2018 miyashita (ref22) 2016 ref26 ref20 pati (ref42) 2013 kawaguchi (ref27) 2016; 29 günther (ref25) 2004 rücker (ref12) 2010 ref8 ref7 ref9 ref4 ref3 li (ref31) 2019 ref6 ref5 li (ref21) 2019 ref40 tikhonov (ref39) 1977 krizhevsky (ref19) 2012; 25 |
| References_xml | – ident: ref14 doi: 10.1088/0957-0233/17/9/006 – ident: ref17 doi: 10.1109/TGRS.2020.2969040 – start-page: 192 year: 2015 ident: ref28 article-title: The loss surfaces of multilayer networks publication-title: Artificial Intelligence and Statistics – ident: ref1 doi: 10.1016/j.earscirev.2014.04.002 – ident: ref36 doi: 10.1109/CVPR.2016.90 – ident: ref7 doi: 10.3997/2214-4609.201402682 – ident: ref11 doi: 10.1190/1.3273851 – ident: ref6 doi: 10.1515/acgeo-2015-0071 – ident: ref13 doi: 10.1093/gji/ggu001 – volume: 2 start-page: 41 year: 2012 ident: ref43 article-title: Assessment of groundwater potential zone in Paschim Medinipur district, West Bengal-A meso-scale study using GIS and remote sensing approach publication-title: Assessment – ident: ref32 doi: 10.1137/1.9780898719635 – ident: ref40 doi: 10.1190/geo2017-0040.1 – ident: ref34 doi: 10.1190/1.2348091 – volume: 25 start-page: 84 year: 2012 ident: ref19 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref9 doi: 10.1190/1.1444302 – year: 2018 ident: ref41 article-title: Attention U-Net: Learning where to look for the pancreas publication-title: arXiv 1804 03999 – year: 2004 ident: ref33 publication-title: PLTMG A Software Package for Solving Elliptic Partial Differential Equations User s Guide 6 0 – volume: 29 start-page: 1 year: 2016 ident: ref27 article-title: Deep learning without poor local minima publication-title: Proc Adv Neural Inf Process Syst – ident: ref16 doi: 10.3997/1873-0604.2016047 – ident: ref2 doi: 10.1137/1.9780898717921 – year: 2013 ident: ref42 article-title: Ground water year book of West Bengal and Andaman and Nicobar islands – year: 2016 ident: ref22 article-title: Convolutional neural networks using logarithmic data representation publication-title: arXiv 1603 01025 – ident: ref35 doi: 10.1109/ICCSP.2017.8286426 – ident: ref30 doi: 10.1190/geo2018-0249.1 – ident: ref20 doi: 10.1109/TMI.2018.2833635 – year: 2004 ident: ref25 article-title: Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements – year: 1977 ident: ref39 publication-title: Solutions of Ill-posed Problems – ident: ref5 doi: 10.1111/j.1365-2478.1996.tb00162.x – year: 2010 ident: ref12 article-title: Advanced electrical resistivity modelling and inversion using unstructured discretization – ident: ref18 doi: 10.1093/gji/ggab024 – year: 2013 ident: ref24 article-title: Auto-encoding variational Bayes publication-title: arXiv 1312 6114 – ident: ref4 doi: 10.1190/1.3581356 – ident: ref38 doi: 10.1007/978-3-319-46475-6_43 – ident: ref10 doi: 10.1016/j.cageo.2011.08.029 – ident: ref8 doi: 10.1190/1.2402499 – year: 2018 ident: ref23 article-title: PACT: Parameterized clipping activation for quantized neural networks publication-title: arXiv 1805 06085 – year: 2019 ident: ref31 article-title: Deep-learning inversion of seismic data publication-title: arXiv 1901 07733 – ident: ref15 doi: 10.1093/gji/ggaa161 – year: 2018 ident: ref29 article-title: InversionNet: A real-time and accurate full waveform inversion with CNNs and continuous CRFs publication-title: arXiv 1811 07875 – ident: ref26 doi: 10.1016/j.jappgeo.2005.12.003 – ident: ref3 doi: 10.1016/j.pepi.2008.06.022 – ident: ref37 doi: 10.1109/LRA.2019.2891028 – year: 2019 ident: ref21 article-title: Additive powers-of-two quantization: An efficient non-uniform discretization for neural networks publication-title: arXiv 1909 13144 |
| SSID | ssj0014517 |
| Score | 2.4208796 |
| Snippet | Recovering the actual subsurface electrical resistivity properties from the electrical resistivity tomography data is challenging because the inverse problem... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Aquifers Coders Conductivity Conductivity Distribution Data models Deep learning Electrical resistivity Electrical Resistivity Tomography Encoders-Decoders Feature extraction Geophysical measurements Inverse Problem Inverse problems Machine learning Mathematical models Tomography |
| Title | Appraisal of Resistivity Inversion Models with Convolutional Variational Encoder-Decoder Network |
| URI | https://ieeexplore.ieee.org/document/9931158 https://www.proquest.com/docview/2734386157 |
| Volume | 60 |
| WOSCitedRecordID | wos000880753700039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7aoqAHH1WxvsjBkxi7j3STPUp9HaRILdLbms1OQZCtdKu_30w2LQVF8LR7yCzLfsnON5PMNwDnVAxpabTihdaCCx0InmupuZC9BHNNndOcuv6jHAzUeJw-NeByWQuDiO7wGV7RrdvLL6bmk1JlXetLLYFRTWhKKetareWOgeiFvjQ64TaIiPwOZhik3dH98NlGglF0FVsC3iMFyBUf5Jqq_PgTO_dyt_2_F9uBLU8j2XWN-y40sGzD5oq4YBvW3eFOU-3Bq6WaM_1WWYPphA2xonVNPSMYqWy4fBmjnmjvFaO0LOtPyy8_I63Ji42mfcaQ3ZZUAj_jN-iubFAfIt-H0d3tqP_AfWcFbqx7n3PS5YrMJMTUqCLJRTKRJrFL3SglQh2aXlKEhY7VJE5y0uiKlEIZBLmli3mSYnwArXJa4iGwvNDWNC0EFii0wDRFyxFQoBJ5LGTUgWDxqTPjVcep-cV75qKPIM0InYzQyTw6HbhYmnzUkht_Dd4jOJYDPRIdOFngmflFWWWk5BMrS-Hk0e9Wx7BBz64zLCfQms8-8RTWzNf8rZqdufn2DaKB0sk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WF-rB1yquzxw8idntI23To-j6wHURXcRbTdNZEKQr29XfbyaNi6AIntpDhpZ-SeebSeYbgCMqhjQ0WvJCKcGF8gTPVaK4SKIYc0Wd06y6fi_p9-XTU3rXgJNpLQwi2sNn2KZbu5dfjPQ7pco6xpcaAiNnYC4SIvDraq3pnoGIfFccHXMTRgRuD9P30s7g8v7BxIJB0A4NBY9IA_KbF7JtVX78i62DuVj936utwYojkuy0Rn4dGlhuwPI3ecENWLDHO3XVhGdDNsfqpTIGoyG7x4pWNnWNYKSzYTNmjLqivVaMErPsbFR-uDlpTB5NPO1yhqxbUhH8mJ-jvbJ-fYx8EwYX3cHZFXe9Fbg2Dn7CSZkr0EMfUy2LOBfxMNGxWexaSuErX0dx4RcqlMMwzkmlK5ASE8_LDWHM4xTDLZgtRyVuA8sLZUzTQmCBQglMUzQsAQVKkYciCVrgfX3qTDvdcWp_8ZrZ-MNLM0InI3Qyh04Ljqcmb7Xoxl-DmwTHdKBDogV7X3hmbllWGWn5hNKQuGTnd6tDWLwa3Pay3nX_ZheW6Dl1vmUPZifjd9yHef0xeanGB3bufQLBCNYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Appraisal+of+Resistivity+Inversion+Models+With+Convolutional+Variational+Encoder%E2%80%93Decoder+Network&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wilson%2C+Bibin&rft.au=Singh%2C+Anand&rft.au=Sethi%2C+Amit&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTGRS.2022.3217580&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3217580 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |