PoreNet: CNN-Based Pore Descriptor for High-Resolution Fingerprint Recognition

With the development of high-resolution fingerprint scanners, high-resolution fingerprint-based biometric recognition has received increasing attention in recent years. This paper presents a pore feature-based approach for biometric recognition. Our approach employs a convolutional neural network (C...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 20; číslo 16; s. 9305 - 9313
Hlavní autoři: Anand, Vijay, Kanhangad, Vivek
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the development of high-resolution fingerprint scanners, high-resolution fingerprint-based biometric recognition has received increasing attention in recent years. This paper presents a pore feature-based approach for biometric recognition. Our approach employs a convolutional neural network (CNN) model, DeepResPore, to detect pores in the input fingerprint image. Thereafter, a CNN-based descriptor is computed for a patch around each detected pore. Specifically, we have designed a residual learning-based CNN, referred to as PoreNet that learns distinctive feature representation from pore patches. For verification, a matching score is generated by comparing the pore descriptors, obtained from a pair of fingerprint images, in a bi-directional manner using the Euclidean distance. The proposed approach for high-resolution fingerprint recognition achieves 2.27% and 0.24% equal error rates (EERs) on partial (DBI) and complete (DBII) fingerprints of the benchmark PolyU HRF dataset. Most importantly, it achieves lower FMR1000 and FMR10000 values than the current state-of-the-art approach on both the datasets. Further, this is the first study to report the performance of a learning-based fingerprint recognition approach on cross-sensor fingerprint images.
AbstractList With the development of high-resolution fingerprint scanners, high-resolution fingerprint-based biometric recognition has received increasing attention in recent years. This paper presents a pore feature-based approach for biometric recognition. Our approach employs a convolutional neural network (CNN) model, DeepResPore, to detect pores in the input fingerprint image. Thereafter, a CNN-based descriptor is computed for a patch around each detected pore. Specifically, we have designed a residual learning-based CNN, referred to as PoreNet that learns distinctive feature representation from pore patches. For verification, a matching score is generated by comparing the pore descriptors, obtained from a pair of fingerprint images, in a bi-directional manner using the Euclidean distance. The proposed approach for high-resolution fingerprint recognition achieves 2.27% and 0.24% equal error rates (EERs) on partial (DBI) and complete (DBII) fingerprints of the benchmark PolyU HRF dataset. Most importantly, it achieves lower FMR1000 and FMR10000 values than the current state-of-the-art approach on both the datasets. Further, this is the first study to report the performance of a learning-based fingerprint recognition approach on cross-sensor fingerprint images.
Author Kanhangad, Vivek
Anand, Vijay
Author_xml – sequence: 1
  givenname: Vijay
  orcidid: 0000-0003-1544-4694
  surname: Anand
  fullname: Anand, Vijay
  email: phd1401202011@iiti.ac.in
  organization: Discipline of Electrical Engineering, Indian Institute of Technology Indore, Indore, India
– sequence: 2
  givenname: Vivek
  orcidid: 0000-0002-9791-3695
  surname: Kanhangad
  fullname: Kanhangad, Vivek
  email: kvivek@iiti.ac.in
  organization: Discipline of Electrical Engineering, Indian Institute of Technology Indore, Indore, India
BookMark eNp9UD1PwzAQtVCRaAs_ALFEYk7xR2zHbFBaCqoCKh3YrNS5FFclLrY78O9J1IqBgeF0p3f37t29Aeo1rgGELgkeEYLVzfPbpBhRTPGIqlzSXJ6gPuE8T4nM8l5XM5xmTL6foUEIG4yJklz2UfHqPBQQb5NxUaT3ZYAq6aDkAYLxdhedT-o2Znb9kS4guO0-WtckU9uswe-8bWKyAOPWje3wc3Ral9sAF8c8RMvpZDmepfOXx6fx3Tw1VLGYZqaSzHAhKyVXKqNkxfKSMFAZyFUuMM-AZ8TItiMEGMFYVdW5EBRw-whhQ3R9WLvz7msPIeqN2_umVdQ0o1wQIohqp8hhyngXgodat_d-lv5bE6w713Tnmu5c00fXWo78wzE2lt1r0Zd2-y_z6sC0APCrpLBgnHL2A19weqM
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_LSENS_2022_3193924
crossref_primary_10_1088_1361_6501_ac05f6
crossref_primary_10_1109_TIM_2022_3165786
crossref_primary_10_1109_TIM_2022_3223077
crossref_primary_10_1007_s00521_021_06758_1
crossref_primary_10_1109_JSEN_2024_3401714
crossref_primary_10_1016_j_apacoust_2023_109240
crossref_primary_10_1109_ACCESS_2024_3395417
crossref_primary_10_1109_TBIOM_2022_3152196
crossref_primary_10_1007_s00521_022_07329_8
crossref_primary_10_1109_TIM_2025_3551842
crossref_primary_10_1007_s12065_020_00522_5
Cites_doi 10.1016/j.patcog.2014.04.008
10.1016/j.patcog.2010.02.016
10.1109/ISBA.2017.7947685
10.1109/CVPRW.2015.7301328
10.1109/CVPR.2015.7298682
10.1006/cviu.1999.0832
10.1109/CVPR.2016.90
10.1007/978-3-540-25976-3_12
10.1016/j.patcog.2011.02.010
10.1109/ICCV.2015.22
10.1145/358669.358692
10.1016/j.patcog.2009.08.004
10.1007/978-1-84882-254-2
10.1109/TCSVT.2018.2875147
10.1109/ICPR.2014.299
10.1007/s10044-019-00805-3
10.1109/ICPR.2010.403
10.1023/B:VISI.0000029664.99615.94
10.1109/ICPR.2008.4761304
10.1109/CVPR.2008.4587673
10.5244/C.29.41
10.1109/ICPR.2008.4761458
10.1007/978-3-642-01793-3_61
10.1109/5.628710
10.1117/1.JEI.28.2.020502
10.1109/TPAMI.2007.250596
10.1109/TIM.2010.2062610
10.1109/ICIP.2019.8803128
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.2987287
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 9313
ExternalDocumentID 10_1109_JSEN_2020_2987287
9063525
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
ZY4
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-4cd73c567d97b9421b38a13e94e7b86054e541c742166ec633ddf8662e015313
IEDL.DBID RIE
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000550685000047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:07:50 EDT 2025
Sat Nov 29 05:43:00 EST 2025
Tue Nov 18 21:14:42 EST 2025
Wed Aug 27 02:35:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-4cd73c567d97b9421b38a13e94e7b86054e541c742166ec633ddf8662e015313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9791-3695
0000-0003-1544-4694
PQID 2425611619
PQPubID 75733
PageCount 9
ParticipantIDs crossref_primary_10_1109_JSEN_2020_2987287
ieee_primary_9063525
crossref_citationtrail_10_1109_JSEN_2020_2987287
proquest_journals_2425611619
PublicationCentury 2000
PublicationDate 2020-08-15
PublicationDateYYYYMMDD 2020-08-15
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
torr (ref31) 2000; 78
ref15
ref14
ref33
ref11
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref18
abadi (ref36) 2016
meagher (ref3) 2005
kryszczuk (ref6) 2004
kingma (ref35) 2014; abs 1412 6980
ref24
ref23
(ref34) 2009
ref26
ref25
dahia (ref19) 2018
ref22
hartley (ref30) 2003
ref21
cappelli (ref37) 2011
yaroslav (ref40) 2015
ref28
ref27
ref29
ref8
ref7
ioffe (ref32) 2015; abs 1502 3167
mishchuk (ref20) 2017
ref5
stosz (ref4) 1994; 2277
zhao (ref9) 2009
References_xml – ident: ref39
  doi: 10.1016/j.patcog.2014.04.008
– ident: ref10
  doi: 10.1016/j.patcog.2010.02.016
– ident: ref16
  doi: 10.1109/ISBA.2017.7947685
– ident: ref15
  doi: 10.1109/CVPRW.2015.7301328
– ident: ref23
  doi: 10.1109/CVPR.2015.7298682
– volume: 78
  start-page: 138
  year: 2000
  ident: ref31
  article-title: MLESAC: A new robust estimator with application to estimating image geometry
  publication-title: Comput Vis Image Understand
  doi: 10.1006/cviu.1999.0832
– ident: ref27
  doi: 10.1109/CVPR.2016.90
– ident: ref7
  doi: 10.1007/978-3-540-25976-3_12
– start-page: 1
  year: 2011
  ident: ref37
  article-title: Fingerprint verification competition at IJCB 2011
  publication-title: Proc Int Joint Conf Biometrics (IJCB 2011)
– ident: ref13
  doi: 10.1016/j.patcog.2011.02.010
– start-page: 83
  year: 2004
  ident: ref6
  article-title: Extraction of level 2 and level 3 features for fragmentary fingerprint
  publication-title: Proc 2nd COST Action 275 Workshop
– start-page: 265
  year: 2016
  ident: ref36
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI)
– ident: ref25
  doi: 10.1109/ICCV.2015.22
– ident: ref38
  doi: 10.1145/358669.358692
– volume: abs 1502 3167
  start-page: 1
  year: 2015
  ident: ref32
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: CoRR
– volume: 2277
  start-page: 2277
  year: 1994
  ident: ref4
  article-title: Automated system for fingerprint authentication using pores and ridge structure
  publication-title: Proc SPIE
– ident: ref11
  doi: 10.1016/j.patcog.2009.08.004
– year: 2018
  ident: ref19
  article-title: Automatic dataset annotation to learn CNN pore description for fingerprint recognition
  publication-title: arXiv 1809 10229
– ident: ref1
  doi: 10.1007/978-1-84882-254-2
– ident: ref21
  doi: 10.1109/TCSVT.2018.2875147
– ident: ref14
  doi: 10.1109/ICPR.2014.299
– ident: ref29
  doi: 10.1007/s10044-019-00805-3
– year: 2009
  ident: ref34
– ident: ref12
  doi: 10.1109/ICPR.2010.403
– ident: ref33
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: abs 1412 6980
  start-page: 1
  year: 2014
  ident: ref35
  article-title: Adam: A method for stochastic optimization
  publication-title: CoRR
– ident: ref18
  doi: 10.1109/ICPR.2008.4761304
– ident: ref28
  doi: 10.1109/CVPR.2008.4587673
– start-page: 4826
  year: 2017
  ident: ref20
  article-title: Working hard to know your neighbor's margins: Local descriptor learning loss
  publication-title: Proc NIPS
– start-page: 1180
  year: 2015
  ident: ref40
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: Proc ICML
– ident: ref24
  doi: 10.5244/C.29.41
– ident: ref17
  doi: 10.1109/ICPR.2008.4761458
– start-page: 597
  year: 2009
  ident: ref9
  article-title: Direct pore matching for fingerprint recognition
  publication-title: Advances in Biometrics
  doi: 10.1007/978-3-642-01793-3_61
– start-page: 1
  year: 2005
  ident: ref3
  article-title: Extended fingerprint feature set
  publication-title: Proc ANSI/NIST ITL 1-2000 Standard Update Workshop
– ident: ref5
  doi: 10.1109/5.628710
– ident: ref26
  doi: 10.1117/1.JEI.28.2.020502
– year: 2003
  ident: ref30
  publication-title: Multiple View Geometry in Computer Vision
– ident: ref8
  doi: 10.1109/TPAMI.2007.250596
– ident: ref2
  doi: 10.1109/TIM.2010.2062610
– ident: ref22
  doi: 10.1109/ICIP.2019.8803128
SSID ssj0019757
Score 2.4180696
Snippet With the development of high-resolution fingerprint scanners, high-resolution fingerprint-based biometric recognition has received increasing attention in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9305
SubjectTerms Artificial neural networks
Biometric recognition systems
Biometrics
Computational modeling
convolutional neural network
Convolutional neural networks
cross-sensor fingerprints
Datasets
Euclidean geometry
Feature extraction
fingerprint recognition
Fingerprint verification
Fingerprinting
High resolution
High-resolution fingerprints
Image detection
Image recognition
Learning
Object recognition
pore descriptor
Scanners
Sensor phenomena and characterization
Training
Title PoreNet: CNN-Based Pore Descriptor for High-Resolution Fingerprint Recognition
URI https://ieeexplore.ieee.org/document/9063525
https://www.proquest.com/docview/2425611619
Volume 20
WOSCitedRecordID wos000550685000047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UBPXgW1xf5OBJjDaP5uFNxUVEiqiHvZU2mUVBdmWtgv_eJNtdBEXwVkISSiaTmW-eAIeKa6-Mqin20VJZGxt4Dg2Vtl8hr1AykxKFb3VRmF7P3s3A8TQXBhFT8BmexM_ky_dD9x5NZac2yNOc57Mwq7Ua52pNPQZWp6qegYEzKoXutR5MltnTm4erIiBBnp3wgLB5jJ77JoNSU5UfL3ESL92V__3YKiy3aiQ5H9N9DWZwsA5L34oLrsNC29_86XMDiruwY4HNGbksCnoRJJcncYgE2JmejeGIBO2VxKgPGi364_tIusnoF21_DbmfhBoNB5vw2L16vLymbScF6oI4b6h0XguXK-2trq3krBamYgKtRF2bgGgk5pK5AJOZUuiUEN73jVIcg7YgmNiCucFwgNtAnOW5q2pXsZiEW9W14B593xpMDjnVgWxytKVrq4zHZhcvZUIbmS0jNcpIjbKlRgeOpktexyU2_pq8EY9_OrE9-Q7sTehXtkz4VkY0pVhQae3O76t2YTHuHU3ELN-DuWb0jvsw7z6a57fRQbpfX1Wuy90
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9igAQcBhQQZXz4wGmaafwRx-a2VVRslAhtPfQWJfarmDS1qE2R-O-x3bRCYpq0WxTZTvSe7fd-7xPgUvHMKa0qiiM0VFba-DOHmkozKpGXKJmOicL9LM_1cGge1uDLKhcGEWPwGV6Fx-jLdxM7D6ayjvHyNOXpB9hIpeTJIltr5TMwWazr6Y9wQqXIho0PkyWm8-PXTe6xIE-uuMfYPMTPvZFCsa3Ku7s4Cpje7v_92h58bBRJ8nXB-X1Yw3ELdt6UF2zBVtPh_PHlAPIHv2KO9TXp5jn95mWXI-EV8cAzXhyTKfH6KwlxHzTY9Bc7kvSi2S9Y_2rycxlsNBkfwqB3M-je0qaXArVeoNdUWpcJm6rMmawykrNK6JIJNBKzSntMIzGVzHqgzJRCq4RwbqSV4uj1BcHEEayPJ2M8BmINT21Z2ZKFNNyyqgR36EZGY3TJqTYkS9IWtqkzHtpd_Cki3khMEbhRBG4UDTfa8Hk15WlRZONfgw8C-VcDG8q34XTJv6I5hrMi4CnFvFJrTv4-6wK2bgf3_aL_Pb_7BNvhO8FgzNJTWK-nczyDTftc_55Nz-NeewUcPc8k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PoreNet%3A+CNN-Based+Pore+Descriptor+for+High-Resolution+Fingerprint+Recognition&rft.jtitle=IEEE+sensors+journal&rft.au=Anand%2C+Vijay&rft.au=Kanhangad%2C+Vivek&rft.date=2020-08-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=20&rft.issue=16&rft.spage=9305&rft.epage=9313&rft_id=info:doi/10.1109%2FJSEN.2020.2987287&rft.externalDocID=9063525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon