Deep Neural Network Initialization Methods for Micro-Doppler Classification With Low Training Sample Support

Deep neural networks (DNNs) require large-scale labeled data sets to prevent overfitting while having good generalization. In radar applications, however, acquiring a measured data set of the order of thousands is challenging due to constraints on manpower, cost, and other resources. In this letter,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters Vol. 14; no. 12; pp. 2462 - 2466
Main Authors: Seyfioglu, Mehmet Saygin, Gurbuz, Sevgi Zubeyde
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-598X, 1558-0571
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep neural networks (DNNs) require large-scale labeled data sets to prevent overfitting while having good generalization. In radar applications, however, acquiring a measured data set of the order of thousands is challenging due to constraints on manpower, cost, and other resources. In this letter, the efficacy of two neural network initialization techniques-unsupervised pretraining and transfer learning-for dealing with training DNNs on small data sets is compared. Unsupervised pretraining is implemented through the design of a convolutional autoencoder (CAE), while transfer learning from two popular convolutional neural network architectures (VGGNet and GoogleNet) is used to augment measured RF data for training. A 12-class problem for discrimination of micro-Doppler signatures for indoor human activities is utilized to analyze activation maps, bottleneck features, class model, and classification accuracy with respect to training sample size. Results show that on meager data sets, transfer learning outperforms unsupervised pretraining and random initialization by 10% and 25%, respectively, but that when the sample size exceeds 650, unsupervised pretraining surpasses transfer learning and random initialization by 5% and 10%, respectively. Visualization of activation layers and learned models reveals how the CAE succeeds in representing the micro-Doppler signature.
AbstractList Deep neural networks (DNNs) require large-scale labeled data sets to prevent overfitting while having good generalization. In radar applications, however, acquiring a measured data set of the order of thousands is challenging due to constraints on manpower, cost, and other resources. In this letter, the efficacy of two neural network initialization techniques-unsupervised pretraining and transfer learning-for dealing with training DNNs on small data sets is compared. Unsupervised pretraining is implemented through the design of a convolutional autoencoder (CAE), while transfer learning from two popular convolutional neural network architectures (VGGNet and GoogleNet) is used to augment measured RF data for training. A 12-class problem for discrimination of micro-Doppler signatures for indoor human activities is utilized to analyze activation maps, bottleneck features, class model, and classification accuracy with respect to training sample size. Results show that on meager data sets, transfer learning outperforms unsupervised pretraining and random initialization by 10% and 25%, respectively, but that when the sample size exceeds 650, unsupervised pretraining surpasses transfer learning and random initialization by 5% and 10%, respectively. Visualization of activation layers and learned models reveals how the CAE succeeds in representing the micro-Doppler signature.
Author Seyfioglu, Mehmet Saygin
Gurbuz, Sevgi Zubeyde
Author_xml – sequence: 1
  givenname: Mehmet Saygin
  surname: Seyfioglu
  fullname: Seyfioglu, Mehmet Saygin
  email: msseyfioglu@etu.edu.tr
  organization: Dept. of Electr. Electron. Eng., TOBB Univ. of Econ. & Technol., Ankara, Turkey
– sequence: 2
  givenname: Sevgi Zubeyde
  surname: Gurbuz
  fullname: Gurbuz, Sevgi Zubeyde
  email: szgurbuz@ua.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Alabama, Tuscaloosa, AL, USA
BookMark eNp9kDFPwzAQhS0EEm3hByAWS8wptmPHyYhaKJVakGgRbJHrONQljYPtqIJfj0sqBgamu5O-d_fu9cFxbWoFwAVGQ4xRdj2bPC2GBGE-JJxjitgR6GHG0ggxjo_3PWURy9LXU9B3boMQoWnKe6AaK9XAB9VaUYXid8a-w2mtvRaV_hJemxrOlV-bwsHSWDjX0ppobJqmUhaOKuGcLrXswBft13BmdnBpha51_QYXYhtAuGibxlh_Bk5KUTl1fqgD8Hx3uxzdR7PHyXR0M4skyWIfUZlgpQjLMBGrFceJRFShlBOSUcXSuGByRZFAMk7KMJYFQwUvsjARmbIiiQfgqtvbWPPRKufzjWltHU7mOOOU0phiEijeUeEj56wqc6n9zyM-2K9yjPJ9tPk-2nwfbX6INijxH2Vj9VbYz381l51GK6V--RQHQ3EcfwNmaodK
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_LGRS_2024_3354973
crossref_primary_10_3390_electronics14163264
crossref_primary_10_1109_JSEN_2021_3100635
crossref_primary_10_3390_app12020633
crossref_primary_10_1109_TAES_2018_2883847
crossref_primary_10_1109_TCSII_2023_3328422
crossref_primary_10_1109_JSEN_2021_3078339
crossref_primary_10_1109_MAES_2021_3140064
crossref_primary_10_1109_TAES_2021_3139848
crossref_primary_10_1002_mop_32125
crossref_primary_10_1080_01431161_2020_1766149
crossref_primary_10_1109_LGRS_2019_2930636
crossref_primary_10_1109_ACCESS_2021_3061424
crossref_primary_10_1109_JSEN_2022_3162590
crossref_primary_10_1109_JSEN_2022_3210956
crossref_primary_10_1109_TCCN_2020_2999811
crossref_primary_10_1109_JSEN_2022_3141213
crossref_primary_10_1109_LSENS_2021_3061561
crossref_primary_10_1016_j_measurement_2024_114939
crossref_primary_10_1109_JMW_2025_3575723
crossref_primary_10_1049_rsn2_12182
crossref_primary_10_1049_iet_rsn_2018_0103
crossref_primary_10_3390_electronics14050875
crossref_primary_10_1109_TGRS_2021_3105124
crossref_primary_10_1109_ACCESS_2018_2857007
crossref_primary_10_1038_s41598_023_30631_x
crossref_primary_10_3390_rs11091068
crossref_primary_10_1109_LGRS_2019_2917301
crossref_primary_10_1049_iet_rsn_2019_0044
crossref_primary_10_1109_MSP_2018_2890128
crossref_primary_10_3390_rs16173121
crossref_primary_10_1049_iet_rsn_2019_0240
crossref_primary_10_1109_LGRS_2022_3173951
crossref_primary_10_1109_ACCESS_2019_2943567
crossref_primary_10_3103_S1068335621100080
crossref_primary_10_1016_j_dsp_2019_01_013
crossref_primary_10_1109_TAES_2020_2969579
crossref_primary_10_1049_iet_rsn_2018_5054
crossref_primary_10_1109_ACCESS_2024_3370671
crossref_primary_10_1109_JSEN_2019_2895538
crossref_primary_10_1109_LGRS_2020_3045176
crossref_primary_10_1109_MSP_2019_2926573
crossref_primary_10_1109_JSTARS_2021_3073678
crossref_primary_10_1109_LGRS_2020_2974821
crossref_primary_10_1109_JIOT_2021_3063504
crossref_primary_10_1109_ACCESS_2020_2971064
crossref_primary_10_1109_TGRS_2021_3100482
crossref_primary_10_1109_TIM_2023_3238749
crossref_primary_10_3390_s20195466
crossref_primary_10_1109_LGRS_2023_3321216
crossref_primary_10_1016_j_asoc_2024_112316
crossref_primary_10_1109_LGRS_2019_2942097
crossref_primary_10_1049_iet_rsn_2019_0493
crossref_primary_10_1109_TNNLS_2021_3055991
crossref_primary_10_1109_JSEN_2020_2971626
crossref_primary_10_1109_JSEN_2023_3327963
crossref_primary_10_1109_LSENS_2019_2896072
crossref_primary_10_1515_freq_2022_0237
crossref_primary_10_7717_peerj_cs_782
crossref_primary_10_1049_rsn2_12161
crossref_primary_10_3390_electronics11010156
crossref_primary_10_3390_s20123504
crossref_primary_10_3390_s21144772
crossref_primary_10_1109_TAP_2022_3172759
crossref_primary_10_1109_TMTT_2024_3441591
crossref_primary_10_1109_TMTT_2024_3473317
Cites_doi 10.1109/ACCESS.2016.2617282
10.1109/TAES.2014.130082
10.1109/LGRS.2014.2311819
10.1109/TPAMI.2013.50
10.1109/ICASSP.2017.7952265
10.1109/TPAMI.2012.231
10.1109/CVPR.2015.7298594
10.1109/MILCOM.2016.7795448
10.1038/nature14539
10.1109/LGRS.2016.2539386
10.1109/MRRS.2011.6053628
10.1109/TGRS.2009.2012849
10.1109/RADAR.2016.7485147
10.1109/ACCESS.2017.2689058
10.3390/s16121990
10.1109/ICCV.2011.6126474
10.1109/LGRS.2015.2491329
10.1007/978-3-642-25085-9_33
10.1109/TKDE.2009.191
10.1109/LGRS.2014.2336231
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2017.2771405
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 2466
ExternalDocumentID 10_1109_LGRS_2017_2771405
8119733
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-4c61ee25912abb716c04e0872294e583d5cb40a0c36f583fd50d7d936f2c85d63
IEDL.DBID RIE
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418116500059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 08:31:50 EDT 2025
Sat Nov 29 05:53:54 EST 2025
Tue Nov 18 22:18:55 EST 2025
Tue Aug 26 17:04:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-4c61ee25912abb716c04e0872294e583d5cb40a0c36f583fd50d7d936f2c85d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7487-9087
PQID 1974443412
PQPubID 75725
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_LGRS_2017_2771405
crossref_primary_10_1109_LGRS_2017_2771405
ieee_primary_8119733
proquest_journals_1974443412
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
krizhevsky (ref19) 2012
ref11
seyfio?lu (ref10) 2017
chollet (ref30) 2015
kim (ref4) 2009; 47
ref2
ref1
ref17
ref18
bengio (ref21) 2007; 19
ref24
ref23
trommel (ref15) 2016
simonyan (ref20) 2014
erhan (ref22) 2010; 11
ref25
abadi (ref31) 2016
ref28
simonyan (ref32) 2014
ref27
srivastava (ref26) 2014; 15
ref8
ref7
ref9
ref6
kingma (ref29) 2015
ref5
bengio (ref16) 2007; 34
kim (ref3) 2015; 12
References_xml – start-page: 81
  year: 2016
  ident: ref15
  article-title: Multi-target human gait classification using deep convolutional neural networks on micro-Doppler spectrograms
  publication-title: Proc Eur Radar Conf
– ident: ref14
  doi: 10.1109/ACCESS.2016.2617282
– start-page: 1
  year: 2015
  ident: ref29
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref8
  doi: 10.1109/TAES.2014.130082
– ident: ref7
  doi: 10.1109/LGRS.2014.2311819
– ident: ref27
  doi: 10.1109/TPAMI.2013.50
– ident: ref23
  doi: 10.1109/ICASSP.2017.7952265
– ident: ref2
  doi: 10.1109/TPAMI.2012.231
– ident: ref25
  doi: 10.1109/CVPR.2015.7298594
– ident: ref13
  doi: 10.1109/MILCOM.2016.7795448
– ident: ref1
  doi: 10.1038/nature14539
– ident: ref9
  doi: 10.1109/LGRS.2016.2539386
– volume: 11
  start-page: 625
  year: 2010
  ident: ref22
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J Mach Learn Res
– start-page: 1097
  year: 2012
  ident: ref19
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1109/MRRS.2011.6053628
– volume: 47
  start-page: 1328
  year: 2009
  ident: ref4
  article-title: Human activity classification based on micro-Doppler signatures using a support vector machine
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2009.2012849
– ident: ref12
  doi: 10.1109/RADAR.2016.7485147
– ident: ref24
  doi: 10.1109/ACCESS.2017.2689058
– year: 2015
  ident: ref30
  publication-title: Keras
– start-page: 1125
  year: 2017
  ident: ref10
  article-title: Deep learning of micro-Doppler features for aided and unaided gait recognition
  publication-title: Proc IEEE Radar Conf
– ident: ref18
  doi: 10.3390/s16121990
– ident: ref28
  doi: 10.1109/ICCV.2011.6126474
– start-page: 265
  year: 2016
  ident: ref31
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: Proc 11th USENIX Conf Oper Syst Design Implement
– ident: ref11
  doi: 10.1109/LGRS.2015.2491329
– ident: ref6
  doi: 10.1007/978-3-642-25085-9_33
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref26
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref17
  doi: 10.1109/TKDE.2009.191
– year: 2014
  ident: ref32
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
  publication-title: Proc Int Conf Learn Represent
– volume: 19
  start-page: 153
  year: 2007
  ident: ref21
  article-title: Greedy layer-wise training of deep networks
  publication-title: Advances in neural information processing systems
– volume: 12
  start-page: 289
  year: 2015
  ident: ref3
  article-title: Human detection using Doppler radar based on physical characteristics of targets
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2014.2336231
– volume: 34
  start-page: 1
  year: 2007
  ident: ref16
  article-title: Scaling learning algorithms towards AI
  publication-title: Large Scale Kernel Machines
– start-page: 1
  year: 2014
  ident: ref20
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
SSID ssj0024887
Score 2.523142
Snippet Deep neural networks (DNNs) require large-scale labeled data sets to prevent overfitting while having good generalization. In radar applications, however,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2462
SubjectTerms Artificial neural networks
Classification
Convolutional autoencoders (CAEs)
convolutional neural networks (CNN)
Data
Data acquisition
Data transfer (computers)
Datasets
Decoding
Doppler sonar
Feature extraction
gait classification
Learning
Manpower
micro-Doppler
Model accuracy
Neural networks
Radar
Radar imaging
Radar signatures
Spectrogram
Training
Transfer learning
vGGNet
Title Deep Neural Network Initialization Methods for Micro-Doppler Classification With Low Training Sample Support
URI https://ieeexplore.ieee.org/document/8119733
https://www.proquest.com/docview/1974443412
Volume 14
WOSCitedRecordID wos000418116500059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4BGmIvsPFDK4PJD3uaCLhJHNuP0_ixSaWaBht9ixz7KpCqFrVlE__97hzTCYGQ9hYr5yjKJb7vcp_vA_iYK8yHQ8NUKXQZRShH66A1maNcwlEAlCZWz3_1dL9vBgP7fQkOFnthEDGSz_CQD2MtP0z8Hf8qOzJc8yqKZVjWWrd7tf711TNRDI8RQaasGaQKZlfao97ZjwsmcenDXHN_OvUoBkVRlScrcQwvpxv_d2NvYD3BSPG59ftbWMLxJqwlRfPr-01YPYuSvfdbMDpGvBXchIMm9FvWt_jGnCE3SpswxXnUkZ4JQrDinCl62fGE4ClORRTNZDpRa3h1M78WvckfcZmkJcSF4_7CgtVBCclvw8_Tk8svX7OksZB5CvTzrPRVF5FyoG7umoaSJy9LlEbnuS1RmSIo35TSSV9UQxoOg5JBB0uj3BsVqmIHVsaTMb4DQUBQoSLE4kJTNtLZyrsiOK-NrJwNqgPy4anXPjUgZx2MUR0TEWlrdlTNjqqTozrwaTHltu2-8ZLxFntmYZic0oG9B9fW6fuc1XSmLEuK4Pnu87Pew2u-dktc2YOV-fQO9-GV_z2_mU0_xFfvL-_G1a4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NMTReGNtAFDbww54Q2VzHTuxHxNgPkVYTK9C3yLGv2qSqndpu0_57fI5XhJgm8RYrZyXKJb7vcp_vA9gTCsVopIkqhTYLEcqGddDozIZcwoYAyHWsnv-syn5fD4fmbAU-LffCIGIkn-E-HcZavp-6a_pVdqCp5pXnT-CpklJ0291afzrr6SiHR5ggU0YPUw2zy81Bdfz9nGhc5b4oqUOd-isKRVmVf9biGGCONv7v1l7CiwQk2efW85uwgpMtWE-a5hd3W_DsOIr23m3D-BDxilEbjjCh3_K-2Smxhuw4bcNkvagkPWcBw7IekfSyw2kAqDhjUTaTCEWt4a_LxQWrprdskMQl2LmlDsOM9EEDln8FP46-Dr6cZEllIXMh1C8y6YouYsiCusI2TUifHJfIdSmEkah07pVrJLfc5cUoDEdecV96E0bCaeWL_DWsTqYTfAMsQEGFKmAW6xvZcGsKZ3NvXal5YY1XHeD3T712qQU5KWGM65iKcFOTo2pyVJ0c1YGPyylXbf-Nx4y3yTNLw-SUDuzcu7ZOX-i8DmeklCGGi7cPz_oA6yeDXlVXp_1v7-A5XaelsezA6mJ2jbuw5m4Wl_PZ-_ga_gY0C9j1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network+Initialization+Methods+for+Micro-Doppler+Classification+With+Low+Training+Sample+Support&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Seyfioglu%2C+Mehmet+Saygin&rft.au=Gurbuz%2C+Sevgi+Zubeyde&rft.date=2017-12-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=14&rft.issue=12&rft.spage=2462&rft.epage=2466&rft_id=info:doi/10.1109%2FLGRS.2017.2771405&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2017_2771405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon