Inertial Motion Capture Accuracy Improvement by Kalman Smoothing and Dynamic Networks

Localization-capable inertial motion capture algorithms rely on zero-velocity updates (ZUPT), usually as measurements in a Kalman filtering scheme, for position and attitude error control. As ZUPTs are only applicable during the static phases a link goes through, estimation errors grow during dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 21; H. 3; S. 3722 - 3729
Hauptverfasser: Razavi, Hamidreza, Salarieh, Hassan, Alasty, Aria
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Localization-capable inertial motion capture algorithms rely on zero-velocity updates (ZUPT), usually as measurements in a Kalman filtering scheme, for position and attitude error control. As ZUPTs are only applicable during the static phases a link goes through, estimation errors grow during dynamic ones. This error growth may somewhat be mitigated by imposing biomechanical constraints in multi-sensor systems. Error reduction is also possible by optimization-based methods that incorporate the dynamic and static constraints governing the system behavior over a period of time (e.g. the dynamic network algorithm); when this period includes multiple static phases for a link, its estimation accuracy is greatly improved. The current study enhances the error control capabilities of an existing inertial motion capture algorithm by multi-stage smoothing. The base algorithm benefits from imposing biomechanical constraints and is self-calibrating with respect to body geometry and some sensor parameters. The smoothing process, conducted over the stepping periods of each foot, comprises two stages; Kalman smoothing followed by error minimization by dynamic networks. The performance of the algorithm, deployed using both extended and square-root unscented Kalman filtering schemes (EKF and SRUKF, respectively), is experimentally evaluated during a fast-paced walking test using a custom-made inertial motion capture system. A comparison with an optical motion capture system showed that the proposed method decreased pelvis position and attitude estimation errors by 19% and 29%, respectively. Furthermore, compared to the EKF-based smoothing algorithm, the SRUKF-based method proved to be more successful in error reduction and parameter estimation.
AbstractList Localization-capable inertial motion capture algorithms rely on zero-velocity updates (ZUPT), usually as measurements in a Kalman filtering scheme, for position and attitude error control. As ZUPTs are only applicable during the static phases a link goes through, estimation errors grow during dynamic ones. This error growth may somewhat be mitigated by imposing biomechanical constraints in multi-sensor systems. Error reduction is also possible by optimization-based methods that incorporate the dynamic and static constraints governing the system behavior over a period of time (e.g. the dynamic network algorithm); when this period includes multiple static phases for a link, its estimation accuracy is greatly improved. The current study enhances the error control capabilities of an existing inertial motion capture algorithm by multi-stage smoothing. The base algorithm benefits from imposing biomechanical constraints and is self-calibrating with respect to body geometry and some sensor parameters. The smoothing process, conducted over the stepping periods of each foot, comprises two stages; Kalman smoothing followed by error minimization by dynamic networks. The performance of the algorithm, deployed using both extended and square-root unscented Kalman filtering schemes (EKF and SRUKF, respectively), is experimentally evaluated during a fast-paced walking test using a custom-made inertial motion capture system. A comparison with an optical motion capture system showed that the proposed method decreased pelvis position and attitude estimation errors by 19% and 29%, respectively. Furthermore, compared to the EKF-based smoothing algorithm, the SRUKF-based method proved to be more successful in error reduction and parameter estimation.
Author Alasty, Aria
Razavi, Hamidreza
Salarieh, Hassan
Author_xml – sequence: 1
  givenname: Hamidreza
  orcidid: 0000-0002-0783-1689
  surname: Razavi
  fullname: Razavi, Hamidreza
  email: h.razavi@outlook.com
  organization: Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
– sequence: 2
  givenname: Hassan
  orcidid: 0000-0002-0604-5731
  surname: Salarieh
  fullname: Salarieh, Hassan
  email: salarieh@sharif.edu
  organization: Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
– sequence: 3
  givenname: Aria
  orcidid: 0000-0002-6354-0034
  surname: Alasty
  fullname: Alasty, Aria
  email: aalasti@sharif.edu
  organization: Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
BookMark eNp9kDFPwzAQhS0EEm3hByAWS8wptmPHyViVAoVShlKJLXKdC6QkdnEcUP49iVoxMDCc7ob37t19Q3RsrAGELigZU0qS64fVbDlmhJFxSBiPJT9CAypEHFDJ4-N-DknAQ_l6ioZ1vSWEJlLIAVrPDThfqBI_WV9Yg6dq5xsHeKJ145Ru8bzaOfsFFRiPNy1-VGWlDF5V1vr3wrxhZTJ80xpVFRovwX9b91GfoZNclTWcH_oIrW9nL9P7YPF8N59OFoFmSegDnuRag0oEZ5CxDYFNJICEOeM5EJkrSmKhdRYrIqI4IhlNgGmIBZcKsoiLcISu9nu7Ez8bqH26tY0zXWTKuJRdRQnrVHSv0s7WtYM83bmiUq5NKUl7emlPL-3ppQd6nUf-8ejCq56Qd6oo_3Ve7p0FAPwmJYx039DwB_bhf3Q
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3390_s23167053
crossref_primary_10_1007_s10846_022_01572_w
crossref_primary_10_1088_1361_6501_ad180b
crossref_primary_10_1109_JIOT_2023_3280505
crossref_primary_10_1016_j_measurement_2023_113690
crossref_primary_10_1016_j_ifacol_2024_09_150
Cites_doi 10.1109/JSEN.2016.2589660
10.21105/joss.00026
10.1177/0954410019861778
10.1561/9781680833577
10.1109/JSEN.2016.2609392
10.1002/j.2161-4296.2011.tb01797.x
10.1109/TPAMI.2016.2522398
10.1109/ICRA.2018.8463176
10.1109/ICASSP.2001.940586
10.1109/JSEN.2016.2593011
10.2514/3.19717
10.1109/JSEN.2020.2982459
10.3390/s17071591
10.1109/JSEN.2020.2974900
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3024874
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 3729
ExternalDocumentID 10_1109_JSEN_2020_3024874
9201081
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-49fccea9542ed2b0eb65e03f24fe07fa1085ccd8a056860d19e2ce8547aed6453
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607394400105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Wed Oct 15 13:14:04 EDT 2025
Sat Nov 29 05:43:05 EST 2025
Tue Nov 18 19:37:55 EST 2025
Wed Aug 27 06:01:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-49fccea9542ed2b0eb65e03f24fe07fa1085ccd8a056860d19e2ce8547aed6453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0783-1689
0000-0002-0604-5731
0000-0002-6354-0034
PQID 2477247692
PQPubID 75733
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2020_3024874
crossref_primary_10_1109_JSEN_2020_3024874
ieee_primary_9201081
proquest_journals_2477247692
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
ref10
ref1
ref17
ref16
ref8
ref7
roetenberg (ref2) 2009
ref9
ref4
ref3
taetz (ref5) 2016
ref6
shin (ref12) 2006
References_xml – ident: ref4
  doi: 10.1109/JSEN.2016.2589660
– year: 2009
  ident: ref2
  publication-title: Xsens MVN Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors
– ident: ref17
  doi: 10.21105/joss.00026
– ident: ref15
  doi: 10.1177/0954410019861778
– ident: ref6
  doi: 10.1561/9781680833577
– ident: ref1
  doi: 10.1109/JSEN.2016.2609392
– ident: ref13
  doi: 10.1002/j.2161-4296.2011.tb01797.x
– ident: ref3
  doi: 10.1109/TPAMI.2016.2522398
– ident: ref8
  doi: 10.1109/ICRA.2018.8463176
– year: 2006
  ident: ref12
  publication-title: Estimation Techniques for Low-Cost Inertial Navigation
– ident: ref11
  doi: 10.1109/ICASSP.2001.940586
– ident: ref10
  doi: 10.1109/JSEN.2016.2593011
– ident: ref16
  doi: 10.2514/3.19717
– start-page: 1751
  year: 2016
  ident: ref5
  article-title: Towards self-calibrating inertial body motion capture
  publication-title: Proc 19th Int Conf Inf Fusion (FUSION)
– ident: ref7
  doi: 10.1109/JSEN.2020.2982459
– ident: ref14
  doi: 10.3390/s17071591
– ident: ref9
  doi: 10.1109/JSEN.2020.2974900
SSID ssj0019757
Score 2.3338685
Snippet Localization-capable inertial motion capture algorithms rely on zero-velocity updates (ZUPT), usually as measurements in a Kalman filtering scheme, for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3722
SubjectTerms Algorithms
Attitudes
Biomechanics
Error analysis
Error reduction
Estimation error
Heuristic algorithms
inertial sensor network
Kalman filters
Motion capture
Optimization
Parameter estimation
Pelvis
Position measurement
Process parameters
Quaternions
Sensor fusion
Sensors
Smoothing
Smoothing methods
unscented smoothing
Walking
Title Inertial Motion Capture Accuracy Improvement by Kalman Smoothing and Dynamic Networks
URI https://ieeexplore.ieee.org/document/9201081
https://www.proquest.com/docview/2477247692
Volume 21
WOSCitedRecordID wos000607394400105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5MEdQH7-J0Sh58EuvSLG2ax6ETLzgEFfZW0uQUha2TXYT9e5O0G4oi-NaHnFD6JT338wGc5rkU0jqzAVrtFfAMVZBkYSuwykQaSjVFmnuyCdHtJr2efKzB-aIXBhF98RleuEefyzdDPXWhsqZ0qVvXZ70kRFz2ai0yBlL4qZ72AtOAt0SvymCGVDbvnjpd6wky66C6CV6Cf9NBnlTlx5_Yq5frzf-92BZsVGYkaZe4b0MNix1Y_zJccAdWK37z19kuvNwWrn7aSjx41h5yqd5d6oC0tZ6OlJ6RMrjgY4Ukm5F71R-ogjwNhhZJux1RhSFXJXs96Zal4-M9eLnuPF_eBBWhQqCtVp8EXOZao5IRZ2hYRjGLI6StnPEcqciV60TQ2iTKWkVJTE0okTlaUy4UmphHrX1YLoYFHgBhAhOd6NAoZZ1rrWUkDHe2hN0wonFSBzr_xKmupo070ot-6r0OKlOHSupQSStU6nC2EHkvR238tXjXwbBYWCFQh8Ycx7S6jOOUcetCcBFLdvi71BGsMVeq4ouxG7A8GU3xGFb0x-RtPDrx5-wT0rPPQA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6ICurBXRwdNQdPYjWTSZvmKC64FkGFuZU0eUVBOzKLMP_eJM0MiiJ46yEvlH5J3_4-gP2ylEJaZzZCq70iXqCK0qLVjqwykYZSTZGWnmxCZFna6cj7KTic9MIgoi8-wyP36HP5pquHLlR2LF3q1vVZzzjmrNCtNckZSOHnetorTCPeFp2Qw2xReXz9cJ5ZX5BZF9XN8BL8mxbytCo__sVewVws_e_VlmExGJLkpEZ-BaawWoWFL-MFV2EuMJw_j9bg6apyFdRW4s7z9pBT9e6SB-RE62FP6RGpwws-WkiKEblRr2-qIg9vXYul3Y6oypCzmr-eZHXxeH8dni7OH08vo0CpEGmr1wcRl6XWqGTMGRpWUCySGGm7ZLxEKkrlehG0NqmydlGaUNOSyByxKRcKTcLj9gZMV90KN4EwgalOdcsoZd1rrWUsDHfWhN0wpknaADr-xLkO88Yd7cVr7v0OKnOHSu5QyQMqDTiYiLzXwzb-WrzmYJgsDAg0oDnGMQ_XsZ8zbp0ILhLJtn6X2oO5y8e72_z2KrvZhnnmCld8aXYTpge9Ie7ArP4YvPR7u_7MfQLJFdKJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+Motion+Capture+Accuracy+Improvement+by+Kalman+Smoothing+and+Dynamic+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Razavi%2C+Hamidreza&rft.au=Salarieh%2C+Hassan&rft.au=Alasty%2C+Aria&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=21&rft.issue=3&rft.spage=3722&rft.epage=3729&rft_id=info:doi/10.1109%2FJSEN.2020.3024874&rft.externalDocID=9201081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon