Inertial Motion Capture Accuracy Improvement by Kalman Smoothing and Dynamic Networks
Localization-capable inertial motion capture algorithms rely on zero-velocity updates (ZUPT), usually as measurements in a Kalman filtering scheme, for position and attitude error control. As ZUPTs are only applicable during the static phases a link goes through, estimation errors grow during dynami...
Gespeichert in:
| Veröffentlicht in: | IEEE sensors journal Jg. 21; H. 3; S. 3722 - 3729 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Localization-capable inertial motion capture algorithms rely on zero-velocity updates (ZUPT), usually as measurements in a Kalman filtering scheme, for position and attitude error control. As ZUPTs are only applicable during the static phases a link goes through, estimation errors grow during dynamic ones. This error growth may somewhat be mitigated by imposing biomechanical constraints in multi-sensor systems. Error reduction is also possible by optimization-based methods that incorporate the dynamic and static constraints governing the system behavior over a period of time (e.g. the dynamic network algorithm); when this period includes multiple static phases for a link, its estimation accuracy is greatly improved. The current study enhances the error control capabilities of an existing inertial motion capture algorithm by multi-stage smoothing. The base algorithm benefits from imposing biomechanical constraints and is self-calibrating with respect to body geometry and some sensor parameters. The smoothing process, conducted over the stepping periods of each foot, comprises two stages; Kalman smoothing followed by error minimization by dynamic networks. The performance of the algorithm, deployed using both extended and square-root unscented Kalman filtering schemes (EKF and SRUKF, respectively), is experimentally evaluated during a fast-paced walking test using a custom-made inertial motion capture system. A comparison with an optical motion capture system showed that the proposed method decreased pelvis position and attitude estimation errors by 19% and 29%, respectively. Furthermore, compared to the EKF-based smoothing algorithm, the SRUKF-based method proved to be more successful in error reduction and parameter estimation. |
|---|---|
| AbstractList | Localization-capable inertial motion capture algorithms rely on zero-velocity updates (ZUPT), usually as measurements in a Kalman filtering scheme, for position and attitude error control. As ZUPTs are only applicable during the static phases a link goes through, estimation errors grow during dynamic ones. This error growth may somewhat be mitigated by imposing biomechanical constraints in multi-sensor systems. Error reduction is also possible by optimization-based methods that incorporate the dynamic and static constraints governing the system behavior over a period of time (e.g. the dynamic network algorithm); when this period includes multiple static phases for a link, its estimation accuracy is greatly improved. The current study enhances the error control capabilities of an existing inertial motion capture algorithm by multi-stage smoothing. The base algorithm benefits from imposing biomechanical constraints and is self-calibrating with respect to body geometry and some sensor parameters. The smoothing process, conducted over the stepping periods of each foot, comprises two stages; Kalman smoothing followed by error minimization by dynamic networks. The performance of the algorithm, deployed using both extended and square-root unscented Kalman filtering schemes (EKF and SRUKF, respectively), is experimentally evaluated during a fast-paced walking test using a custom-made inertial motion capture system. A comparison with an optical motion capture system showed that the proposed method decreased pelvis position and attitude estimation errors by 19% and 29%, respectively. Furthermore, compared to the EKF-based smoothing algorithm, the SRUKF-based method proved to be more successful in error reduction and parameter estimation. |
| Author | Alasty, Aria Razavi, Hamidreza Salarieh, Hassan |
| Author_xml | – sequence: 1 givenname: Hamidreza orcidid: 0000-0002-0783-1689 surname: Razavi fullname: Razavi, Hamidreza email: h.razavi@outlook.com organization: Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran – sequence: 2 givenname: Hassan orcidid: 0000-0002-0604-5731 surname: Salarieh fullname: Salarieh, Hassan email: salarieh@sharif.edu organization: Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran – sequence: 3 givenname: Aria orcidid: 0000-0002-6354-0034 surname: Alasty fullname: Alasty, Aria email: aalasti@sharif.edu organization: Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran |
| BookMark | eNp9kDFPwzAQhS0EEm3hByAWS8wptmPHyViVAoVShlKJLXKdC6QkdnEcUP49iVoxMDCc7ob37t19Q3RsrAGELigZU0qS64fVbDlmhJFxSBiPJT9CAypEHFDJ4-N-DknAQ_l6ioZ1vSWEJlLIAVrPDThfqBI_WV9Yg6dq5xsHeKJ145Ru8bzaOfsFFRiPNy1-VGWlDF5V1vr3wrxhZTJ80xpVFRovwX9b91GfoZNclTWcH_oIrW9nL9P7YPF8N59OFoFmSegDnuRag0oEZ5CxDYFNJICEOeM5EJkrSmKhdRYrIqI4IhlNgGmIBZcKsoiLcISu9nu7Ez8bqH26tY0zXWTKuJRdRQnrVHSv0s7WtYM83bmiUq5NKUl7emlPL-3ppQd6nUf-8ejCq56Qd6oo_3Ve7p0FAPwmJYx039DwB_bhf3Q |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_3390_s23167053 crossref_primary_10_1007_s10846_022_01572_w crossref_primary_10_1088_1361_6501_ad180b crossref_primary_10_1109_JIOT_2023_3280505 crossref_primary_10_1016_j_measurement_2023_113690 crossref_primary_10_1016_j_ifacol_2024_09_150 |
| Cites_doi | 10.1109/JSEN.2016.2589660 10.21105/joss.00026 10.1177/0954410019861778 10.1561/9781680833577 10.1109/JSEN.2016.2609392 10.1002/j.2161-4296.2011.tb01797.x 10.1109/TPAMI.2016.2522398 10.1109/ICRA.2018.8463176 10.1109/ICASSP.2001.940586 10.1109/JSEN.2016.2593011 10.2514/3.19717 10.1109/JSEN.2020.2982459 10.3390/s17071591 10.1109/JSEN.2020.2974900 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2020.3024874 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 3729 |
| ExternalDocumentID | 10_1109_JSEN_2020_3024874 9201081 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-49fccea9542ed2b0eb65e03f24fe07fa1085ccd8a056860d19e2ce8547aed6453 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607394400105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Wed Oct 15 13:14:04 EDT 2025 Sat Nov 29 05:43:05 EST 2025 Tue Nov 18 19:37:55 EST 2025 Wed Aug 27 06:01:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-49fccea9542ed2b0eb65e03f24fe07fa1085ccd8a056860d19e2ce8547aed6453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0783-1689 0000-0002-0604-5731 0000-0002-6354-0034 |
| PQID | 2477247692 |
| PQPubID | 75733 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2020_3024874 crossref_primary_10_1109_JSEN_2020_3024874 ieee_primary_9201081 proquest_journals_2477247692 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 ref11 ref10 ref1 ref17 ref16 ref8 ref7 roetenberg (ref2) 2009 ref9 ref4 ref3 taetz (ref5) 2016 ref6 shin (ref12) 2006 |
| References_xml | – ident: ref4 doi: 10.1109/JSEN.2016.2589660 – year: 2009 ident: ref2 publication-title: Xsens MVN Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors – ident: ref17 doi: 10.21105/joss.00026 – ident: ref15 doi: 10.1177/0954410019861778 – ident: ref6 doi: 10.1561/9781680833577 – ident: ref1 doi: 10.1109/JSEN.2016.2609392 – ident: ref13 doi: 10.1002/j.2161-4296.2011.tb01797.x – ident: ref3 doi: 10.1109/TPAMI.2016.2522398 – ident: ref8 doi: 10.1109/ICRA.2018.8463176 – year: 2006 ident: ref12 publication-title: Estimation Techniques for Low-Cost Inertial Navigation – ident: ref11 doi: 10.1109/ICASSP.2001.940586 – ident: ref10 doi: 10.1109/JSEN.2016.2593011 – ident: ref16 doi: 10.2514/3.19717 – start-page: 1751 year: 2016 ident: ref5 article-title: Towards self-calibrating inertial body motion capture publication-title: Proc 19th Int Conf Inf Fusion (FUSION) – ident: ref7 doi: 10.1109/JSEN.2020.2982459 – ident: ref14 doi: 10.3390/s17071591 – ident: ref9 doi: 10.1109/JSEN.2020.2974900 |
| SSID | ssj0019757 |
| Score | 2.3338685 |
| Snippet | Localization-capable inertial motion capture algorithms rely on zero-velocity updates (ZUPT), usually as measurements in a Kalman filtering scheme, for... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3722 |
| SubjectTerms | Algorithms Attitudes Biomechanics Error analysis Error reduction Estimation error Heuristic algorithms inertial sensor network Kalman filters Motion capture Optimization Parameter estimation Pelvis Position measurement Process parameters Quaternions Sensor fusion Sensors Smoothing Smoothing methods unscented smoothing Walking |
| Title | Inertial Motion Capture Accuracy Improvement by Kalman Smoothing and Dynamic Networks |
| URI | https://ieeexplore.ieee.org/document/9201081 https://www.proquest.com/docview/2477247692 |
| Volume | 21 |
| WOSCitedRecordID | wos000607394400105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5MEdQH7-J0Sh58EuvSLG2ax6ETLzgEFfZW0uQUha2TXYT9e5O0G4oi-NaHnFD6JT338wGc5rkU0jqzAVrtFfAMVZBkYSuwykQaSjVFmnuyCdHtJr2efKzB-aIXBhF98RleuEefyzdDPXWhsqZ0qVvXZ70kRFz2ai0yBlL4qZ72AtOAt0SvymCGVDbvnjpd6wky66C6CV6Cf9NBnlTlx5_Yq5frzf-92BZsVGYkaZe4b0MNix1Y_zJccAdWK37z19kuvNwWrn7aSjx41h5yqd5d6oC0tZ6OlJ6RMrjgY4Ukm5F71R-ogjwNhhZJux1RhSFXJXs96Zal4-M9eLnuPF_eBBWhQqCtVp8EXOZao5IRZ2hYRjGLI6StnPEcqciV60TQ2iTKWkVJTE0okTlaUy4UmphHrX1YLoYFHgBhAhOd6NAoZZ1rrWUkDHe2hN0wonFSBzr_xKmupo070ot-6r0OKlOHSupQSStU6nC2EHkvR238tXjXwbBYWCFQh8Ycx7S6jOOUcetCcBFLdvi71BGsMVeq4ouxG7A8GU3xGFb0x-RtPDrx5-wT0rPPQA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6ICurBXRwdNQdPYjWTSZvmKC64FkGFuZU0eUVBOzKLMP_eJM0MiiJ46yEvlH5J3_4-gP2ylEJaZzZCq70iXqCK0qLVjqwykYZSTZGWnmxCZFna6cj7KTic9MIgoi8-wyP36HP5pquHLlR2LF3q1vVZzzjmrNCtNckZSOHnetorTCPeFp2Qw2xReXz9cJ5ZX5BZF9XN8BL8mxbytCo__sVewVws_e_VlmExGJLkpEZ-BaawWoWFL-MFV2EuMJw_j9bg6apyFdRW4s7z9pBT9e6SB-RE62FP6RGpwws-WkiKEblRr2-qIg9vXYul3Y6oypCzmr-eZHXxeH8dni7OH08vo0CpEGmr1wcRl6XWqGTMGRpWUCySGGm7ZLxEKkrlehG0NqmydlGaUNOSyByxKRcKTcLj9gZMV90KN4EwgalOdcsoZd1rrWUsDHfWhN0wpknaADr-xLkO88Yd7cVr7v0OKnOHSu5QyQMqDTiYiLzXwzb-WrzmYJgsDAg0oDnGMQ_XsZ8zbp0ILhLJtn6X2oO5y8e72_z2KrvZhnnmCld8aXYTpge9Ie7ArP4YvPR7u_7MfQLJFdKJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+Motion+Capture+Accuracy+Improvement+by+Kalman+Smoothing+and+Dynamic+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Razavi%2C+Hamidreza&rft.au=Salarieh%2C+Hassan&rft.au=Alasty%2C+Aria&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=21&rft.issue=3&rft.spage=3722&rft.epage=3729&rft_id=info:doi/10.1109%2FJSEN.2020.3024874&rft.externalDocID=9201081 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |