Genetic Programming With Mixed-Integer Linear Programming-Based Library Search
Genetic programming (GP) is one of the commonly used tools for symbolic regression. In the field of GP, the use of semantics and an external library of subexpressions for designing better search operators has recently gained significant attention. A notable example is semantic backpropagation, which...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation Ročník 22; číslo 5; s. 733 - 747 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Genetic programming (GP) is one of the commonly used tools for symbolic regression. In the field of GP, the use of semantics and an external library of subexpressions for designing better search operators has recently gained significant attention. A notable example is semantic backpropagation, which has demonstrated an ability to obtain expressions with extremely small prediction errors. However, these expressions often tend to be long and difficult to interpret, which may restrict their applicability in real-life problems. In this paper, we propose a GP framework that includes two key elements, a new library construction scheme and a novel semantic operator based on mixed-integer linear programming (MILP). The proposed library construction scheme maintains diverse subexpressions and keeps the library size in check by imposing an upper limit. The proposed semantic operator constructs new expressions by effectively combining a given number of subexpressions from the library. These improvements have been integrated in a bi-objective GP framework with random desired operator (RDO), which attempts to simultaneously reduce the complexity and improve the fitness of the evolving expressions. The contributions of individual components are studied in detail using 15 benchmarks. It is observed that the use of the proposed scheme with RDO leads to shorter expressions without sacrificing accuracy of approximation. The addition of MILP further improves the results for certain types of problems. |
|---|---|
| AbstractList | Genetic programming (GP) is one of the commonly used tools for symbolic regression. In the field of GP, the use of semantics and an external library of subexpressions for designing better search operators has recently gained significant attention. A notable example is semantic backpropagation, which has demonstrated an ability to obtain expressions with extremely small prediction errors. However, these expressions often tend to be long and difficult to interpret, which may restrict their applicability in real-life problems. In this paper, we propose a GP framework that includes two key elements, a new library construction scheme and a novel semantic operator based on mixed-integer linear programming (MILP). The proposed library construction scheme maintains diverse subexpressions and keeps the library size in check by imposing an upper limit. The proposed semantic operator constructs new expressions by effectively combining a given number of subexpressions from the library. These improvements have been integrated in a bi-objective GP framework with random desired operator (RDO), which attempts to simultaneously reduce the complexity and improve the fitness of the evolving expressions. The contributions of individual components are studied in detail using 15 benchmarks. It is observed that the use of the proposed scheme with RDO leads to shorter expressions without sacrificing accuracy of approximation. The addition of MILP further improves the results for certain types of problems. |
| Author | Chand, Shelvin Huynh, Quang Nhat Singh, Hemant Kumar Ray, Tapabrata |
| Author_xml | – sequence: 1 givenname: Quang Nhat orcidid: 0000-0003-0994-5505 surname: Huynh fullname: Huynh, Quang Nhat email: quang.huynh@student.adfa.edu.au organization: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia – sequence: 2 givenname: Shelvin surname: Chand fullname: Chand, Shelvin email: shelvin.chand@student.adfa.edu.au organization: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia – sequence: 3 givenname: Hemant Kumar orcidid: 0000-0003-1653-232X surname: Singh fullname: Singh, Hemant Kumar email: h.singh@adfa.edu.au organization: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia – sequence: 4 givenname: Tapabrata surname: Ray fullname: Ray, Tapabrata email: t.ray@adfa.edu.au organization: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia |
| BookMark | eNp9kE1LAzEQhoNUsK3-APGy4HlrJslukqOWWgv1A6wft5DNZtuUdrdmU9B_b0qLiAdPMzDPO8M8PdSpm9oidA54AIDl1Wz0OhwQDGJABMM4y49QFySDFGOSd2KPhUw5F-8nqNe2S4yBZSC76GFsaxucSZ58M_d6vXb1PHlzYZHcu09bppM62Ln1ydTVVvvfVHqjW1vGQeG1_0qe49gsTtFxpVetPTvUPnq5Hc2Gd-n0cTwZXk9TQyQNKRPMkgpzzrWAnOEcRFFk0kjDhQGRU0YKbrgpBbAKU6AgeUEAysywklVA--hyv3fjm4-tbYNaNltfx5MqYhw4I5RHiu8p45u29bZSxgUdXFMHr91KAVY7eWonT-3kqYO8mIQ_yY136_jnv5mLfcZZa394QXOWA9BvC9l6yQ |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1109_TEVC_2020_3046569 crossref_primary_10_1109_MCI_2025_3540742 crossref_primary_10_1109_TCYB_2022_3181461 crossref_primary_10_1109_TEVC_2020_3002229 crossref_primary_10_1109_TEVC_2019_2932624 crossref_primary_10_1007_s40747_022_00919_y crossref_primary_10_1016_j_heliyon_2022_e10638 crossref_primary_10_1016_j_swevo_2019_07_002 crossref_primary_10_3390_en15030678 crossref_primary_10_1016_j_inffus_2022_11_030 crossref_primary_10_1016_j_cor_2020_105003 crossref_primary_10_1016_j_measurement_2019_04_039 crossref_primary_10_1109_TEVC_2022_3169490 crossref_primary_10_1016_j_eswa_2025_129358 crossref_primary_10_1016_j_asoc_2022_109018 crossref_primary_10_1109_TWC_2023_3321648 crossref_primary_10_1109_TEVC_2018_2881392 |
| Cites_doi | 10.1007/s10710-013-9210-0 10.1007/3-540-36599-0_7 10.1145/2576768.2598291 10.1109/TEVC.2003.819263 10.1007/978-1-4684-2001-2_9 10.1007/s10710-012-9172-7 10.1007/0-387-23254-0_17 10.1007/978-3-319-20883-1_22 10.1007/978-1-4419-1626-6_5 10.1109/TEVC.2014.2321259 10.4135/9781483385662 10.1109/TEVC.2017.2687320 10.1007/978-3-642-01181-8_25 10.1007/978-1-4939-0375-7_10 10.1145/2739480.2754693 10.1007/978-3-662-44303-3_13 10.1109/4235.996017 10.2166/hydro.1999.0010 10.1007/978-3-642-32937-1_3 10.1037/0003-066X.34.7.571 10.1007/s10710-015-9252-6 10.1007/s10710-014-9239-8 10.1007/978-3-319-30668-1_16 10.1007/978-3-319-13563-2_42 10.1007/s10710-014-9220-6 10.1080/01621459.1959.10501506 10.1080/0305215X.2010.548863 10.1007/978-1-4614-1770-5_13 10.1007/s10710-010-9121-2 10.1109/CEC.2001.934438 10.1007/BF01584074 10.1109/CEC.2009.4983099 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2018.2840056 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 747 |
| ExternalDocumentID | 10_1109_TEVC_2018_2840056 8364611 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-484e2f0777a81640618bb59c9c78c186342b7c7cd814f0313197b211d5c4d4f13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446341800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Sep 07 03:47:42 EDT 2025 Tue Nov 18 21:55:22 EST 2025 Sat Nov 29 03:13:48 EST 2025 Wed Aug 27 02:54:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-484e2f0777a81640618bb59c9c78c186342b7c7cd814f0313197b211d5c4d4f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1653-232X 0000-0003-0994-5505 |
| PQID | 2117174237 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2018_2840056 ieee_primary_8364611 crossref_primary_10_1109_TEVC_2018_2840056 proquest_journals_2117174237 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref37 ref15 poli (ref7) 2008 ref36 ref31 ref30 branke (ref42) 2004 ref10 keijzer (ref45) 2003 ref2 ref1 ref39 ref17 krawiec (ref14) 2014 nguyen (ref18) 2009 krawiec (ref19) 2009 krawiec (ref27) 2013 moraglio (ref22) 2012 koza (ref6) 1992 ref24 ref23 ref26 ref25 ref20 dick (ref11) 2014 ref44 ref43 žegklitz (ref33) 2017; abs 1701 3641 beadle (ref16) 2008 (ref38) 2016 ref28 wang (ref40) 2015 huynh (ref41) 2016 ref29 ref8 ref9 arnaldo (ref32) 2015 ref4 ref3 uy (ref21) 2009 ref5 kiountouzis (ref35) 1973; 22 |
| References_xml | – ident: ref12 doi: 10.1007/s10710-013-9210-0 – start-page: 103 year: 2016 ident: ref41 article-title: A semantics based symbolic regression framework for mining explicit and implicit equations from data publication-title: Proc Genet Evol Comput Conf Companion – start-page: 73 year: 2009 ident: ref21 article-title: Semantics based mutation in genetic programming: The case for real-valued symbolic regression publication-title: Proc Int Conf Soft Comput Mendel – start-page: 1129 year: 2015 ident: ref40 article-title: A multi-objective genetic programming approach to uncover explicit and implicit equations from data publication-title: Proc IEEE Congr Evol Comput – start-page: 70 year: 2003 ident: ref45 article-title: Improving symbolic regression with interval arithmetic and linear scaling publication-title: Proc Eur Conf Genet Program doi: 10.1007/3-540-36599-0_7 – volume: 22 start-page: 69 year: 1973 ident: ref35 article-title: Linear programming techniques for regression analysis publication-title: J Roy Statist Soc Ser C (Appl Statist ) – start-page: 935 year: 2014 ident: ref14 article-title: Behavioral programming: A broader and more detailed take on semantic GP publication-title: Proc Genet Evol Comput Conf – ident: ref29 doi: 10.1145/2576768.2598291 – ident: ref9 doi: 10.1109/TEVC.2003.819263 – ident: ref37 doi: 10.1007/978-1-4684-2001-2_9 – ident: ref26 doi: 10.1007/s10710-012-9172-7 – ident: ref4 doi: 10.1007/0-387-23254-0_17 – ident: ref30 doi: 10.1007/978-3-319-20883-1_22 – ident: ref3 doi: 10.1007/978-1-4419-1626-6_5 – start-page: 722 year: 2004 ident: ref42 article-title: Finding knees in multi-objective optimization publication-title: Proc Int Conf Parallel Problem Solving From Nat – ident: ref13 doi: 10.1109/TEVC.2014.2321259 – start-page: 111 year: 2008 ident: ref16 article-title: Semantically driven crossover in genetic programming publication-title: Proc IEEE Congr Evol Comput – ident: ref1 doi: 10.4135/9781483385662 – ident: ref44 doi: 10.1109/TEVC.2017.2687320 – volume: abs 1701 3641 start-page: 1 year: 2017 ident: ref33 article-title: Symbolic regression algorithms with built-in linear regression publication-title: arXiv 1701 03641 – start-page: 292 year: 2009 ident: ref18 article-title: Semantic aware crossover for genetic programming: The case for real-valued function regression publication-title: Proc Eur Conf Genet Program doi: 10.1007/978-3-642-01181-8_25 – ident: ref8 doi: 10.1007/978-1-4939-0375-7_10 – start-page: 983 year: 2015 ident: ref32 article-title: Building predictive models via feature synthesis publication-title: Proc Genet Evol Comput Conf doi: 10.1145/2739480.2754693 – ident: ref28 doi: 10.1007/978-3-662-44303-3_13 – ident: ref34 doi: 10.1109/4235.996017 – ident: ref5 doi: 10.2166/hydro.1999.0010 – year: 2008 ident: ref7 publication-title: A Field Guide to Genetic Programming – start-page: 21 year: 2012 ident: ref22 article-title: Geometric semantic genetic programming publication-title: Parallel Problem Solving from Nature - PPSN XII doi: 10.1007/978-3-642-32937-1_3 – ident: ref2 doi: 10.1037/0003-066X.34.7.571 – ident: ref23 doi: 10.1007/s10710-015-9252-6 – start-page: 941 year: 2013 ident: ref27 article-title: Approximating geometric crossover by semantic backpropagation publication-title: Proc Genet Evol Comput Conf – year: 1992 ident: ref6 publication-title: Genetic Programming On the Programming of Computers by Means of Natural Selection – ident: ref24 doi: 10.1007/s10710-014-9239-8 – ident: ref25 doi: 10.1007/978-3-319-30668-1_16 – start-page: 491 year: 2014 ident: ref11 article-title: Bloat and generalisation in symbolic regression publication-title: Simulated Evolution and Learning doi: 10.1007/978-3-319-13563-2_42 – year: 2016 ident: ref38 publication-title: IBM ILOG CPLEX Optimization Studio – ident: ref10 doi: 10.1007/s10710-014-9220-6 – ident: ref36 doi: 10.1080/01621459.1959.10501506 – ident: ref43 doi: 10.1080/0305215X.2010.548863 – ident: ref31 doi: 10.1007/978-1-4614-1770-5_13 – ident: ref20 doi: 10.1007/s10710-010-9121-2 – ident: ref39 doi: 10.1109/CEC.2001.934438 – ident: ref15 doi: 10.1007/BF01584074 – start-page: 987 year: 2009 ident: ref19 article-title: Approximating geometric crossover in semantic space publication-title: Proc Genet Evol Comput Conf – ident: ref17 doi: 10.1109/CEC.2009.4983099 |
| SSID | ssj0014519 |
| Score | 2.3703148 |
| Snippet | Genetic programming (GP) is one of the commonly used tools for symbolic regression. In the field of GP, the use of semantics and an external library of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 733 |
| SubjectTerms | Back propagation Backpropagation Fitness Genetic algorithms Genetic programming Genetic programming (GP) Integer programming Libraries library of subexpressions Linear programming Mixed integer linear programming mixed-integer linear programming (MILP) semantic backpropagation (SB) Semantics Sociology Statistics |
| Title | Genetic Programming With Mixed-Integer Linear Programming-Based Library Search |
| URI | https://ieeexplore.ieee.org/document/8364611 https://www.proquest.com/docview/2117174237 |
| Volume | 22 |
| WOSCitedRecordID | wos000446341800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8IwFH5B4gEPoqARRbODJ-NgY93aHpVAvEg4oHJbtrZTEwWDYPz5vreVBaMx8dbDa7PtW_vea79-D-CchywSWZC4usdDl4WJclNFzBwtA5GwJMlEkheb4KORmE7luAKX5V0YY0xOPjMdauZn-XquVrRV1hVBxCK6yLvFeVTc1SpPDEgmpSDTS4wYxdSeYPqe7E4G930icYkOrsWkffnNB-VFVX6sxLl7Gdb_92B7sGvDSOeqwH0fKmbWgPq6RINjZ2wDdjb0BhtQo9CyUGZuwogUp7HpjAuK1iuaOA_Pyyfn9vnTaJf2Ch9xLMxWcTZsWrnX6Pq0Y688OAVj-QDuhoNJ_8a11RVchS5-6TLBTC_zOOeJwJwJ_bpI01AqqbhQvogC1ku54koLn2Wk8OhLnmK6qEPFNMv84BCqs_nMHIGDQZkwJpCJbyKWapli2BForRgPsEskWuCtv3esrPQ4VcB4ifMUxJMxQRQTRLGFqAUXZZe3QnfjL-MmYVIaWjha0F6DGtuZ-R7jG2AGS2Sg4997nUCNxi4Ie22oLhcrcwrb6gPxWZzlP90XMXvSRg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4haqIeRFEjirqDJ-OAsW5tj0owGIFwQOW2bG2nJAoGwfjn-95WiEZj4q2Hdr--te-99nvfAzjjAQtF6seubvDAZUGs3EQRM0dLX8QsjlMRZ8UmeK8nhkPZL8DFMhfGGJORz0yVmtlZvp6oOW2V1YQfspASeVepcpbN1lqeGZBQSk6nl-gziqE9w_TqsjZo3TeJxiWquBqT-uU3K5SVVfmxFmcG5rr4v0fbhi3rSDqXOfI7UDDjEhQXRRocO2dLsPlFcbAEG-Rc5trMu9AjzWlsOv2cpPWCXZyH0ezJ6Y4-jHZpt_ARr4XxKs6Hr73cKzR-2rFJD07OWd6Du-vWoNl2bX0FV6GRn7lMMNNI65zzWGDUhJZdJEkglVRcKE-EPmskXHGlhcdS0nj0JE8wYNSBYpqlnr8PK-PJ2ByAg26ZMMaXsWdClmiZoOPha60Y93FIKMpQX3zvSFnxcaqB8RxlQUhdRgRRRBBFFqIynC-HvObKG3913iVMlh0tHGWoLECN7Nx8i_ANMIYlOtDh76NOYb096Haizk3v9gg26D45fa8CK7Pp3BzDmnpHrKYn2Q_4CVGm1Y8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Programming+With+Mixed-Integer+Linear+Programming-Based+Library+Search&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Huynh%2C+Quang+Nhat&rft.au=Chand%2C+Shelvin&rft.au=Singh%2C+Hemant+Kumar&rft.au=Ray%2C+Tapabrata&rft.date=2018-10-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=22&rft.issue=5&rft.spage=733&rft.epage=747&rft_id=info:doi/10.1109%2FTEVC.2018.2840056&rft.externalDocID=8364611 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |