Understanding the Role of Ocean Dynamics in Midlatitude Sea Surface Temperature Variability Using a Simple Stochastic Climate Model
In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic clima...
Saved in:
| Published in: | Journal of climate Vol. 35; no. 11; pp. 3313 - 3333 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
American Meteorological Society
01.06.2022
|
| Subjects: | |
| ISSN: | 0894-8755, 1520-0442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic climate model to provide new insights into this important aspect of climate variability. The simplest configuration includes the forcing and damping of SST variability by observed surface heat fluxes only, and the more complex configuration includes forcing and damping by ocean processes, which are estimated indirectly from monthly observations. It is found that the simple model driven only by the observed surface heat fluxes generally produces midlatitude SST power spectra that are too red compared to observations. Including ocean processes in the model reduces this discrepancy by whitening the midlatitude SST spectra. In particular, ocean processes generally increase the SST variance on <2-yr time scales and decrease it on >2-yr time scales. This happens because oceanic forcing increases the midlatitude SST variance across many time scales, but oceanic damping outweighs oceanic forcing on >2-yr time scales, particularly away from the western boundary currents. The whitening of midlatitude SST variability by ocean processes also operates in NCAR’s Community Earth System Model (CESM). That is, midlatitude SST spectra are generally redder when the same atmospheric model is coupled to a slab rather than dynamically active ocean model. Overall, the results suggest that forcing and damping by ocean processes play essential roles in driving midlatitude SST variability. |
|---|---|
| AbstractList | In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic climate model to provide new insights into this important aspect of climate variability. The simplest configuration includes the forcing and damping of SST variability by observed surface heat fluxes only, and the more complex configuration includes forcing and damping by ocean processes, which are estimated indirectly from monthly observations. It is found that the simple model driven only by the observed surface heat fluxes generally produces midlatitude SST power spectra that are too red compared to observations. Including ocean processes in the model reduces this discrepancy by whitening the midlatitude SST spectra. In particular, ocean processes generally increase the SST variance on <2-yr time scales and decrease it on >2-yr time scales. This happens because oceanic forcing increases the midlatitude SST variance across many time scales, but oceanic damping outweighs oceanic forcing on >2-yr time scales, particularly away from the western boundary currents. The whitening of midlatitude SST variability by ocean processes also operates in NCAR’s Community Earth System Model (CESM). That is, midlatitude SST spectra are generally redder when the same atmospheric model is coupled to a slab rather than dynamically active ocean model. Overall, the results suggest that forcing and damping by ocean processes play essential roles in driving midlatitude SST variability. In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic climate model to provide new insights into this important aspect of climate variability. The simplest configuration includes the forcing and damping of SST variability by observed surface heat fluxes only, and the more complex configuration includes forcing and damping by ocean processes, which are estimated indirectly from monthly observations. It is found that the simple model driven only by the observed surface heat fluxes generally produces midlatitude SST power spectra that are too red compared to observations. Including ocean processes in the model reduces this discrepancy by whitening the midlatitude SST spectra. In particular, ocean processes generally increase the SST variance on <2-yr time scales and decrease it on >2-yr time scales. This happens because oceanic forcing increases the midlatitude SST variance across many time scales, but oceanic damping outweighs oceanic forcing on >2-yr time scales, particularly away from the western boundary currents. The whitening of midlatitude SST variability by ocean processes also operates in NCAR’s Community Earth System Model (CESM). That is, midlatitude SST spectra are generally redder when the same atmospheric model is coupled to a slab rather than dynamically active ocean model. Overall, the results suggest that forcing and damping by ocean processes play essential roles in driving midlatitude SST variability. |
| Author | Patrizio, Casey R. Thompson, David W. J. |
| Author_xml | – sequence: 1 givenname: Casey R. surname: Patrizio fullname: Patrizio, Casey R. – sequence: 2 givenname: David W. J. surname: Thompson fullname: Thompson, David W. J. |
| BookMark | eNp9kLFPGzEUxi0EEgG6d6lkifnos3P2XUaUAKUKQmpIV8tnP4Ojix1s35CZf7wXpWLo0Oktv9_39H0X5DTEgIR8ZXDDWCO-_5wvH6tFxVkFrK1v2AmZMMGhgrrmp2QC7ayu2kaIc3KR8waAcQkwIR_rYDHlooP14ZWWN6S_Yo80OvpsUAe62Ae99SZTH-iTt70uvgwW6Qo1XQ3JaYP0Bbc7TLoMCelvnbzufO_Lnq7zIXPk_HY3Zq5KNG86F2_ovPdbXZA-RYv9FTlzus_45e-9JOv7u5f5j2r5_PA4v11Whs-mpaobZ00HHQhnasM5oNZCdk4wgUIa6IwUDrWTprGtnNkZwlRw2UorwDBhp5fk-pi7S_F9wFzUJg4pjC8Vl41oWCOlGCl5pEyKOSd0yvgyto6hJO17xUAdBleHwdVCcaYOgys2ivCPuEtjy7T_n_LtqGxyiemT5w2vRcth-geJR5DI |
| CitedBy_id | crossref_primary_10_1038_s41558_025_02245_w crossref_primary_10_1186_s40562_023_00305_7 crossref_primary_10_1029_2021GL095172 crossref_primary_10_1038_s41612_024_00702_5 crossref_primary_10_2478_cee_2024_0088 |
| Cites_doi | 10.1029/2019GL086321 10.1175/JCLI-D-17-0159.1 10.1016/B978-0-12-811714-9.00009-7 10.1002/jgrc.20390 10.1007/s00382-002-0294-0 10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2 10.1175/1520-0442-16.9.1364 10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2 10.3402/tellusa.v30i2.10321 10.1175/2010JCLI3343.1 10.1175/JCLI3904.1 10.1038/ngeo1863 10.1007/s00382-012-1500-3 10.1029/JC086iC07p06522 10.1016/j.dynatmoce.2008.01.001 10.1029/RG023i004p00357 10.3402/tellusa.v29i4.11362 10.1175/JCLI-D-19-0295.1 10.1175/JCLI-D-18-0576.1 10.1175/BAMS-D-13-00255.1 10.1126/science.aab3980 10.1146/annurev-marine-120408-151453 10.1175/JCLI-D-16-0810.1 10.1175/JCLI-D-16-0358.1 10.1029/2018GL080474 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2 10.1175/JCLI-D-20-0476.1 10.5194/os-15-779-2019 10.1002/2016GL068694 10.1175/JCLI-D-18-0269.1 10.1038/srep17785 10.1029/1999GL011322 10.1002/2016JC012278 10.1038/302295a0 10.1175/JCLI4103.1 10.1007/s00382-002-0252-x 10.1002/2017GL072884 10.1175/1520-0485(1983)013<1131:TADMFM>2.0.CO;2 10.1175/JCLI-D-14-00579.1 10.1016/S0074-6142(01)80134-0 10.1002/2017GL074342 10.1007/s003820050158 10.1175/JCLI-D-15-0015.1 10.1175/1520-0485(1984)014<0231:MHTITP>2.0.CO;2 10.1175/JCLI-D-15-0508.1 10.1175/2007JCLI1824.1 10.1038/nature18640 10.1175/1520-0442(1996)009<2424:VIAMLO>2.0.CO;2 10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2 10.1175/JCLI-D-13-00316.1 10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2 10.1016/0198-0149(82)90099-1 10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2 10.1002/2016GL067925 10.1007/s00382-020-05573-z 10.1175/JCLI3521.1 10.1002/2016GL071337 10.1175/JCLI-D-11-00290.1 10.1175/JCLI-D-20-0167.1 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2 10.1175/BAMS-D-12-00121.1 10.1029/2018GL080716 10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2 10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2 10.1029/2018GL077378 10.1175/JCLI-D-16-0758.1 10.1175/1520-0485(1995)025<0092:ASAMOS>2.0.CO;2 10.1126/science.1132588 10.1007/s00382-002-0253-9 10.1038/nature12268 10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2 10.1175/JCLI4190.1 10.1016/0377-0265(79)90025-3 10.1002/2015RG000493 10.1175/JCLI-D-19-0283.1 10.1175/JCLI-D-13-00123.1 10.1029/2019RG000644 10.1007/s00382-017-3834-3 10.1029/2008GM000794 10.3402/tellusa.v28i6.11316 |
| ContentType | Journal Article |
| Copyright | 2022 American Meteorological Society Copyright American Meteorological Society Jun 2022 |
| Copyright_xml | – notice: 2022 American Meteorological Society – notice: Copyright American Meteorological Society Jun 2022 |
| DBID | AAYXX CITATION 7QH 7TG 7UA C1K F1W H96 KL. L.G |
| DOI | 10.1175/JCLI-D-21-0184.1 |
| DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1520-0442 |
| EndPage | 3333 |
| ExternalDocumentID | 10_1175_JCLI_D_21_0184_1 27245820 |
| GroupedDBID | -~X 29K 4.4 5GY 7X2 7XC 85S 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 AAEFR AAFWJ ABBHK ABDBF ABDNZ ABUWG ACGFO ACGOD ACIHN ACUHS AEAQA AEKFB AENEX AEUPB AEUYN AFKRA AFRAH AGFAN AIFVT ALMA_UNASSIGNED_HOLDINGS ALQLQ APEBS ARAPS ATCPS AZQEC BCU BEC BENPR BES BGLVJ BHPHI BKSAR BLC BPHCQ CCPQU CS3 D-I D1K DU5 DWQXO E3Z EAD EAP EAS EAU EBS EDH EMK EPL EST ESX F5P F8P FRP GNUQQ GUQSH H13 HCIFZ H~9 I-F IZHOT JAAYA JENOY JKQEH JLEZI JLXEF JPL JST K6- LK5 M0K M1Q M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PHGZM PHGZT PQQKQ PROAC PYCSY Q2X QF4 QM9 QN7 QO4 RWA RWE RWL RXW S0X SA0 SJFOW SWMRO TAE TN5 TR2 TUS U5U UNMZH ~02 AAYXX ABUFD AFFHD BANNL CITATION PQGLB 7QH 7TG 7UA C1K F1W H96 KL. L.G PUEGO |
| ID | FETCH-LOGICAL-c293t-47fdcb0b05fc4c220eaa56bf515e56c0bc65feaf6c7d869d9e0352686d50c15d3 |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799290500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0894-8755 |
| IngestDate | Sat Aug 23 14:59:08 EDT 2025 Sat Nov 29 04:58:18 EST 2025 Tue Nov 18 21:32:38 EST 2025 Thu Jun 19 19:57:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | http://www.ametsoc.org/PUBSReuseLicenses |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c293t-47fdcb0b05fc4c220eaa56bf515e56c0bc65feaf6c7d869d9e0352686d50c15d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2566-3647 |
| PQID | 2675717665 |
| PQPubID | 32902 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2675717665 crossref_citationtrail_10_1175_JCLI_D_21_0184_1 crossref_primary_10_1175_JCLI_D_21_0184_1 jstor_primary_27245820 |
| PublicationCentury | 2000 |
| PublicationDate | 20220601 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220601 day: 1 |
| PublicationDecade | 2020 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston |
| PublicationTitle | Journal of climate |
| PublicationYear | 2022 |
| Publisher | American Meteorological Society |
| Publisher_xml | – name: American Meteorological Society |
| References | Roberts (ref1471) 2017; 122 Patrizio (ref1411) 2021; 34 Putrasahan (ref1431) 2017; 44 Frankignoul (ref1091) 1977; 29 Alexander (ref851) 2002; 15 Bellucci (ref51) 2020; 56 Small (ref691) 2020; 33 Gelaro (ref1151) 2017; 30 Frankignoul (ref1131) 2002; 19 Bishop (ref891) 2017; 30 Buckley (ref941) 2014; 27 Zuo (ref821) 2019; 15 Alexander (ref841) 1996; 9 Ma (ref461) 2015; 5 Frankignoul (ref271) 1983; 13 Wu (ref1581) 2006; 19 Zhang (ref811) 2019; 57 Gulev (ref1161) 2013; 499 Zhang (ref791) 2013; 118 Patrizio (ref581) 2021; 34 Jin (ref1221) 1997; 54 Ma (ref471) 2016; 535 Reynolds (ref631) 2007; 20 Murphy (ref511) 2017; 44 Deser (ref1051) 2010; 2 Alexander (ref831) 2010; Vol. 189 Myers (ref1361) 2020; 47 Reynolds (ref1461) 2007; 20 Saravanan (ref651) 2019 Ma (ref1301) 2016; 535 Newman (ref1381) 2016; 29 Wills (ref1561) 2019a; 32 Cayan (ref151) 1992b; 5 Frankignoul (ref241) 1981; 86 Gulev (ref331) 2013; 499 Alexander (ref11) 1996; 9 Hall (ref351) 1982; 29A Hasselmann (ref361) 1976; 28 Bryden (ref91) 2001; Vol. 77 Alexander (ref01) 2010; Vol. 189 Siqueira (ref661) 2016; 43 O’Reilly (ref1391) 2016; 43 Bitz (ref71) 2012; 25 Qiu (ref1441) 2007; 20 Kay (ref401) 2015; 96 Small (ref1501) 2008; 45 Frankignoul (ref1081) 1985; 23 Hasselmann (ref1191) 1976; 28 Delworth (ref191) 2017; 30 Kirtman (ref421) 2012; 39 Zhang (ref1621) 2013; 118 McPhaden (ref1321) 2006; 314 Alexander (ref21) 2002; 15 Kwon (ref1271) 2007; 20 Marshall (ref1311) 2001; 14 Smirnov (ref1531) 2014; 27 Kirtman (ref1251) 2012; 39 Hausmann (ref371) 2016; 29 Park (ref571) 2005; 18 Putrasahan (ref601) 2017; 44 Kwon (ref441) 2007; 20 Zhang (ref1631) 2017; 44 Cane (ref131) 2017; 30 Cayan (ref981) 1992b; 5 Siqueira (ref1491) 2016; 43 de Coëtlogon (ref181) 2003; 16 Frenger (ref311) 2013; 6 O’Reilly (ref561) 2016; 43 Yamamoto (ref1591) 2020; 33 Deser (ref1031) 2003; 16 Barsugli (ref861) 1998; 55 Barsugli (ref31) 1998; 55 Frankignoul (ref301) 2002; 19 Buckley (ref111) 2014; 27 Buckley (ref951) 2015; 28 Philander (ref591) 1983; 302 Smirnov (ref701) 2014; 27 Zuo (ref1651) 2019; 15 Qiu (ref611) 2007; 20 Small (ref1521) 2020; 33 Wills (ref1571) 2019b; 46 Newman (ref1371) 2003; 16 Cayan (ref141) 1992a; 22 Czaja (ref1001) 2000; 27 Clement (ref161) 2015; 350 Delworth (ref1021) 2017; 30 Cayan (ref971) 1992a; 22 Frankignoul (ref261) 1977; 29 Kim (ref411) 2018; 45 Hall (ref341) 1997; 13 Yan (ref1601) 2018; 45 von Storch (ref721) 2000; 13 Myers (ref531) 2020; 47 Yan (ref771) 2018; 45 Gelaro (ref321) 2017; 30 Bishop (ref61) 2017; 30 Kleeman (ref431) 1995; 25 Newman (ref551) 2016; 29 Clement (ref991) 2015; 350 Reynolds (ref1451) 1978; 30 Reynolds (ref621) 1978; 30 Frankignoul (ref1071) 1981; 86 McPhaden (ref491) 2006; 314 Small (ref671) 2008; 45 Wu (ref751) 2006; 19 Bellomo (ref41) 2018; 50 Small (ref681) 2019; 32 Zhang (ref1641) 2019; 57 Jin (ref391) 1997; 54 Czaja (ref171) 2000; 27 Frankignoul (ref1061) 1979; 3 Frankignoul (ref1121) 1998; 11 Kim (ref1241) 2018; 45 Kleeman (ref1261) 1995; 25 Bellucci (ref881) 2020; 56 Frankignoul (ref1111) 2002; 19 Deser (ref211) 2004; 17 Wills (ref741) 2019b; 46 Roberts (ref641) 2017; 122 Buckley (ref931) 2016; 54 Hausmann (ref1201) 2016; 29 Marshall (ref481) 2001; 14 Park (ref1401) 2005; 18 Ma (ref1291) 2015; 5 Deser (ref1041) 2004; 17 Frenger (ref1141) 2013; 6 Frankignoul (ref251) 1985; 23 Mignot (ref501) 2003; 20 Kwon (ref1281) 2010; 23 Murphy (ref1351) 2021; 34 Small (ref1511) 2019; 32 Hall (ref1181) 1982; 29A Deser (ref201) 2003; 16 Buckley (ref121) 2015; 28 Talley (ref1541) 1984; 14 Kwon (ref451) 2010; 23 Hurrell (ref1211) 2013; 94 de Coëtlogon (ref1011) 2003; 16 Bellomo (ref871) 2018; 50 Saravanan (ref1481) 2019 Cane (ref961) 2017; 30 Bitz (ref901) 2012; 25 Frankignoul (ref291) 1998; 11 Hurrell (ref381) 2013; 94 Kay (ref1231) 2015; 96 Murphy (ref521) 2021; 34 Frankignoul (ref1101) 1983; 13 Buckley (ref101) 2016; 54 Mignot (ref1331) 2003; 20 Zhang (ref801) 2017; 44 Frankignoul (ref231) 1979; 3 Philander (ref1421) 1983; 302 Newman (ref541) 2003; 16 von Storch (ref1551) 2000; 13 Bryden (ref921) 2001; Vol. 77 Bjerknes (ref911) 1964; Vol. 10 Wills (ref731) 2019a; 32 Deser (ref221) 2010; 2 Yamamoto (ref761) 2020; 33 Bjerknes (ref81) 1964; Vol. 10 Frankignoul (ref281) 2002; 19 Murphy (ref1341) 2017; 44 Talley (ref711) 1984; 14 Hall (ref1171) 1997; 13 |
| References_xml | – volume: 47 start-page: e2019GL086321 year: 2020 ident: ref531 article-title: Relative contributions of atmospheric, oceanic, and coupled processes to North Pacific and North Atlantic variability publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL086321 – volume: 30 start-page: 8207 year: 2017 ident: ref891 article-title: Scale dependence of midlatitude air–sea interaction publication-title: J. Climate doi: 10.1175/JCLI-D-17-0159.1 – start-page: 183 volume-title: Sub-Seasonal to Seasonal Prediction year: 2019 ident: ref1481 article-title: Midlatitude mesoscale ocean–atmosphere interaction and its relevance to S2S prediction doi: 10.1016/B978-0-12-811714-9.00009-7 – volume: 118 start-page: 5772 year: 2013 ident: ref1621 article-title: Multidecadal North Atlantic sea surface temperature and atlantic meridional overturning circulation variability in CMIP5 historical simulations publication-title: J. Geophys. Res. Oceans doi: 10.1002/jgrc.20390 – volume: 20 start-page: 555 year: 2003 ident: ref501 article-title: On the interannual variability of surface salinity in the Atlantic publication-title: Climate Dyn. doi: 10.1007/s00382-002-0294-0 – volume: 55 start-page: 477 year: 1998 ident: ref861 article-title: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2 – volume: 16 start-page: 1364 year: 2003 ident: ref181 article-title: The persistence of winter sea surface temperature in the North Atlantic publication-title: J. Climate doi: 10.1175/1520-0442-16.9.1364 – volume: 11 start-page: 2310 year: 1998 ident: ref1121 article-title: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models publication-title: J. Climate doi: 10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2 – volume: 30 start-page: 97 year: 1978 ident: ref621 article-title: Sea surface temperature anomalies in the North Pacific Ocean publication-title: Tellus doi: 10.3402/tellusa.v30i2.10321 – volume: 23 start-page: 3249 year: 2010 ident: ref451 article-title: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review publication-title: J. Climate doi: 10.1175/2010JCLI3343.1 – volume: 19 start-page: 4914 year: 2006 ident: ref1581 article-title: Local air–sea relationship in observations and model simulations publication-title: J. Climate doi: 10.1175/JCLI3904.1 – volume: 6 start-page: 608 year: 2013 ident: ref311 article-title: Imprint of Southern Ocean eddies on winds, clouds and rainfall publication-title: Nat. Geosci. doi: 10.1038/ngeo1863 – volume: 39 start-page: 1303 year: 2012 ident: ref421 article-title: Impact of ocean model resolution on CCSM climate simulations publication-title: Climate Dyn. doi: 10.1007/s00382-012-1500-3 – volume: 86 start-page: 6522 year: 1981 ident: ref241 article-title: Low-frequency temperature fluctuations off Bermuda publication-title: J. Geophys. Res. doi: 10.1029/JC086iC07p06522 – volume: 45 start-page: 274 year: 2008 ident: ref671 article-title: Air–sea interaction over ocean fronts and eddies publication-title: Dyn. Atmos. Oceans doi: 10.1016/j.dynatmoce.2008.01.001 – volume: 23 start-page: 357 year: 1985 ident: ref251 article-title: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes publication-title: Rev. Geophys. doi: 10.1029/RG023i004p00357 – volume: 29 start-page: 289 year: 1977 ident: ref261 article-title: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability publication-title: Tellus doi: 10.3402/tellusa.v29i4.11362 – volume: 33 start-page: 577 year: 2020 ident: ref1521 article-title: What drives upper-ocean temperature variability in coupled climate models and observations? publication-title: J. Climate doi: 10.1175/JCLI-D-19-0295.1 – volume: 32 start-page: 2397 year: 2019 ident: ref681 article-title: Air–sea turbulent heat fluxes in climate models and observational analyses: What drives their variability? publication-title: J. Climate doi: 10.1175/JCLI-D-18-0576.1 – volume: 96 start-page: 1333 year: 2015 ident: ref1231 article-title: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-13-00255.1 – volume: 350 start-page: 320 year: 2015 ident: ref991 article-title: The Atlantic Multidecadal Oscillation without a role for ocean circulation publication-title: Science doi: 10.1126/science.aab3980 – volume: 350 start-page: 320 year: 2015 ident: ref161 article-title: The Atlantic Multidecadal Oscillation without a role for ocean circulation publication-title: Science doi: 10.1126/science.aab3980 – volume: 2 start-page: 115 year: 2010 ident: ref1051 article-title: Sea surface temperature variability: Patterns and mechanisms publication-title: Annu. Rev. Mar. Sci. doi: 10.1146/annurev-marine-120408-151453 – volume: 30 start-page: 7529 year: 2017 ident: ref961 article-title: Low-pass filtering, heat flux, and Atlantic multidecadal variability publication-title: J. Climate doi: 10.1175/JCLI-D-16-0810.1 – volume: 96 start-page: 1333 year: 2015 ident: ref401 article-title: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-13-00255.1 – volume: 30 start-page: 3789 year: 2017 ident: ref1021 article-title: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation publication-title: J. Climate doi: 10.1175/JCLI-D-16-0358.1 – volume: 45 start-page: 13 year: 2018 ident: ref1241 article-title: Key role of internal ocean dynamics in Atlantic multidecadal variability during the last half century publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL080474 – volume: 54 start-page: 811 year: 1997 ident: ref1221 article-title: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2 – volume: 47 start-page: e2019GL086321 year: 2020 ident: ref1361 article-title: Relative contributions of atmospheric, oceanic, and coupled processes to North Pacific and North Atlantic variability publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL086321 – volume: 34 start-page: 2567 year: 2021 ident: ref1411 article-title: Quantifying the role of ocean dynamics in ocean mixed-layer temperature variability publication-title: J. Climate doi: 10.1175/JCLI-D-20-0476.1 – volume: 15 start-page: 779 year: 2019 ident: ref821 article-title: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment publication-title: Ocean Sci. doi: 10.5194/os-15-779-2019 – volume: 43 start-page: 3964 year: 2016 ident: ref661 article-title: Atlantic near-term climate variability and the role of a resolved Gulf Stream publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL068694 – volume: 32 start-page: 251 year: 2019a ident: ref1561 article-title: Ocean–atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation publication-title: J. Climate doi: 10.1175/JCLI-D-18-0269.1 – volume: 5 start-page: 17785 year: 2015 ident: ref1291 article-title: Distant influence of Kuroshio eddies on North Pacific weather patterns? publication-title: Sci. Rep. doi: 10.1038/srep17785 – volume: Vol. 10 start-page: 1 volume-title: Advances in Geophysics year: 1964 ident: ref911 article-title: Atlantic air–sea interaction – volume: 27 start-page: 1927 year: 2000 ident: ref171 article-title: On the interpretation of AGCMs response to prescribed time-varying SST anomalies publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL011322 – volume: 122 start-page: 726 year: 2017 ident: ref641 article-title: Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content publication-title: J. Geophys. Res. Oceans doi: 10.1002/2016JC012278 – volume: 27 start-page: 1927 year: 2000 ident: ref1001 article-title: On the interpretation of AGCMs response to prescribed time-varying SST anomalies publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL011322 – volume: 302 start-page: 295 year: 1983 ident: ref591 article-title: El Niño Southern Oscillation phenomena publication-title: Nature doi: 10.1038/302295a0 – volume: 20 start-page: 2416 year: 2007 ident: ref441 article-title: North Pacific decadal variability in the Community Climate System Model version 2 publication-title: J. Climate doi: 10.1175/JCLI4103.1 – volume: 19 start-page: 633 year: 2002 ident: ref1111 article-title: The surface heat flux feedback. Part I: Estimates from observations in the Atlantic and the North Pacific publication-title: Climate Dyn. doi: 10.1007/s00382-002-0252-x – volume: 44 start-page: 6352 year: 2017 ident: ref601 article-title: Importance of ocean mesoscale variability for air–sea interactions in the Gulf of Mexico publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL072884 – volume: 13 start-page: 1131 year: 1983 ident: ref271 article-title: Testing a dynamical model for mid-latitude sea surface temperature anomalies publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1983)013<1131:TADMFM>2.0.CO;2 – volume: 55 start-page: 477 year: 1998 ident: ref31 article-title: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2 – volume: 28 start-page: 3943 year: 2015 ident: ref951 article-title: Determining the origins of advective heat transport convergence variability in the North Atlantic publication-title: J. Climate doi: 10.1175/JCLI-D-14-00579.1 – volume: Vol. 77 start-page: 455 volume-title: Ocean Circulation and Climate: Observing and Modelling the Global Ocean year: 2001 ident: ref921 article-title: Ocean heat transport doi: 10.1016/S0074-6142(01)80134-0 – volume: 32 start-page: 251 year: 2019a ident: ref731 article-title: Ocean–atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation publication-title: J. Climate doi: 10.1175/JCLI-D-18-0269.1 – volume: 44 start-page: 7865 year: 2017 ident: ref801 article-title: On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074342 – volume: 23 start-page: 357 year: 1985 ident: ref1081 article-title: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes publication-title: Rev. Geophys. doi: 10.1029/RG023i004p00357 – volume: 13 start-page: 167 year: 1997 ident: ref341 article-title: Can local linear stochastic theory explain sea surface temperature and salinity variability? publication-title: Climate Dyn. doi: 10.1007/s003820050158 – volume: 29 start-page: 439 year: 2016 ident: ref371 article-title: Estimates of air–sea feedbacks on sea surface temperature anomalies in the Southern Ocean publication-title: J. Climate doi: 10.1175/JCLI-D-15-0015.1 – volume: 14 start-page: 231 year: 1984 ident: ref711 article-title: Meridional heat transport in the Pacific Ocean publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1984)014<0231:MHTITP>2.0.CO;2 – volume: 29 start-page: 4399 year: 2016 ident: ref1381 article-title: The Pacific decadal oscillation, revisited publication-title: J. Climate doi: 10.1175/JCLI-D-15-0508.1 – volume: 20 start-page: 5473 year: 2007 ident: ref631 article-title: Daily high-resolution-blended analyses for sea surface temperature publication-title: J. Climate doi: 10.1175/2007JCLI1824.1 – volume: 33 start-page: 577 year: 2020 ident: ref691 article-title: What drives upper-ocean temperature variability in coupled climate models and observations? publication-title: J. Climate doi: 10.1175/JCLI-D-19-0295.1 – volume: 535 start-page: 533 year: 2016 ident: ref471 article-title: Western boundary currents regulated by interaction between ocean eddies and the atmosphere publication-title: Nature doi: 10.1038/nature18640 – volume: 29 start-page: 4399 year: 2016 ident: ref551 article-title: The Pacific decadal oscillation, revisited publication-title: J. Climate doi: 10.1175/JCLI-D-15-0508.1 – volume: 9 start-page: 2424 year: 1996 ident: ref11 article-title: Variability in a mixed layer ocean model driven by stochastic atmospheric forcing publication-title: J. Climate doi: 10.1175/1520-0442(1996)009<2424:VIAMLO>2.0.CO;2 – volume: 22 start-page: 859 year: 1992a ident: ref971 article-title: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2 – volume: 27 start-page: 4996 year: 2014 ident: ref111 article-title: Low-frequency SST and upper-ocean heat content variability in the North Atlantic publication-title: J. Climate doi: 10.1175/JCLI-D-13-00316.1 – volume: 23 start-page: 3249 year: 2010 ident: ref1281 article-title: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review publication-title: J. Climate doi: 10.1175/2010JCLI3343.1 – volume: 13 start-page: 3361 year: 2000 ident: ref721 article-title: Signatures of air–sea interactions in a coupled atmosphere–ocean GCM publication-title: J. Climate doi: 10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2 – volume: 29A start-page: 339 year: 1982 ident: ref1181 article-title: Direct estimates and mechanisms of ocean heat transport publication-title: Deep-Sea Res. doi: 10.1016/0198-0149(82)90099-1 – volume: 17 start-page: 3109 year: 2004 ident: ref211 article-title: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900 publication-title: J. Climate doi: 10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2 – volume: 13 start-page: 3361 year: 2000 ident: ref1551 article-title: Signatures of air–sea interactions in a coupled atmosphere–ocean GCM publication-title: J. Climate doi: 10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2 – volume: 43 start-page: 2810 year: 2016 ident: ref561 article-title: The signature of low-frequency oceanic forcing in the Atlantic multidecadal oscillation publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL067925 – volume: 56 start-page: 2093 year: 2020 ident: ref51 article-title: Air–sea interaction over the Gulf Stream in an ensemble of HighResMIP present climate simulations publication-title: Climate Dyn. doi: 10.1007/s00382-020-05573-z – volume: 18 start-page: 4582 year: 2005 ident: ref1401 article-title: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans publication-title: J. Climate doi: 10.1175/JCLI3521.1 – volume: 44 start-page: 2472 year: 2017 ident: ref1341 article-title: The role of historical forcings in simulating the observed Atlantic multidecadal oscillation publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL071337 – volume: 25 start-page: 3053 year: 2012 ident: ref71 article-title: Climate sensitivity of the Community Climate System Model, version 4 publication-title: J. Climate doi: 10.1175/JCLI-D-11-00290.1 – volume: 34 start-page: 4835 year: 2021 ident: ref1351 article-title: Investigating the roles of external forcing and ocean circulation on the Atlantic multidecadal SST variability in a large ensemble climate model hierarchy publication-title: J. Climate doi: 10.1175/JCLI-D-20-0167.1 – volume: 17 start-page: 3109 year: 2004 ident: ref1041 article-title: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900 publication-title: J. Climate doi: 10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2 – volume: 6 start-page: 608 year: 2013 ident: ref1141 article-title: Imprint of Southern Ocean eddies on winds, clouds and rainfall publication-title: Nat. Geosci. doi: 10.1038/ngeo1863 – volume: 15 start-page: 2205 year: 2002 ident: ref851 article-title: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans publication-title: J. Climate doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 – volume: 16 start-page: 3853 year: 2003 ident: ref1371 article-title: ENSO-forced variability of the Pacific decadal oscillation publication-title: J. Climate doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2 – volume: 94 start-page: 1339 year: 2013 ident: ref381 article-title: The Community Earth System Model: A framework for collaborative research publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-12-00121.1 – volume: 19 start-page: 633 year: 2002 ident: ref281 article-title: The surface heat flux feedback. Part I: Estimates from observations in the Atlantic and the North Pacific publication-title: Climate Dyn. doi: 10.1007/s00382-002-0252-x – volume: 46 start-page: 1690 year: 2019b ident: ref741 article-title: Ocean circulation signatures of North Pacific decadal variability publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL080716 – volume: 45 start-page: 274 year: 2008 ident: ref1501 article-title: Air–sea interaction over ocean fronts and eddies publication-title: Dyn. Atmos. Oceans doi: 10.1016/j.dynatmoce.2008.01.001 – volume: 14 start-page: 1399 year: 2001 ident: ref481 article-title: A study of the interaction of the North Atlantic Oscillation with ocean circulation publication-title: J. Climate doi: 10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2 – volume: 29 start-page: 289 year: 1977 ident: ref1091 article-title: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability publication-title: Tellus doi: 10.3402/tellusa.v29i4.11362 – volume: 19 start-page: 4914 year: 2006 ident: ref751 article-title: Local air–sea relationship in observations and model simulations publication-title: J. Climate doi: 10.1175/JCLI3904.1 – volume: 16 start-page: 57 year: 2003 ident: ref1031 article-title: Understanding the persistence of sea surface temperature anomalies in midlatitudes publication-title: J. Climate doi: 10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2 – volume: 20 start-page: 2416 year: 2007 ident: ref1271 article-title: North Pacific decadal variability in the Community Climate System Model version 2 publication-title: J. Climate doi: 10.1175/JCLI4103.1 – volume: 30 start-page: 8207 year: 2017 ident: ref61 article-title: Scale dependence of midlatitude air–sea interaction publication-title: J. Climate doi: 10.1175/JCLI-D-17-0159.1 – volume: 45 start-page: 4319 year: 2018 ident: ref771 article-title: Underestimated AMOC variability and implications for AMV and predictability in CMIP models publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL077378 – volume: 5 start-page: 17785 year: 2015 ident: ref461 article-title: Distant influence of Kuroshio eddies on North Pacific weather patterns? publication-title: Sci. Rep. doi: 10.1038/srep17785 – volume: 27 start-page: 4996 year: 2014 ident: ref941 article-title: Low-frequency SST and upper-ocean heat content variability in the North Atlantic publication-title: J. Climate doi: 10.1175/JCLI-D-13-00316.1 – volume: 16 start-page: 57 year: 2003 ident: ref201 article-title: Understanding the persistence of sea surface temperature anomalies in midlatitudes publication-title: J. Climate doi: 10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2 – volume: 30 start-page: 5419 year: 2017 ident: ref321 article-title: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) publication-title: J. Climate doi: 10.1175/JCLI-D-16-0758.1 – volume: 25 start-page: 92 year: 1995 ident: ref431 article-title: A simple atmospheric model of surface heat flux for use in ocean modeling studies publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1995)025<0092:ASAMOS>2.0.CO;2 – volume: 16 start-page: 1364 year: 2003 ident: ref1011 article-title: The persistence of winter sea surface temperature in the North Atlantic publication-title: J. Climate doi: 10.1175/1520-0442-16.9.1364 – volume: 314 start-page: 1740 year: 2006 ident: ref491 article-title: ENSO as an integrating concept in Earth science publication-title: Science doi: 10.1126/science.1132588 – volume: 94 start-page: 1339 year: 2013 ident: ref1211 article-title: The Community Earth System Model: A framework for collaborative research publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-12-00121.1 – volume: 45 start-page: 4319 year: 2018 ident: ref1601 article-title: Underestimated AMOC variability and implications for AMV and predictability in CMIP models publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL077378 – volume: 45 start-page: 13 year: 2018 ident: ref411 article-title: Key role of internal ocean dynamics in Atlantic multidecadal variability during the last half century publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL080474 – volume: 19 start-page: 649 year: 2002 ident: ref301 article-title: The surface heat flux feedback. Part II: Direct and indirect estimates in the ECHAM4/OPA8 coupled GCM publication-title: Climate Dyn. doi: 10.1007/s00382-002-0253-9 – volume: 34 start-page: 2567 year: 2021 ident: ref581 article-title: Quantifying the role of ocean dynamics in ocean mixed-layer temperature variability publication-title: J. Climate doi: 10.1175/JCLI-D-20-0476.1 – volume: 34 start-page: 4835 year: 2021 ident: ref521 article-title: Investigating the roles of external forcing and ocean circulation on the Atlantic multidecadal SST variability in a large ensemble climate model hierarchy publication-title: J. Climate doi: 10.1175/JCLI-D-20-0167.1 – volume: 19 start-page: 649 year: 2002 ident: ref1131 article-title: The surface heat flux feedback. Part II: Direct and indirect estimates in the ECHAM4/OPA8 coupled GCM publication-title: Climate Dyn. doi: 10.1007/s00382-002-0253-9 – volume: 29 start-page: 439 year: 2016 ident: ref1201 article-title: Estimates of air–sea feedbacks on sea surface temperature anomalies in the Southern Ocean publication-title: J. Climate doi: 10.1175/JCLI-D-15-0015.1 – volume: 13 start-page: 1131 year: 1983 ident: ref1101 article-title: Testing a dynamical model for mid-latitude sea surface temperature anomalies publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1983)013<1131:TADMFM>2.0.CO;2 – volume: 499 start-page: 464 year: 2013 ident: ref1161 article-title: North Atlantic Ocean control on surface heat flux on multidecadal timescales publication-title: Nature doi: 10.1038/nature12268 – volume: 30 start-page: 7529 year: 2017 ident: ref131 article-title: Low-pass filtering, heat flux, and Atlantic multidecadal variability publication-title: J. Climate doi: 10.1175/JCLI-D-16-0810.1 – volume: 5 start-page: 354 year: 1992b ident: ref151 article-title: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation publication-title: J. Climate doi: 10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2 – volume: 30 start-page: 3789 year: 2017 ident: ref191 article-title: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation publication-title: J. Climate doi: 10.1175/JCLI-D-16-0358.1 – volume: 2 start-page: 115 year: 2010 ident: ref221 article-title: Sea surface temperature variability: Patterns and mechanisms publication-title: Annu. Rev. Mar. Sci. doi: 10.1146/annurev-marine-120408-151453 – volume: 32 start-page: 2397 year: 2019 ident: ref1511 article-title: Air–sea turbulent heat fluxes in climate models and observational analyses: What drives their variability? publication-title: J. Climate doi: 10.1175/JCLI-D-18-0576.1 – volume: 20 start-page: 3602 year: 2007 ident: ref611 article-title: Coupled decadal variability in the North Pacific: An observationally constrained idealized model publication-title: J. Climate doi: 10.1175/JCLI4190.1 – volume: 18 start-page: 4582 year: 2005 ident: ref571 article-title: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans publication-title: J. Climate doi: 10.1175/JCLI3521.1 – volume: 16 start-page: 3853 year: 2003 ident: ref541 article-title: ENSO-forced variability of the Pacific decadal oscillation publication-title: J. Climate doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2 – volume: 25 start-page: 3053 year: 2012 ident: ref901 article-title: Climate sensitivity of the Community Climate System Model, version 4 publication-title: J. Climate doi: 10.1175/JCLI-D-11-00290.1 – volume: 3 start-page: 465 year: 1979 ident: ref231 article-title: Stochastic forcing models of climate variability publication-title: Dyn. Atmos. Oceans doi: 10.1016/0377-0265(79)90025-3 – volume: 3 start-page: 465 year: 1979 ident: ref1061 article-title: Stochastic forcing models of climate variability publication-title: Dyn. Atmos. Oceans doi: 10.1016/0377-0265(79)90025-3 – volume: 29A start-page: 339 year: 1982 ident: ref351 article-title: Direct estimates and mechanisms of ocean heat transport publication-title: Deep-Sea Res. doi: 10.1016/0198-0149(82)90099-1 – volume: 46 start-page: 1690 year: 2019b ident: ref1571 article-title: Ocean circulation signatures of North Pacific decadal variability publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL080716 – volume: 314 start-page: 1740 year: 2006 ident: ref1321 article-title: ENSO as an integrating concept in Earth science publication-title: Science doi: 10.1126/science.1132588 – volume: 43 start-page: 3964 year: 2016 ident: ref1491 article-title: Atlantic near-term climate variability and the role of a resolved Gulf Stream publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL068694 – volume: 54 start-page: 811 year: 1997 ident: ref391 article-title: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2 – volume: 9 start-page: 2424 year: 1996 ident: ref841 article-title: Variability in a mixed layer ocean model driven by stochastic atmospheric forcing publication-title: J. Climate doi: 10.1175/1520-0442(1996)009<2424:VIAMLO>2.0.CO;2 – volume: 14 start-page: 231 year: 1984 ident: ref1541 article-title: Meridional heat transport in the Pacific Ocean publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1984)014<0231:MHTITP>2.0.CO;2 – volume: 44 start-page: 6352 year: 2017 ident: ref1431 article-title: Importance of ocean mesoscale variability for air–sea interactions in the Gulf of Mexico publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL072884 – volume: 86 start-page: 6522 year: 1981 ident: ref1071 article-title: Low-frequency temperature fluctuations off Bermuda publication-title: J. Geophys. Res. doi: 10.1029/JC086iC07p06522 – volume: 54 start-page: 5 year: 2016 ident: ref931 article-title: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review publication-title: Rev. Geophys. doi: 10.1002/2015RG000493 – volume: 122 start-page: 726 year: 2017 ident: ref1471 article-title: Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content publication-title: J. Geophys. Res. Oceans doi: 10.1002/2016JC012278 – volume: 33 start-page: 3511 year: 2020 ident: ref1591 article-title: On the emergence of the Atlantic multidecadal SST signal: A key role of the mixed layer depth variability driven by North Atlantic Oscillation publication-title: J. Climate doi: 10.1175/JCLI-D-19-0283.1 – volume: 28 start-page: 3943 year: 2015 ident: ref121 article-title: Determining the origins of advective heat transport convergence variability in the North Atlantic publication-title: J. Climate doi: 10.1175/JCLI-D-14-00579.1 – volume: 499 start-page: 464 year: 2013 ident: ref331 article-title: North Atlantic Ocean control on surface heat flux on multidecadal timescales publication-title: Nature doi: 10.1038/nature12268 – volume: 44 start-page: 2472 year: 2017 ident: ref511 article-title: The role of historical forcings in simulating the observed Atlantic multidecadal oscillation publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL071337 – volume: 56 start-page: 2093 year: 2020 ident: ref881 article-title: Air–sea interaction over the Gulf Stream in an ensemble of HighResMIP present climate simulations publication-title: Climate Dyn. doi: 10.1007/s00382-020-05573-z – volume: 27 start-page: 592 year: 2014 ident: ref1531 article-title: Investigating the role of ocean–atmosphere coupling in the North Pacific Ocean publication-title: J. Climate doi: 10.1175/JCLI-D-13-00123.1 – volume: 57 start-page: 316 year: 2019 ident: ref1641 article-title: A review of the role of the Atlantic Meridional Overturning Circulation in Atlantic multidecadal variability and associated climate impacts publication-title: Rev. Geophys. doi: 10.1029/2019RG000644 – volume: 11 start-page: 2310 year: 1998 ident: ref291 article-title: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models publication-title: J. Climate doi: 10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2 – volume: 50 start-page: 3687 year: 2018 ident: ref41 article-title: Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble publication-title: Climate Dyn. doi: 10.1007/s00382-017-3834-3 – volume: 22 start-page: 859 year: 1992a ident: ref141 article-title: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2 – volume: Vol. 77 start-page: 455 volume-title: Ocean Circulation and Climate: Observing and Modelling the Global Ocean year: 2001 ident: ref91 article-title: Ocean heat transport doi: 10.1016/S0074-6142(01)80134-0 – volume: 43 start-page: 2810 year: 2016 ident: ref1391 article-title: The signature of low-frequency oceanic forcing in the Atlantic multidecadal oscillation publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL067925 – volume: 25 start-page: 92 year: 1995 ident: ref1261 article-title: A simple atmospheric model of surface heat flux for use in ocean modeling studies publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1995)025<0092:ASAMOS>2.0.CO;2 – volume: 27 start-page: 592 year: 2014 ident: ref701 article-title: Investigating the role of ocean–atmosphere coupling in the North Pacific Ocean publication-title: J. Climate doi: 10.1175/JCLI-D-13-00123.1 – volume: 15 start-page: 2205 year: 2002 ident: ref21 article-title: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans publication-title: J. Climate doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 – volume: Vol. 189 start-page: 123 volume-title: Climate Dynamics: Why Does Climate Vary? Geophys. Monogr. year: 2010 ident: ref831 article-title: Extratropical air–sea interaction, sea surface temperature variability, and the Pacific decadal oscillation doi: 10.1029/2008GM000794 – volume: 30 start-page: 97 year: 1978 ident: ref1451 article-title: Sea surface temperature anomalies in the North Pacific Ocean publication-title: Tellus doi: 10.3402/tellusa.v30i2.10321 – volume: 39 start-page: 1303 year: 2012 ident: ref1251 article-title: Impact of ocean model resolution on CCSM climate simulations publication-title: Climate Dyn. doi: 10.1007/s00382-012-1500-3 – volume: Vol. 189 start-page: 123 volume-title: Climate Dynamics: Why Does Climate Vary? Geophys. Monogr. year: 2010 ident: ref01 article-title: Extratropical air–sea interaction, sea surface temperature variability, and the Pacific decadal oscillation doi: 10.1029/2008GM000794 – volume: 33 start-page: 3511 year: 2020 ident: ref761 article-title: On the emergence of the Atlantic multidecadal SST signal: A key role of the mixed layer depth variability driven by North Atlantic Oscillation publication-title: J. Climate doi: 10.1175/JCLI-D-19-0283.1 – volume: 30 start-page: 5419 year: 2017 ident: ref1151 article-title: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) publication-title: J. Climate doi: 10.1175/JCLI-D-16-0758.1 – volume: 28 start-page: 473 year: 1976 ident: ref1191 article-title: Stochastic climate models part I. Theory publication-title: Tellus doi: 10.3402/tellusa.v28i6.11316 – volume: 28 start-page: 473 year: 1976 ident: ref361 article-title: Stochastic climate models part I. Theory publication-title: Tellus doi: 10.3402/tellusa.v28i6.11316 – volume: 535 start-page: 533 year: 2016 ident: ref1301 article-title: Western boundary currents regulated by interaction between ocean eddies and the atmosphere publication-title: Nature doi: 10.1038/nature18640 – volume: 44 start-page: 7865 year: 2017 ident: ref1631 article-title: On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074342 – volume: 20 start-page: 5473 year: 2007 ident: ref1461 article-title: Daily high-resolution-blended analyses for sea surface temperature publication-title: J. Climate doi: 10.1175/2007JCLI1824.1 – volume: 14 start-page: 1399 year: 2001 ident: ref1311 article-title: A study of the interaction of the North Atlantic Oscillation with ocean circulation publication-title: J. Climate doi: 10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2 – start-page: 183 volume-title: Sub-Seasonal to Seasonal Prediction year: 2019 ident: ref651 article-title: Midlatitude mesoscale ocean–atmosphere interaction and its relevance to S2S prediction doi: 10.1016/B978-0-12-811714-9.00009-7 – volume: 54 start-page: 5 year: 2016 ident: ref101 article-title: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review publication-title: Rev. Geophys. doi: 10.1002/2015RG000493 – volume: 5 start-page: 354 year: 1992b ident: ref981 article-title: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation publication-title: J. Climate doi: 10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2 – volume: 118 start-page: 5772 year: 2013 ident: ref791 article-title: Multidecadal North Atlantic sea surface temperature and atlantic meridional overturning circulation variability in CMIP5 historical simulations publication-title: J. Geophys. Res. Oceans doi: 10.1002/jgrc.20390 – volume: Vol. 10 start-page: 1 volume-title: Advances in Geophysics year: 1964 ident: ref81 article-title: Atlantic air–sea interaction – volume: 50 start-page: 3687 year: 2018 ident: ref871 article-title: Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble publication-title: Climate Dyn. doi: 10.1007/s00382-017-3834-3 – volume: 57 start-page: 316 year: 2019 ident: ref811 article-title: A review of the role of the Atlantic Meridional Overturning Circulation in Atlantic multidecadal variability and associated climate impacts publication-title: Rev. Geophys. doi: 10.1029/2019RG000644 – volume: 302 start-page: 295 year: 1983 ident: ref1421 article-title: El Niño Southern Oscillation phenomena publication-title: Nature doi: 10.1038/302295a0 – volume: 15 start-page: 779 year: 2019 ident: ref1651 article-title: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment publication-title: Ocean Sci. doi: 10.5194/os-15-779-2019 – volume: 20 start-page: 555 year: 2003 ident: ref1331 article-title: On the interannual variability of surface salinity in the Atlantic publication-title: Climate Dyn. doi: 10.1007/s00382-002-0294-0 – volume: 20 start-page: 3602 year: 2007 ident: ref1441 article-title: Coupled decadal variability in the North Pacific: An observationally constrained idealized model publication-title: J. Climate doi: 10.1175/JCLI4190.1 – volume: 13 start-page: 167 year: 1997 ident: ref1171 article-title: Can local linear stochastic theory explain sea surface temperature and salinity variability? publication-title: Climate Dyn. doi: 10.1007/s003820050158 |
| SSID | ssj0012600 |
| Score | 2.481175 |
| Snippet | In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales,... |
| SourceID | proquest crossref jstor |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3313 |
| SubjectTerms | Active damping Atmospheric models Boundary currents Climate Climate models Climate variability Configurations Damping Dynamics Energy spectra Heat flux Heat transfer Modelling Ocean currents Ocean dynamics Ocean models Oceans Power spectra Sea surface Sea surface temperature Sea surface temperature variability Spectra Surface temperature Temperature variability Time Variability Western boundary currents |
| Title | Understanding the Role of Ocean Dynamics in Midlatitude Sea Surface Temperature Variability Using a Simple Stochastic Climate Model |
| URI | https://www.jstor.org/stable/27245820 https://www.proquest.com/docview/2675717665 |
| Volume | 35 |
| WOSCitedRecordID | wos000799290500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1520-0442 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: P5Z dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1520-0442 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: M0K dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1520-0442 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: PCBAR dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1520-0442 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: PATMY dateStart: 20050101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Military Database customDbUrl: eissn: 1520-0442 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: M1Q dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/military providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1520-0442 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: BENPR dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1520-0442 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: M2O dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1520-0442 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: M2P dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6lLQcuiK0iUKI5oEoocuttvBxL0qqlaRpKChUXy55FtRSckKZVw5X_wu_kzeIlVFRw4DJKnMnm7_Pzm3nfew-hN2HqpUAj2woDHlh-RGIrzWxiRQETlEQsZFx1LRmEw2F0cRGPWq2fZS7MzSQsiuj2Np79V6jhGIAtU2f_Ae7qQ-EAPAbQYQTYYfwr4M9X0lWkX3lmFISnVG6793UPeqWDPcmZSmW5ZhysRgpmZC5SuNLHHLxpXW25-wlW07qY97KrBQYwL_-qRYhTepnKSs_d3iQH35er3mqTP3i8VM-po1aLef4913u1cDNd1uLFWqZiVPfdzyZ-ZTYoYG1bCakaOQEq8rTg03ll0o0qtWnvYh-Ms67au8ONPXal-tRfMdi6vklJTKdhfj1PJ7bevS-EsoTG-97gyOpbrtxAifwdp74HlnH_w72Pyah_kAyOhsfbs2-W7E4mo_imVcsa2nBDEkvp4Ih8qaJVssi_Wq2YP1CFw8nu71-54v5oBewdL0C5NuPH6JFBCO9pLj1BLV48Re36RC7xNtb4qmfP0I8VjmHgGJYcw1OBFcdwyTGcF7jBMQwcw4ZjuMEx3OAYVhzDME9xDNccM7-BY8Wx5-j8YH_cO7RMNw-Lgku5sPxQMJrZYAgE9anr2jxNSZAJcKg5Caid0YAInoqAhiwKYhZzWao3AKNBbOoQ5m2i9WJa8BcIe6nN5DpeiCzyBRNRxLyMp16WgU_m26KNdsuTnFBT6l52XJkkaskbkkTCkvQT10kkLInTRm-rd8x0mZd75m4q3KqJbujK6LPdRlslkIkxCFeJCyvyUFZhJS_vf_kVelhfPVtofTG_5q_RA3qzyK_mHbTxbn84OuugtRP7WI7OBzm6p2ocdRQhfwHVaLkC |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Role+of+Ocean+Dynamics+in+Midlatitude+Sea+Surface+Temperature+Variability+Using+a+Simple+Stochastic+Climate+Model&rft.jtitle=Journal+of+climate&rft.au=Patrizio%2C+Casey+R&rft.au=Thompson%2C+David+W+J&rft.date=2022-06-01&rft.pub=American+Meteorological+Society&rft.issn=0894-8755&rft.eissn=1520-0442&rft.volume=35&rft.issue=11&rft.spage=3313&rft_id=info:doi/10.1175%2FJCLI-D-21-0184.1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-8755&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-8755&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-8755&client=summon |