Intelligent Condition-Based Monitoring of Rotary Machines With Few Samples
Recently, intelligent condition based monitoring systems build on deep learning methods have gained popularity. The success of these methods relies upon the large labeled training datasets, which are crucial to collect in industries. Therefore, building an effective fault diagnosis system becomes ch...
Uložené v:
| Vydané v: | IEEE sensors journal Ročník 20; číslo 23; s. 14337 - 14346 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recently, intelligent condition based monitoring systems build on deep learning methods have gained popularity. The success of these methods relies upon the large labeled training datasets, which are crucial to collect in industries. Therefore, building an effective fault diagnosis system becomes challenging. In this paper, a novel fault diagnosis framework is proposed to tackle the issue of limited samples in the training dataset. In the proposed framework, firstly, new training samples termed as synthetic samples are generated to increase the size of the dataset. After that, both original and synthetic samples are stacked, and the classifier model is trained. This study proposes a modified Conditional Variational Autoencoder (CVAE) to generate synthetic samples. In the proposed CVAE, centroid loss is added to the standard CVAE objective function. This loss directs generated samples to remain close with the centroid of their respective class, which helps in generating synthetic samples quite similar to the original samples. This paper also investigates the performance of proposed model in the presence of noise and effect of transformed data and original data. To verify the effectiveness of the proposed approach, the Air compressor and Case Western Reserve University datasets have been investigated. For the CWRU dataset with only 80 samples, accuracy of 96.39%, 99.58%, 98.33% was obtained using multilayer neural network, support vector machine, and RF classifiers respectively. Classification accuracy increased to 63.33% when modified CVAE is used instead of standard CVAE. Finally, a comparative analysis between proposed methods and other state-of-the-art methods has been presented. |
|---|---|
| AbstractList | Recently, intelligent condition based monitoring systems build on deep learning methods have gained popularity. The success of these methods relies upon the large labeled training datasets, which are crucial to collect in industries. Therefore, building an effective fault diagnosis system becomes challenging. In this paper, a novel fault diagnosis framework is proposed to tackle the issue of limited samples in the training dataset. In the proposed framework, firstly, new training samples termed as synthetic samples are generated to increase the size of the dataset. After that, both original and synthetic samples are stacked, and the classifier model is trained. This study proposes a modified Conditional Variational Autoencoder (CVAE) to generate synthetic samples. In the proposed CVAE, centroid loss is added to the standard CVAE objective function. This loss directs generated samples to remain close with the centroid of their respective class, which helps in generating synthetic samples quite similar to the original samples. This paper also investigates the performance of proposed model in the presence of noise and effect of transformed data and original data. To verify the effectiveness of the proposed approach, the Air compressor and Case Western Reserve University datasets have been investigated. For the CWRU dataset with only 80 samples, accuracy of 96.39%, 99.58%, 98.33% was obtained using multilayer neural network, support vector machine, and RF classifiers respectively. Classification accuracy increased to 63.33% when modified CVAE is used instead of standard CVAE. Finally, a comparative analysis between proposed methods and other state-of-the-art methods has been presented. |
| Author | Dixit, Sonal Verma, Nishchal K. |
| Author_xml | – sequence: 1 givenname: Sonal orcidid: 0000-0003-1497-1118 surname: Dixit fullname: Dixit, Sonal email: sonaldixit07@gmail.com organization: Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, India – sequence: 2 givenname: Nishchal K. orcidid: 0000-0001-8752-5616 surname: Verma fullname: Verma, Nishchal K. organization: Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, India |
| BookMark | eNp9kEFPwjAUxxuDiYh-AONliedhu27telQCCgFNRKO3ptteoWS0uJYYv71bIB48eHrv8P-9l__vHPWss4DQFcFDQrC4nS3HT8MEJ3hIMc4J5yeoT7IsjwlP8163UxynlH-coXPvNxgTwTPeR7OpDVDXZgU2RCNnKxOMs_G98lBFC2dNcI2xq8jp6MUF1XxHC1WujQUfvZuwjibwFS3VdleDv0CnWtUeLo9zgN4m49fRYzx_fpiO7uZxmQga4jQFpglPdK5oCiUoXuSaFEoopTNdVYwnnJeMa2CFLqpC4LSiwESWay2AETpAN4e7u8Z97sEHuXH7xrYvZZIy3DZlmLcpfkiVjfO-AS1LE1RXLjTK1JJg2YmTnTjZiZNHcS1J_pC7xmzb6v8y1wfGAMBvXhDKCRX0BwzIe-w |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_TIM_2021_3082264 crossref_primary_10_1016_j_measurement_2025_116648 crossref_primary_10_1109_TAI_2021_3110835 crossref_primary_10_1016_j_engappai_2023_106927 crossref_primary_10_3390_app12104831 crossref_primary_10_1088_2631_8695_ad1c0c crossref_primary_10_1109_TIM_2024_3427866 crossref_primary_10_1016_j_aei_2024_102673 crossref_primary_10_1016_j_knosys_2024_112443 crossref_primary_10_1016_j_engappai_2023_107063 crossref_primary_10_1016_j_measurement_2023_113062 crossref_primary_10_1007_s10489_024_05429_7 crossref_primary_10_1109_JSEN_2023_3279436 crossref_primary_10_1016_j_isatra_2025_04_017 crossref_primary_10_1088_1361_6501_ad2667 crossref_primary_10_1109_JSTARS_2020_3042760 crossref_primary_10_1109_TIE_2022_3140403 crossref_primary_10_3390_machines13040326 crossref_primary_10_1016_j_knosys_2022_109573 crossref_primary_10_1109_TIM_2021_3056644 crossref_primary_10_1016_j_engappai_2025_110312 crossref_primary_10_1016_j_future_2022_03_007 crossref_primary_10_1109_TII_2023_3240921 crossref_primary_10_1109_JSEN_2022_3222535 crossref_primary_10_1109_JSEN_2024_3415713 crossref_primary_10_1038_s41598_025_10124_9 crossref_primary_10_1109_TIM_2024_3395323 crossref_primary_10_1007_s10462_024_10820_4 crossref_primary_10_1016_j_measurement_2022_112346 crossref_primary_10_1109_TIM_2023_3271729 crossref_primary_10_1109_TIM_2024_3428618 crossref_primary_10_1016_j_ymssp_2023_110747 crossref_primary_10_1016_j_ins_2025_121996 crossref_primary_10_1109_JSEN_2021_3069452 crossref_primary_10_1109_JSEN_2023_3321725 crossref_primary_10_1088_1361_6501_ad7a97 crossref_primary_10_1109_TR_2023_3328597 crossref_primary_10_1016_j_knosys_2022_110008 crossref_primary_10_1109_JSEN_2023_3273279 crossref_primary_10_1016_j_measurement_2022_111045 crossref_primary_10_1109_TII_2021_3091143 crossref_primary_10_1016_j_rineng_2025_103991 crossref_primary_10_3390_jmse8110884 crossref_primary_10_1109_ACCESS_2021_3128669 crossref_primary_10_1016_j_measurement_2021_110460 crossref_primary_10_1007_s10845_023_02131_2 crossref_primary_10_1016_j_anucene_2024_110340 crossref_primary_10_1109_JSEN_2024_3415810 crossref_primary_10_1371_journal_pone_0319202 |
| Cites_doi | 10.1007/978-3-642-04898-2_327 10.1109/ACCESS.2018.2880770 10.21437/Interspeech.2016-1183 10.1109/ACCESS.2018.2837621 10.1038/s41467-019-13056-x 10.1016/j.asoc.2010.08.011 10.1109/ACCESS.2019.2934233 10.1111/j.0824-7935.2004.t01-1-00228.x 10.1109/ASRU.2017.8268911 10.1177/1475921718788299 10.1109/JSEN.2019.2927754 10.1109/ICPHM.2016.7542865 10.1016/j.ymssp.2018.02.016 10.1109/ACCESS.2019.2923417 10.1016/j.ymssp.2007.02.003 10.1109/SDPC.2018.8664980 10.1109/ICPHM.2015.7245017 10.1016/j.ymssp.2005.09.012 10.3390/s17030549 10.1109/TSMC.2017.2754287 10.1109/TR.2015.2459684 10.1109/TIM.2002.1017721 10.1109/ISIE.2013.6563668 10.1109/APSIPA.2016.7820786 10.1109/ICPHM.2013.6621447 10.1109/TIE.2018.2877090 10.1007/978-3-319-46478-7_51 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2020.3008177 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 14346 |
| ExternalDocumentID | 10_1109_JSEN_2020_3008177 9137139 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-44e6f172f8a34ecea7b8f1ba9aaf5fdd67277c67fe6bfbdb904d3e6958ff9e613 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589257300055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:17:09 EDT 2025 Tue Nov 18 20:45:57 EST 2025 Sat Nov 29 05:43:03 EST 2025 Wed Aug 27 06:02:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-44e6f172f8a34ecea7b8f1ba9aaf5fdd67277c67fe6bfbdb904d3e6958ff9e613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1497-1118 0000-0001-8752-5616 |
| PQID | 2460153607 |
| PQPubID | 75733 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2460153607 ieee_primary_9137139 crossref_citationtrail_10_1109_JSEN_2020_3008177 crossref_primary_10_1109_JSEN_2020_3008177 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 ref37 ref36 van der maaten (ref33) 2008; 9 (ref24) 2011 ref11 ref10 miao (ref16) 2016 xu (ref15) 2017 ref2 ref1 ref39 ref17 ref38 abadi (ref30) 2016 ref19 pu (ref18) 2016 wang (ref22) 2019 bishop (ref5) 2006 ref23 glorot (ref32) 2010 ref26 ref20 ref21 kingma (ref13) 2014 (ref25) 2015 ref28 ref27 ref29 kingma (ref31) 2014 ref8 ref7 ref9 ref4 ref3 way (ref14) 2017 ref6 ref40 |
| References_xml | – ident: ref26 doi: 10.1007/978-3-642-04898-2_327 – year: 2015 ident: ref25 publication-title: Intelligent Data Engineering and Automation (IDEA) Laboratory – start-page: 1727 year: 2016 ident: ref16 article-title: Neural variational inference for text processing publication-title: Proc Int Conf Mach Learn – ident: ref9 doi: 10.1109/ACCESS.2018.2880770 – ident: ref19 doi: 10.21437/Interspeech.2016-1183 – ident: ref10 doi: 10.1109/ACCESS.2018.2837621 – ident: ref34 doi: 10.1038/s41467-019-13056-x – ident: ref36 doi: 10.1016/j.asoc.2010.08.011 – ident: ref12 doi: 10.1109/ACCESS.2019.2934233 – start-page: 249 year: 2010 ident: ref32 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Statist – ident: ref6 doi: 10.1111/j.0824-7935.2004.t01-1-00228.x – ident: ref21 doi: 10.1109/ASRU.2017.8268911 – start-page: 3581 year: 2014 ident: ref13 article-title: Semi-supervised learning with deep generative models publication-title: Proc Adv Neural Inf Process Syst – ident: ref23 doi: 10.1177/1475921718788299 – year: 2006 ident: ref5 publication-title: Pattern Recognition and Machine Learning – ident: ref28 doi: 10.1109/JSEN.2019.2927754 – start-page: 1352 year: 2019 ident: ref22 article-title: Fault detection based on variational autoencoders for complex nonlinear processes publication-title: Proc 12th Asian Control Conf (ASCC) – ident: ref39 doi: 10.1109/ICPHM.2016.7542865 – year: 2014 ident: ref31 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref3 doi: 10.1016/j.ymssp.2018.02.016 – start-page: 3358 year: 2017 ident: ref15 article-title: Variational autoencoder for semi-supervised text classification publication-title: Proc 31st AAAI Conf Artif Intell – ident: ref11 doi: 10.1109/ACCESS.2019.2923417 – ident: ref38 doi: 10.1016/j.ymssp.2007.02.003 – ident: ref40 doi: 10.1109/SDPC.2018.8664980 – ident: ref2 doi: 10.1109/ICPHM.2015.7245017 – ident: ref1 doi: 10.1016/j.ymssp.2005.09.012 – ident: ref27 doi: 10.3390/s17030549 – ident: ref7 doi: 10.1109/TSMC.2017.2754287 – ident: ref29 doi: 10.1109/TR.2015.2459684 – year: 2016 ident: ref30 article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems publication-title: arXiv 1603 04467 – ident: ref37 doi: 10.1109/TIM.2002.1017721 – ident: ref35 doi: 10.1109/ISIE.2013.6563668 – start-page: 2352 year: 2016 ident: ref18 article-title: Variational autoencoder for deep learning of images, labels and captions publication-title: Proc Adv Neural Inf Process Syst – volume: 9 start-page: 2579 year: 2008 ident: ref33 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – year: 2011 ident: ref24 publication-title: Seeded Fault Test Data – ident: ref20 doi: 10.1109/APSIPA.2016.7820786 – year: 2017 ident: ref14 article-title: Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders publication-title: BioRxiv – ident: ref4 doi: 10.1109/ICPHM.2013.6621447 – ident: ref8 doi: 10.1109/TIE.2018.2877090 – ident: ref17 doi: 10.1007/978-3-319-46478-7_51 |
| SSID | ssj0019757 |
| Score | 2.5345283 |
| Snippet | Recently, intelligent condition based monitoring systems build on deep learning methods have gained popularity. The success of these methods relies upon the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 14337 |
| SubjectTerms | Air compressors Centroids Classifiers condition based monitoring Condition monitoring conditional variational autoencoder Datasets Fault diagnosis Intelligent sensors Machine learning Machinery condition monitoring Multilayers Neural networks Rotary machines Rotsting machines Sensor data Support vector machines synthetic data Training |
| Title | Intelligent Condition-Based Monitoring of Rotary Machines With Few Samples |
| URI | https://ieeexplore.ieee.org/document/9137139 https://www.proquest.com/docview/2460153607 |
| Volume | 20 |
| WOSCitedRecordID | wos000589257300055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6MIqgHd3HcyMGTWE3btGmOOjjooIO4zq1kRUGmMlMV_71J2imKInjrIYHyvr5-b0m-B7BniMCZioh1ccUDohIcCCNloEIdCW4sQ_vSxf0F7fezwYBdteCguQujtfaHz_She_S9fFXIV1cqO2JhbHMqNgVTlNLqrlbTMWDUq3paB8YBiemg7mCGmB31bk77NhOMbILqGJDSbxzkh6r8-BN7euku_u_FlmChDiPRcYX7MrT0cAXmv4gLrsBsPd_88WMVeueN8maJOoVrU1s8ghNLYQpVbu02ocKg66Lkow906Q9Z6jF6eCofUVe_oxvuhITHa3DXPb3tnAX1FIVAWiovA0J0amyYYjIeEy01pyIzoeCMc5MYpVwrlsqUGp0KI5RgmKhYpyzJjGHasv06TA-Lod4ApIQUNnFVInJRQWrBtNFunKjQ0rzCsWkDntg1l7XEuJt08Zz7VAOz3EGROyjyGoo27DdbXip9jb8WrzrbNwtrs7dhewJeXnvgOI-ITTWTOMV08_ddWzDnRsdX5ZRtmC5Hr3oHZuRb-TQe7fqP6xOKqszX |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLa7PHDyJ1bRNm-ao4uJjXcTn3kqeKMhWdqvivzdJa1EUwVsPGVrmy_SbyUxmALYNEThTEbEmrnhAVIIDYaQMVKgjwY1laH90cdeh3W7W67HLEdht7sJorX3xmd5zjz6Xrwr54o7K9lkY25iKjcJ4QkgUVre1mpwBo76vpzVhHJCY9uocZojZ_tn1cdfGgpENUR0HUvqNhfxYlR__Yk8w7dn_fdoczNSOJDqokJ-HEd1fgOkv7QUXYLKecP7wvghnp03vzRIdFS5RbREJDi2JKVQZthNChUFXRckH7-jCl1nqIbp_LB9QW7-ha-5aCQ-X4LZ9fHN0EtRzFAJpybwMCNGpsY6KyXhMtNScisyEgjPOTWKUcslYKlNqdCqMUIJhomKdsiQzhmnL98sw1i_6egWQElLY0FWJyPkFqYXT-rtxokJL9ArHpgX4U6-5rJuMu1kXT7kPNjDLHRS5gyKvoWjBTiPyXHXY-GvxotN9s7BWewvWP8HLaxsc5hGxwWYSp5iu_i61BZMnNxedvHPaPV-DKfeeqlBlHcbKwYvegAn5Wj4OB5t-o30AXHDQHQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Condition-Based+Monitoring+of+Rotary+Machines+With+Few+Samples&rft.jtitle=IEEE+sensors+journal&rft.au=Dixit%2C+Sonal&rft.au=Verma%2C+Nishchal+K.&rft.date=2020-12-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=20&rft.issue=23&rft.spage=14337&rft.epage=14346&rft_id=info:doi/10.1109%2FJSEN.2020.3008177&rft.externalDocID=9137139 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |