Intelligent Condition-Based Monitoring of Rotary Machines With Few Samples

Recently, intelligent condition based monitoring systems build on deep learning methods have gained popularity. The success of these methods relies upon the large labeled training datasets, which are crucial to collect in industries. Therefore, building an effective fault diagnosis system becomes ch...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 20; no. 23; pp. 14337 - 14346
Main Authors: Dixit, Sonal, Verma, Nishchal K.
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1530-437X, 1558-1748
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, intelligent condition based monitoring systems build on deep learning methods have gained popularity. The success of these methods relies upon the large labeled training datasets, which are crucial to collect in industries. Therefore, building an effective fault diagnosis system becomes challenging. In this paper, a novel fault diagnosis framework is proposed to tackle the issue of limited samples in the training dataset. In the proposed framework, firstly, new training samples termed as synthetic samples are generated to increase the size of the dataset. After that, both original and synthetic samples are stacked, and the classifier model is trained. This study proposes a modified Conditional Variational Autoencoder (CVAE) to generate synthetic samples. In the proposed CVAE, centroid loss is added to the standard CVAE objective function. This loss directs generated samples to remain close with the centroid of their respective class, which helps in generating synthetic samples quite similar to the original samples. This paper also investigates the performance of proposed model in the presence of noise and effect of transformed data and original data. To verify the effectiveness of the proposed approach, the Air compressor and Case Western Reserve University datasets have been investigated. For the CWRU dataset with only 80 samples, accuracy of 96.39%, 99.58%, 98.33% was obtained using multilayer neural network, support vector machine, and RF classifiers respectively. Classification accuracy increased to 63.33% when modified CVAE is used instead of standard CVAE. Finally, a comparative analysis between proposed methods and other state-of-the-art methods has been presented.
AbstractList Recently, intelligent condition based monitoring systems build on deep learning methods have gained popularity. The success of these methods relies upon the large labeled training datasets, which are crucial to collect in industries. Therefore, building an effective fault diagnosis system becomes challenging. In this paper, a novel fault diagnosis framework is proposed to tackle the issue of limited samples in the training dataset. In the proposed framework, firstly, new training samples termed as synthetic samples are generated to increase the size of the dataset. After that, both original and synthetic samples are stacked, and the classifier model is trained. This study proposes a modified Conditional Variational Autoencoder (CVAE) to generate synthetic samples. In the proposed CVAE, centroid loss is added to the standard CVAE objective function. This loss directs generated samples to remain close with the centroid of their respective class, which helps in generating synthetic samples quite similar to the original samples. This paper also investigates the performance of proposed model in the presence of noise and effect of transformed data and original data. To verify the effectiveness of the proposed approach, the Air compressor and Case Western Reserve University datasets have been investigated. For the CWRU dataset with only 80 samples, accuracy of 96.39%, 99.58%, 98.33% was obtained using multilayer neural network, support vector machine, and RF classifiers respectively. Classification accuracy increased to 63.33% when modified CVAE is used instead of standard CVAE. Finally, a comparative analysis between proposed methods and other state-of-the-art methods has been presented.
Author Dixit, Sonal
Verma, Nishchal K.
Author_xml – sequence: 1
  givenname: Sonal
  orcidid: 0000-0003-1497-1118
  surname: Dixit
  fullname: Dixit, Sonal
  email: sonaldixit07@gmail.com
  organization: Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
– sequence: 2
  givenname: Nishchal K.
  orcidid: 0000-0001-8752-5616
  surname: Verma
  fullname: Verma, Nishchal K.
  organization: Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
BookMark eNp9kEFPwjAUxxuDiYh-AONliedhu27telQCCgFNRKO3ptteoWS0uJYYv71bIB48eHrv8P-9l__vHPWss4DQFcFDQrC4nS3HT8MEJ3hIMc4J5yeoT7IsjwlP8163UxynlH-coXPvNxgTwTPeR7OpDVDXZgU2RCNnKxOMs_G98lBFC2dNcI2xq8jp6MUF1XxHC1WujQUfvZuwjibwFS3VdleDv0CnWtUeLo9zgN4m49fRYzx_fpiO7uZxmQga4jQFpglPdK5oCiUoXuSaFEoopTNdVYwnnJeMa2CFLqpC4LSiwESWay2AETpAN4e7u8Z97sEHuXH7xrYvZZIy3DZlmLcpfkiVjfO-AS1LE1RXLjTK1JJg2YmTnTjZiZNHcS1J_pC7xmzb6v8y1wfGAMBvXhDKCRX0BwzIe-w
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_TIM_2021_3082264
crossref_primary_10_1016_j_measurement_2025_116648
crossref_primary_10_1109_TAI_2021_3110835
crossref_primary_10_1016_j_engappai_2023_106927
crossref_primary_10_3390_app12104831
crossref_primary_10_1088_2631_8695_ad1c0c
crossref_primary_10_1109_TIM_2024_3427866
crossref_primary_10_1016_j_aei_2024_102673
crossref_primary_10_1016_j_knosys_2024_112443
crossref_primary_10_1016_j_engappai_2023_107063
crossref_primary_10_1016_j_measurement_2023_113062
crossref_primary_10_1007_s10489_024_05429_7
crossref_primary_10_1109_JSEN_2023_3279436
crossref_primary_10_1016_j_isatra_2025_04_017
crossref_primary_10_1088_1361_6501_ad2667
crossref_primary_10_1109_JSTARS_2020_3042760
crossref_primary_10_1109_TIE_2022_3140403
crossref_primary_10_3390_machines13040326
crossref_primary_10_1016_j_knosys_2022_109573
crossref_primary_10_1109_TIM_2021_3056644
crossref_primary_10_1016_j_engappai_2025_110312
crossref_primary_10_1016_j_future_2022_03_007
crossref_primary_10_1109_TII_2023_3240921
crossref_primary_10_1109_JSEN_2022_3222535
crossref_primary_10_1109_JSEN_2024_3415713
crossref_primary_10_1038_s41598_025_10124_9
crossref_primary_10_1109_TIM_2024_3395323
crossref_primary_10_1007_s10462_024_10820_4
crossref_primary_10_1016_j_measurement_2022_112346
crossref_primary_10_1109_TIM_2023_3271729
crossref_primary_10_1109_TIM_2024_3428618
crossref_primary_10_1016_j_ymssp_2023_110747
crossref_primary_10_1016_j_ins_2025_121996
crossref_primary_10_1109_JSEN_2021_3069452
crossref_primary_10_1109_JSEN_2023_3321725
crossref_primary_10_1088_1361_6501_ad7a97
crossref_primary_10_1109_TR_2023_3328597
crossref_primary_10_1016_j_knosys_2022_110008
crossref_primary_10_1109_JSEN_2023_3273279
crossref_primary_10_1016_j_measurement_2022_111045
crossref_primary_10_1109_TII_2021_3091143
crossref_primary_10_1016_j_rineng_2025_103991
crossref_primary_10_3390_jmse8110884
crossref_primary_10_1109_ACCESS_2021_3128669
crossref_primary_10_1016_j_measurement_2021_110460
crossref_primary_10_1007_s10845_023_02131_2
crossref_primary_10_1016_j_anucene_2024_110340
crossref_primary_10_1109_JSEN_2024_3415810
crossref_primary_10_1371_journal_pone_0319202
Cites_doi 10.1007/978-3-642-04898-2_327
10.1109/ACCESS.2018.2880770
10.21437/Interspeech.2016-1183
10.1109/ACCESS.2018.2837621
10.1038/s41467-019-13056-x
10.1016/j.asoc.2010.08.011
10.1109/ACCESS.2019.2934233
10.1111/j.0824-7935.2004.t01-1-00228.x
10.1109/ASRU.2017.8268911
10.1177/1475921718788299
10.1109/JSEN.2019.2927754
10.1109/ICPHM.2016.7542865
10.1016/j.ymssp.2018.02.016
10.1109/ACCESS.2019.2923417
10.1016/j.ymssp.2007.02.003
10.1109/SDPC.2018.8664980
10.1109/ICPHM.2015.7245017
10.1016/j.ymssp.2005.09.012
10.3390/s17030549
10.1109/TSMC.2017.2754287
10.1109/TR.2015.2459684
10.1109/TIM.2002.1017721
10.1109/ISIE.2013.6563668
10.1109/APSIPA.2016.7820786
10.1109/ICPHM.2013.6621447
10.1109/TIE.2018.2877090
10.1007/978-3-319-46478-7_51
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3008177
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 14346
ExternalDocumentID 10_1109_JSEN_2020_3008177
9137139
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-44e6f172f8a34ecea7b8f1ba9aaf5fdd67277c67fe6bfbdb904d3e6958ff9e613
IEDL.DBID RIE
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589257300055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:17:09 EDT 2025
Tue Nov 18 20:45:57 EST 2025
Sat Nov 29 05:43:03 EST 2025
Wed Aug 27 06:02:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-44e6f172f8a34ecea7b8f1ba9aaf5fdd67277c67fe6bfbdb904d3e6958ff9e613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1497-1118
0000-0001-8752-5616
PQID 2460153607
PQPubID 75733
PageCount 10
ParticipantIDs proquest_journals_2460153607
ieee_primary_9137139
crossref_citationtrail_10_1109_JSEN_2020_3008177
crossref_primary_10_1109_JSEN_2020_3008177
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref36
van der maaten (ref33) 2008; 9
(ref24) 2011
ref11
ref10
miao (ref16) 2016
xu (ref15) 2017
ref2
ref1
ref39
ref17
ref38
abadi (ref30) 2016
ref19
pu (ref18) 2016
wang (ref22) 2019
bishop (ref5) 2006
ref23
glorot (ref32) 2010
ref26
ref20
ref21
kingma (ref13) 2014
(ref25) 2015
ref28
ref27
ref29
kingma (ref31) 2014
ref8
ref7
ref9
ref4
ref3
way (ref14) 2017
ref6
ref40
References_xml – ident: ref26
  doi: 10.1007/978-3-642-04898-2_327
– year: 2015
  ident: ref25
  publication-title: Intelligent Data Engineering and Automation (IDEA) Laboratory
– start-page: 1727
  year: 2016
  ident: ref16
  article-title: Neural variational inference for text processing
  publication-title: Proc Int Conf Mach Learn
– ident: ref9
  doi: 10.1109/ACCESS.2018.2880770
– ident: ref19
  doi: 10.21437/Interspeech.2016-1183
– ident: ref10
  doi: 10.1109/ACCESS.2018.2837621
– ident: ref34
  doi: 10.1038/s41467-019-13056-x
– ident: ref36
  doi: 10.1016/j.asoc.2010.08.011
– ident: ref12
  doi: 10.1109/ACCESS.2019.2934233
– start-page: 249
  year: 2010
  ident: ref32
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref6
  doi: 10.1111/j.0824-7935.2004.t01-1-00228.x
– ident: ref21
  doi: 10.1109/ASRU.2017.8268911
– start-page: 3581
  year: 2014
  ident: ref13
  article-title: Semi-supervised learning with deep generative models
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref23
  doi: 10.1177/1475921718788299
– year: 2006
  ident: ref5
  publication-title: Pattern Recognition and Machine Learning
– ident: ref28
  doi: 10.1109/JSEN.2019.2927754
– start-page: 1352
  year: 2019
  ident: ref22
  article-title: Fault detection based on variational autoencoders for complex nonlinear processes
  publication-title: Proc 12th Asian Control Conf (ASCC)
– ident: ref39
  doi: 10.1109/ICPHM.2016.7542865
– year: 2014
  ident: ref31
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref3
  doi: 10.1016/j.ymssp.2018.02.016
– start-page: 3358
  year: 2017
  ident: ref15
  article-title: Variational autoencoder for semi-supervised text classification
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref11
  doi: 10.1109/ACCESS.2019.2923417
– ident: ref38
  doi: 10.1016/j.ymssp.2007.02.003
– ident: ref40
  doi: 10.1109/SDPC.2018.8664980
– ident: ref2
  doi: 10.1109/ICPHM.2015.7245017
– ident: ref1
  doi: 10.1016/j.ymssp.2005.09.012
– ident: ref27
  doi: 10.3390/s17030549
– ident: ref7
  doi: 10.1109/TSMC.2017.2754287
– ident: ref29
  doi: 10.1109/TR.2015.2459684
– year: 2016
  ident: ref30
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: arXiv 1603 04467
– ident: ref37
  doi: 10.1109/TIM.2002.1017721
– ident: ref35
  doi: 10.1109/ISIE.2013.6563668
– start-page: 2352
  year: 2016
  ident: ref18
  article-title: Variational autoencoder for deep learning of images, labels and captions
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref33
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– year: 2011
  ident: ref24
  publication-title: Seeded Fault Test Data
– ident: ref20
  doi: 10.1109/APSIPA.2016.7820786
– year: 2017
  ident: ref14
  article-title: Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders
  publication-title: BioRxiv
– ident: ref4
  doi: 10.1109/ICPHM.2013.6621447
– ident: ref8
  doi: 10.1109/TIE.2018.2877090
– ident: ref17
  doi: 10.1007/978-3-319-46478-7_51
SSID ssj0019757
Score 2.5345283
Snippet Recently, intelligent condition based monitoring systems build on deep learning methods have gained popularity. The success of these methods relies upon the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14337
SubjectTerms Air compressors
Centroids
Classifiers
condition based monitoring
Condition monitoring
conditional variational autoencoder
Datasets
Fault diagnosis
Intelligent sensors
Machine learning
Machinery condition monitoring
Multilayers
Neural networks
Rotary machines
Rotsting machines
Sensor data
Support vector machines
synthetic data
Training
Title Intelligent Condition-Based Monitoring of Rotary Machines With Few Samples
URI https://ieeexplore.ieee.org/document/9137139
https://www.proquest.com/docview/2460153607
Volume 20
WOSCitedRecordID wos000589257300055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50COqDP6bidEoefBKjjc2a5lGHQ4cO8QfuraTpBQVZZauK_71J2hVFEXxrIVdKLtcvX-_yHcCe1owpxkLKJUspt7dUhTqljOlUCNfax3jJ_EsxGMTDobyegYP6LAwi-uIzPHSXPpef5frV_So7kiy0nErOwqwQojyrVWcMpPCqnjaAA8pDMawymCyQR_3bs4FlgseWoDoEFOIbBvmmKj--xB5eesv_e7EVWKq2keSk9PsqzOCoCYtfxAWbMF_1N3_8WIP-Ra28WZBu7tLU1h_01EJYRsqwdkYkN-QmL9T4g1z5IkuckIen4pH08J3cKickPFmH-97ZXfecVl0UqLZQXlDOMTJ2m2JiFXLUqEQaG5YqqZTpmCxzqVihI2EwSk2apTLgWYiR7MTGSLRovwGNUT7CTSDSaJYJjEKGMZeKq452iT6hMmVZRxS1IJjOa6IriXHX6eI58VQjkIlzReJckVSuaMF-bfJS6mv8NXjNzX09sJr2FrSnzkuqCJwkx9xSzU4YBWLrd6ttWHDPLktT2tAoxq-4A3P6rXiajHf94voE4VTMNw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4BQ-r2wEYBrQM2P_A0zRA3Thw_AqJqu1IhYFrfIsc5q5VQM7VhU__9bCdEIBASb4nkUyKfL5-_3Pk7gCOtGVOMhZRLllFub6kKdUYZ05kQrrWP8ZL5IzEeJ5OJvFqDH81ZGET0xWd47C59Lj8v9L37VXYiWWg5lVyHdxHnXVad1mpyBlJ4XU8bwgHloZjUOUwWyJPhzcXYcsGupagOA4V4gkK-rcqzb7EHmN7Ht73aJ9iqN5LktPL8NqzhvA0fHskLtqFVdzifrnZgOGi0N0tyXrhEtfUIPbMglpMqsJ0RKQy5Lkq1WJFLX2aJS_J7Vk5JD_-RG-WkhJe78Kt3cXvep3UfBaotmJeUc4yN3aiYRIUcNSqRJYZlSiplIpPnLhkrdCwMxpnJ8kwGPA8xllFijESL93uwMS_m-BmINJrlAuOQYcKl4irSLtUnVK4s74jjDgQP85rqWmTc9bq4Sz3ZCGTqXJE6V6S1KzrwvTH5UylsvDZ4x819M7Ce9g4cPDgvrWNwmXa5JZtRGAfiy8tW36DVv70cpaPB-Oc-vHfPqQpVDmCjXNzjIWzqv-VsufjqF9p_qpDPfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Condition-Based+Monitoring+of+Rotary+Machines+With+Few+Samples&rft.jtitle=IEEE+sensors+journal&rft.au=Dixit%2C+Sonal&rft.au=Verma%2C+Nishchal+K&rft.date=2020-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=20&rft.issue=23&rft.spage=14337&rft_id=info:doi/10.1109%2FJSEN.2020.3008177&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon