Auto-AD: Autonomous Hyperspectral Anomaly Detection Network Based on Fully Convolutional Autoencoder
Hyperspectral anomaly detection is aimed at detecting observations that differ from their surroundings, and is an active area of research in hyperspectral image processing. Recently, autoencoders (AEs) have been applied in hyperspectral anomaly detection; however, the existing AE-based methods are c...
Saved in:
| Published in: | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 14 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Hyperspectral anomaly detection is aimed at detecting observations that differ from their surroundings, and is an active area of research in hyperspectral image processing. Recently, autoencoders (AEs) have been applied in hyperspectral anomaly detection; however, the existing AE-based methods are complicated and involve manual parameter setting and preprocessing and/or postprocessing procedures. In this article, an autonomous hyperspectral anomaly detection network (Auto-AD) is proposed, in which the background is reconstructed by the network and the anomalies appear as reconstruction errors. Specifically, through a fully convolutional AE with skip connections, the background can be reconstructed while the anomalies are difficult to reconstruct, since the anomalies are relatively small compared to the background and have a low probability of occurring in the image. To further suppress the anomaly reconstruction, an adaptive-weighted loss function is designed, where the weights of potential anomalous pixels with large reconstruction errors are reduced during training. As a result, the anomalies have a higher contrast with the background in the map of reconstruction errors. The experimental results obtained on a public airborne data set and two unmanned aerial vehicle-borne hyperspectral data sets confirm the effectiveness of the proposed Auto-AD method. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0196-2892 1558-0644 |
| DOI: | 10.1109/TGRS.2021.3057721 |