mmFall: Fall Detection Using 4-D mmWave Radar and a Hybrid Variational RNN AutoEncoder

Elderly fall prevention and detection becomes extremely crucial with the fast aging population globally. In this article, we propose mmFall , a novel fall detection system, which comprises 1) the emerging millimeter-wave (mmWave) radar sensor to collect the human body's point cloud along with t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automation science and engineering Ročník 19; číslo 2; s. 1245 - 1257
Hlavní autori: Jin, Feng, Sengupta, Arindam, Cao, Siyang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1545-5955, 1558-3783
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Elderly fall prevention and detection becomes extremely crucial with the fast aging population globally. In this article, we propose mmFall , a novel fall detection system, which comprises 1) the emerging millimeter-wave (mmWave) radar sensor to collect the human body's point cloud along with the body centroid and 2) a hybrid variational recurrent neural network (RNN) autoencoder (HVRAE) to compute the anomaly level of the body motion based on the acquired point cloud. A fall is detected when the spike in anomaly level and the drop in centroid height occur simultaneously. The mmWave radar sensor offers privacy-compliance and high sensitivity to motion, over the traditional sensing modalities. However, 1) randomness in radar point cloud and 2) difficulties in fall collection/labeling in the traditional supervised fall detection approaches are the two major challenges. To overcome the randomness in radar data, the proposed HVRAE uses variational inference, a generative approach rather than a discriminative approach, to infer the posterior probability of the body's latent motion state every frame, followed by a RNN to summarize the temporal features over multiple frames. Moreover, to circumvent the difficulties in fall data collection/labeling, the HVRAE is built upon an autoencoder architecture in a semisupervised approach, which is only trained on the normal activities of daily living (ADL). In the inference stage, the HVRAE will generate a spike in the anomaly level once an abnormal motion, such as fall, occurs. During the experiment,<xref ref-type="fn" rid="fn1"> 1 we implemented the HVRAE along with two other baselines, and tested on the data set collected in an apartment. The receiver operating characteristic (ROC) curve indicates that our proposed model outperforms baselines and achieves 98% detection out of 50 falls at the expense of just 2 false alarms. Note to Practitioners -Traditional nonwearable fall detection approaches typically make use of a vision-based sensor, such as camera, to monitor and detect fall using a classifier that is trained in a supervised fashion on the collected fall and nonfall data. However, several problems render these methods impractical. First, camera-based monitoring may trigger privacy concerns. Second, fall data collection using human subjects is difficult and costly, not to mention the impossible ask of the elderly repeating simulated falls for data collection. In this article, we propose a new fall detection approach to overcome these problems 1) using a palm-size mmWave radar sensor to monitor the elderly, that is highly sensitive to motion while protecting privacy and 2) using a semisupervised anomaly detection approach to circumvent the fall data collection. Further hardware engineering and more training data from people with different body figures could make the proposed fall detection solution even more practical.
AbstractList Elderly fall prevention and detection becomes extremely crucial with the fast aging population globally. In this article, we propose mmFall , a novel fall detection system, which comprises 1) the emerging millimeter-wave (mmWave) radar sensor to collect the human body's point cloud along with the body centroid and 2) a hybrid variational recurrent neural network (RNN) autoencoder (HVRAE) to compute the anomaly level of the body motion based on the acquired point cloud. A fall is detected when the spike in anomaly level and the drop in centroid height occur simultaneously. The mmWave radar sensor offers privacy-compliance and high sensitivity to motion, over the traditional sensing modalities. However, 1) randomness in radar point cloud and 2) difficulties in fall collection/labeling in the traditional supervised fall detection approaches are the two major challenges. To overcome the randomness in radar data, the proposed HVRAE uses variational inference, a generative approach rather than a discriminative approach, to infer the posterior probability of the body's latent motion state every frame, followed by a RNN to summarize the temporal features over multiple frames. Moreover, to circumvent the difficulties in fall data collection/labeling, the HVRAE is built upon an autoencoder architecture in a semisupervised approach, which is only trained on the normal activities of daily living (ADL). In the inference stage, the HVRAE will generate a spike in the anomaly level once an abnormal motion, such as fall, occurs. During the experiment,<xref ref-type="fn" rid="fn1"> 1 we implemented the HVRAE along with two other baselines, and tested on the data set collected in an apartment. The receiver operating characteristic (ROC) curve indicates that our proposed model outperforms baselines and achieves 98% detection out of 50 falls at the expense of just 2 false alarms. Note to Practitioners -Traditional nonwearable fall detection approaches typically make use of a vision-based sensor, such as camera, to monitor and detect fall using a classifier that is trained in a supervised fashion on the collected fall and nonfall data. However, several problems render these methods impractical. First, camera-based monitoring may trigger privacy concerns. Second, fall data collection using human subjects is difficult and costly, not to mention the impossible ask of the elderly repeating simulated falls for data collection. In this article, we propose a new fall detection approach to overcome these problems 1) using a palm-size mmWave radar sensor to monitor the elderly, that is highly sensitive to motion while protecting privacy and 2) using a semisupervised anomaly detection approach to circumvent the fall data collection. Further hardware engineering and more training data from people with different body figures could make the proposed fall detection solution even more practical.
Elderly fall prevention and detection becomes extremely crucial with the fast aging population globally. In this article, we propose mmFall , a novel fall detection system, which comprises 1) the emerging millimeter-wave (mmWave) radar sensor to collect the human body’s point cloud along with the body centroid and 2) a hybrid variational recurrent neural network (RNN) autoencoder (HVRAE) to compute the anomaly level of the body motion based on the acquired point cloud. A fall is detected when the spike in anomaly level and the drop in centroid height occur simultaneously. The mmWave radar sensor offers privacy-compliance and high sensitivity to motion, over the traditional sensing modalities. However, 1) randomness in radar point cloud and 2) difficulties in fall collection/labeling in the traditional supervised fall detection approaches are the two major challenges. To overcome the randomness in radar data, the proposed HVRAE uses variational inference, a generative approach rather than a discriminative approach, to infer the posterior probability of the body’s latent motion state every frame, followed by a RNN to summarize the temporal features over multiple frames. Moreover, to circumvent the difficulties in fall data collection/labeling, the HVRAE is built upon an autoencoder architecture in a semisupervised approach, which is only trained on the normal activities of daily living (ADL). In the inference stage, the HVRAE will generate a spike in the anomaly level once an abnormal motion, such as fall, occurs. During the experiment, 1 we implemented the HVRAE along with two other baselines, and tested on the data set collected in an apartment. The receiver operating characteristic (ROC) curve indicates that our proposed model outperforms baselines and achieves 98% detection out of 50 falls at the expense of just 2 false alarms. Note to Practitioners —Traditional nonwearable fall detection approaches typically make use of a vision-based sensor, such as camera, to monitor and detect fall using a classifier that is trained in a supervised fashion on the collected fall and nonfall data. However, several problems render these methods impractical. First, camera-based monitoring may trigger privacy concerns. Second, fall data collection using human subjects is difficult and costly, not to mention the impossible ask of the elderly repeating simulated falls for data collection. In this article, we propose a new fall detection approach to overcome these problems 1) using a palm-size mmWave radar sensor to monitor the elderly, that is highly sensitive to motion while protecting privacy and 2) using a semisupervised anomaly detection approach to circumvent the fall data collection. Further hardware engineering and more training data from people with different body figures could make the proposed fall detection solution even more practical.
Author Sengupta, Arindam
Cao, Siyang
Jin, Feng
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-2985-3328
  surname: Jin
  fullname: Jin, Feng
  email: fengjin@email.arizona.edu
  organization: Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, USA
– sequence: 2
  givenname: Arindam
  orcidid: 0000-0002-6563-9679
  surname: Sengupta
  fullname: Sengupta, Arindam
  email: sengupta@email.arizona.edu
  organization: Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, USA
– sequence: 3
  givenname: Siyang
  orcidid: 0000-0001-9593-265X
  surname: Cao
  fullname: Cao, Siyang
  email: caos@email.arizona.edu
  organization: Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, USA
BookMark eNp9kE1PAjEQhhuDiYj-AOOliefFfm_rjSCICdEEAY-b0m1NyX5gu5jw790V4sGDc5iZw_tM3nkvQa-qKwvADUZDjJG6X47eJkOCCBpSxAjm8gz0MecyoamkvW5nPOGK8wtwGeMWIcKkQn2wLsupLooH2HX4aBtrGl9XcBV99QFZ8gjL8l1_WbjQuQ5QVznUcHbYBJ_DtQ5ed2pdwMXLCxztm3pSmTq34QqcO11Ee32aA7CaTpbjWTJ_fXoej-aJIYo2CWNCcaMEpQaxDZJUyHwj8lw6QSXCSjmRktRx6wwRbaUul-0_zpKUpYoaOgB3x7u7UH_ubWyybb0PraGYEcFSRhiitFWlR5UJdYzBusz45sd5E7QvMoyyLsSsCzHrQsxOIbYk_kPugi91OPzL3B4Zb6391SuKuKKYfgNNDHvy
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_JSEN_2024_3355421
crossref_primary_10_1109_JSEN_2024_3458068
crossref_primary_10_3390_s24020648
crossref_primary_10_1109_COMST_2022_3177305
crossref_primary_10_1109_JSAC_2024_3423629
crossref_primary_10_1109_JIOT_2023_3237494
crossref_primary_10_1109_JSEN_2023_3348199
crossref_primary_10_1109_JIOT_2022_3175894
crossref_primary_10_1016_j_bspc_2022_103741
crossref_primary_10_1109_JIOT_2024_3421336
crossref_primary_10_1109_ACCESS_2022_3211673
crossref_primary_10_1145_3749500
crossref_primary_10_1007_s42979_023_02480_y
crossref_primary_10_3390_s23135810
crossref_primary_10_1145_3749471
crossref_primary_10_1109_JSEN_2024_3452110
crossref_primary_10_1109_TMC_2023_3344125
crossref_primary_10_1109_TMC_2025_3539985
crossref_primary_10_1007_s11042_024_19830_4
crossref_primary_10_1109_COMST_2024_3409556
crossref_primary_10_1088_1361_6501_ad7b60
crossref_primary_10_1007_s12530_024_09570_z
crossref_primary_10_3390_s24186074
crossref_primary_10_1016_j_mlwa_2025_100655
crossref_primary_10_1109_ACCESS_2022_3190355
crossref_primary_10_1109_MRA_2024_3352851
crossref_primary_10_1016_j_engappai_2023_106939
crossref_primary_10_1109_JSEN_2021_3111187
crossref_primary_10_1109_TIM_2025_3550240
crossref_primary_10_1109_TNSRE_2024_3379453
crossref_primary_10_1109_JSEN_2025_3530007
crossref_primary_10_3390_s23115031
crossref_primary_10_3390_s24010268
crossref_primary_10_1109_LSENS_2025_3560919
crossref_primary_10_1109_COMST_2024_3398004
crossref_primary_10_1007_s11042_023_15952_3
crossref_primary_10_1109_JIOT_2023_3301887
crossref_primary_10_3103_S0146411624700597
crossref_primary_10_3390_s24165450
crossref_primary_10_1109_LGRS_2024_3413962
crossref_primary_10_1109_TIM_2024_3450071
crossref_primary_10_1109_JSEN_2024_3352425
crossref_primary_10_1109_JSEN_2024_3448622
crossref_primary_10_1109_JSEN_2024_3483835
crossref_primary_10_1109_JSEN_2024_3407962
crossref_primary_10_1109_TMC_2023_3291882
crossref_primary_10_1109_TMC_2025_3546757
crossref_primary_10_1145_3729465
crossref_primary_10_1109_JSEN_2022_3177173
crossref_primary_10_3390_rs15051254
crossref_primary_10_32604_cmc_2023_045008
crossref_primary_10_3390_bdcc7020099
crossref_primary_10_3390_app15158381
crossref_primary_10_1109_TBME_2025_3548092
crossref_primary_10_1109_JBHI_2022_3171554
Cites_doi 10.1007/978-3-319-55077-0_47
10.1016/j.jsr.2016.05.001
10.1117/1.2819119
10.1109/JSEN.2020.2991741
10.1007/s41666-019-00061-4
10.1109/LRA.2018.2801475
10.18356/13bf5476-en
10.1109/TAES.2019.2910980
10.1109/TNSRE.2014.2357806
10.1109/TBME.2019.2893528
10.1080/17483107.2019.1604831
10.1109/VCIP47243.2019.8965661
10.1080/01621459.2017.1285773
10.1145/3264947
10.1109/72.279181
10.1109/JBHI.2014.2319372
10.1109/ICMLA.2019.00279
10.1109/WiMOB.2015.7347965
10.1109/LSENS.2018.2889060
10.1145/1541880.1541882
10.1109/SMC.2019.8914303
10.3115/v1/d14-1179
10.1109/JSEN.2020.2967100
10.1109/MSP.2015.2502784
10.1109/JSEN.2016.2628099
10.24963/ijcai.2019/378
10.1145/2816795.2818072
10.1109/ACCESS.2019.2922708
10.1109/TBME.2012.2228262
10.1016/j.inffus.2017.12.007
10.3390/s19173720
10.1109/MSP.2019.2911722
10.1109/TBME.2014.2315784
10.1109/IEEE-IWS.2019.8804036
10.1007/978-3-319-33353-3_1
10.1561/9781680836233
10.1109/TAES.2017.2740098
10.1109/TBME.2014.2367038
10.1109/RADAR.2019.8835656
10.1109/MSP.2018.2890128
10.1109/TBME.2012.2186449
10.1109/TAES.2018.2799758
10.1007/s11042-015-2513-9
10.1162/neco.1997.9.8.1735
10.1109/MFI.2017.8170428
10.1109/ACCESS.2019.2907925
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2020.3042158
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 1257
ExternalDocumentID 10_1109_TASE_2020_3042158
9305931
Genre orig-research
GrantInformation_xml – fundername: The University of Arizona.
  funderid: 10.13039/100007899
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-44695c9633c04b08368db6dd8f6380199f6727f5efc266667fd8783fe274793c3
IEDL.DBID RIE
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778949400056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Jun 29 12:34:30 EDT 2025
Tue Nov 18 22:31:16 EST 2025
Sat Nov 29 04:12:47 EST 2025
Wed Aug 27 02:40:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-44695c9633c04b08368db6dd8f6380199f6727f5efc266667fd8783fe274793c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9593-265X
0000-0002-2985-3328
0000-0002-6563-9679
PQID 2647424033
PQPubID 27623
PageCount 13
ParticipantIDs proquest_journals_2647424033
ieee_primary_9305931
crossref_citationtrail_10_1109_TASE_2020_3042158
crossref_primary_10_1109_TASE_2020_3042158
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref53
ref11
ref55
ref10
Fabius (ref43) 2014
ref17
ref16
ref19
ref18
Blackman (ref49) 1986
(ref46) 2015
ref51
ref50
ref45
ref48
ref41
(ref62) 2020
ref8
ref7
Braei (ref34) 2020
ref9
Chung (ref44) 2015
(ref2) 2008
ref4
ref5
ref40
(ref61) 2020
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
Chalapathy (ref35) 2019
Haykin (ref52) 2011
Rezende (ref54)
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
Dai (ref58)
(ref6) 2017
ref29
(ref60) 2019
(ref3) 2018
Kingma (ref42) 2013
(ref47) 2018
References_xml – start-page: 3079
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref58
  article-title: Semi-supervised sequence learning
– ident: ref40
  doi: 10.1007/978-3-319-55077-0_47
– volume-title: Google LLC Request for Waiver Part 15 for Project Soli
  year: 2018
  ident: ref47
– volume-title: Overview of Traffic Monitoring for 18xx or 68xx
  year: 2020
  ident: ref61
– volume-title: Neural Networks and Learning Machines
  year: 2011
  ident: ref52
– ident: ref4
  doi: 10.1016/j.jsr.2016.05.001
– ident: ref50
  doi: 10.1117/1.2819119
– ident: ref31
  doi: 10.1109/JSEN.2020.2991741
– ident: ref36
  doi: 10.1007/s41666-019-00061-4
– ident: ref45
  doi: 10.1109/LRA.2018.2801475
– ident: ref1
  doi: 10.18356/13bf5476-en
– ident: ref27
  doi: 10.1109/TAES.2019.2910980
– ident: ref7
  doi: 10.1109/TNSRE.2014.2357806
– start-page: II–1278
  volume-title: Proc. 31st Int. Conf. Mach. Learn. (ICML)
  ident: ref54
  article-title: Stochastic backpropagation and approximate inference in deep generative models
– ident: ref22
  doi: 10.1109/TBME.2019.2893528
– ident: ref39
  doi: 10.1080/17483107.2019.1604831
– ident: ref32
  doi: 10.1109/VCIP47243.2019.8965661
– ident: ref51
  doi: 10.1080/01621459.2017.1285773
– ident: ref28
  doi: 10.1145/3264947
– ident: ref57
  doi: 10.1109/72.279181
– ident: ref11
  doi: 10.1109/JBHI.2014.2319372
– ident: ref23
  doi: 10.1109/ICMLA.2019.00279
– ident: ref13
  doi: 10.1109/WiMOB.2015.7347965
– ident: ref30
  doi: 10.1109/LSENS.2018.2889060
– ident: ref33
  doi: 10.1145/1541880.1541882
– ident: ref21
  doi: 10.1109/SMC.2019.8914303
– ident: ref56
  doi: 10.3115/v1/d14-1179
– ident: ref25
  doi: 10.1109/JSEN.2020.2967100
– ident: ref16
  doi: 10.1109/MSP.2015.2502784
– ident: ref5
  doi: 10.1109/JSEN.2016.2628099
– ident: ref59
  doi: 10.24963/ijcai.2019/378
– volume-title: arXiv:1901.03407
  year: 2019
  ident: ref35
  article-title: Deep learning for anomaly detection: A survey
– ident: ref63
  doi: 10.1145/2816795.2818072
– ident: ref15
  doi: 10.1109/ACCESS.2019.2922708
– ident: ref10
  doi: 10.1109/TBME.2012.2228262
– ident: ref41
  doi: 10.1016/j.inffus.2017.12.007
– volume-title: arXiv:2004.00433
  year: 2020
  ident: ref34
  article-title: Anomaly detection in univariate time-series: A survey on the state-of-the-art
– volume-title: Radar Library
  year: 1986
  ident: ref49
  article-title: Multiple-target tracking with radar applications
– ident: ref38
  doi: 10.3390/s19173720
– volume-title: arXiv:1412.6581
  year: 2014
  ident: ref43
  article-title: Variational recurrent auto-encoders
– ident: ref48
  doi: 10.1109/MSP.2019.2911722
– volume-title: Operation Radar Services 76–81 GHz Band
  year: 2015
  ident: ref46
– ident: ref8
  doi: 10.1109/TBME.2014.2315784
– ident: ref26
  doi: 10.1109/IEEE-IWS.2019.8804036
– volume-title: WHO Global Report on Falls Prevention in Older Age
  year: 2008
  ident: ref2
– ident: ref9
  doi: 10.1007/978-3-319-33353-3_1
– ident: ref53
  doi: 10.1561/9781680836233
– ident: ref24
  doi: 10.1109/TAES.2017.2740098
– ident: ref19
  doi: 10.1109/TBME.2014.2367038
– volume-title: xWR1843 Evaluation Module (xWR1843BOOST) Single-Chip mmWave Sensing Solution
  year: 2019
  ident: ref60
– volume-title: Programming Chirp Parameters in TI Radar Devices
  year: 2020
  ident: ref62
– ident: ref29
  doi: 10.1109/RADAR.2019.8835656
– ident: ref17
  doi: 10.1109/MSP.2018.2890128
– ident: ref12
  doi: 10.1109/TBME.2012.2186449
– ident: ref18
  doi: 10.1109/TAES.2018.2799758
– ident: ref37
  doi: 10.1007/s11042-015-2513-9
– ident: ref55
  doi: 10.1162/neco.1997.9.8.1735
– volume-title: arXiv:1312.6114
  year: 2013
  ident: ref42
  article-title: Auto-encoding variational Bayes
– volume-title: Falls. World Health Orgnazation
  year: 2018
  ident: ref3
– volume-title: arXiv:1506.02216
  year: 2015
  ident: ref44
  article-title: A recurrent latent variable model for sequential data
– volume-title: mmWave Radar Sensors in Robotics Applications
  year: 2017
  ident: ref6
– ident: ref14
  doi: 10.1109/MFI.2017.8170428
– ident: ref20
  doi: 10.1109/ACCESS.2019.2907925
SSID ssj0024890
Score 2.5815156
Snippet Elderly fall prevention and detection becomes extremely crucial with the fast aging population globally. In this article, we propose mmFall , a novel fall...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1245
SubjectTerms Activities of daily living
Anomalies
Anomaly detection
Cameras
Centroids
Conditional probability
Data collection
Doppler radar
Fall detection
False alarms
Inference
Labelling
millimeter wave (mmWave) radar
Millimeter waves
Older people
Privacy
Radar
Radar antennas
Radar data
Radar detection
Radar measurements
Randomness
recurrent autoencoder (RAE)
Recurrent neural networks
semisupervised learning
Senior citizens
Sensors
Three-dimensional displays
variational autoencoder
Title mmFall: Fall Detection Using 4-D mmWave Radar and a Hybrid Variational RNN AutoEncoder
URI https://ieeexplore.ieee.org/document/9305931
https://www.proquest.com/docview/2647424033
Volume 19
WOSCitedRecordID wos000778949400056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAHX1WsVtmDJzE2yWaTrLdiW3qQILXW3kKyDxCaVNK04L93Z5vWgiJ4CTnsQpjZycw3O98MQjfSOA7lQOaeW55HpcW40JiHp46rGPOUbYjCT0EUhZMJe66huw0XRkppis_kPbyau3wx4wtIlbUZgQF0GuvsBEGw4mp999ULTT4FIgKLMkqrG0zHZu1R56WnkaCrAao-og5Md9_yQWaoyo8_sXEv_cP_fdgROqjCSNxZ6f0Y1WR-gva3mgs20DjL-sl0-oDhibuyNEVXOTZFAtizujjL3pKlxMNEJAVOcoETPPgEBhceawRdZQnxMIpwZ1HOejnQ34tT9NrvjR4HVjVFweLalZda_j6jXNsZ4baXQjPqUKS-EKHSpqcDPKbgMlZRqbh21r4fKBEGIVES8CojnJyhej7L5TnCVChHSapS5nLt_JI0IVRQn0jqpiyQbhPZa7nGvGoxDpMuprGBGjaLQRUxqCKuVNFEt5stH6v-Gn8tboDsNwsrsTdRa628uLLAeawDPY36PZuQi993XaI9F6gMpgqnheplsZBXaJcvy_d5cW0O1xczksjb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kCurBVxWrVffgSYwm2Wya9Va0pWINovVxC8k-QGhTadOC_96dbayCIngJOexCmNnJzDc73wzAsbKOQ3uYuRdOEDDlcCEN5hGZ52vOA-1aonC3EcfRywu_W4DTORdGKWWLz9QZvtq7fDkUE0yVnXOKA-gM1llkQeB7M7bWV2e9yGZUMCZwGGesvMP0XH7eaz60DBb0DUQ1h9TD-e7fvJAdq_LjX2wdTHv9f5-2AWtlIEmaM81vwoLKt2D1W3vBKjwNBu20378g-CRXqrBlVzmxZQIkcK7IYPCcThW5T2U6ImkuSUo678jhIk8GQ5d5QnIfx6Q5KYatHAnwo214bLd6lx2nnKPgCOPMC6OBkDNhLI0KN8iwHXUks1DKSBvjMyEe13gdq5nSwrjrMGxoGTUiqhUiVk4F3YFKPszVLhAmtacV0xn3hXF_aZZSJllIFfMz3lB-DdxPuSaibDKOsy76iQUbLk9QFQmqIilVUYOT-Za3WYeNvxZXUfbzhaXYa1D_VF5S2uA4MaGewf2BS-ne77uOYLnTu-0m3ev4Zh9WfCQ22JqcOlSK0UQdwJKYFq_j0aE9aB_UF8wi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=mmFall%3A+Fall+Detection+Using+4-D+mmWave+Radar+and+a+Hybrid+Variational+RNN+AutoEncoder&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Jin%2C+Feng&rft.au=Sengupta%2C+Arindam&rft.au=Cao%2C+Siyang&rft.date=2022-04-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=2&rft.spage=1245&rft.epage=1257&rft_id=info:doi/10.1109%2FTASE.2020.3042158&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2020_3042158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon