A Hybrid Probabilistic Multiobjective Evolutionary Algorithm for Commercial Recommendation Systems

As big-data-driven complex systems, commercial recommendation systems (RSs) have been widely used in such companies as Amazon and Ebay. Their core aim is to maximize total profit, which relies on recommendation accuracy and profits from recommended items. It is also important for them to treat new i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on computational social systems Ročník 8; číslo 3; s. 589 - 598
Hlavní autori: Wei, Guoshuai, Wu, Quanwang, Zhou, Mengchu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2329-924X, 2373-7476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As big-data-driven complex systems, commercial recommendation systems (RSs) have been widely used in such companies as Amazon and Ebay. Their core aim is to maximize total profit, which relies on recommendation accuracy and profits from recommended items. It is also important for them to treat new items equally for a long-term run. However, traditional recommendation techniques mainly focus on recommendation accuracy and suffer from a cold-start problem (i.e., new items cannot be recommended). Differing from them, this work designs a multiobjective RS by considering item profit and novelty besides accuracy. Then, a hybrid probabilistic multiobjective evolutionary algorithm (MOEA) is proposed to optimize these conflicting metrics. In it, some specifically designed genetic operators are proposed, and two classical MOEA frameworks are adaptively combined such that it owns their complementary advantages. The experimental results reveal that it outperforms some state-of-the-art algorithms as it achieves a higher hypervolume value than them.
AbstractList As big-data-driven complex systems, commercial recommendation systems (RSs) have been widely used in such companies as Amazon and Ebay. Their core aim is to maximize total profit, which relies on recommendation accuracy and profits from recommended items. It is also important for them to treat new items equally for a long-term run. However, traditional recommendation techniques mainly focus on recommendation accuracy and suffer from a cold-start problem (i.e., new items cannot be recommended). Differing from them, this work designs a multiobjective RS by considering item profit and novelty besides accuracy. Then, a hybrid probabilistic multiobjective evolutionary algorithm (MOEA) is proposed to optimize these conflicting metrics. In it, some specifically designed genetic operators are proposed, and two classical MOEA frameworks are adaptively combined such that it owns their complementary advantages. The experimental results reveal that it outperforms some state-of-the-art algorithms as it achieves a higher hypervolume value than them.
Author Wu, Quanwang
Zhou, Mengchu
Wei, Guoshuai
Author_xml – sequence: 1
  givenname: Guoshuai
  surname: Wei
  fullname: Wei, Guoshuai
  email: wgs0208@foxmail.com
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Quanwang
  orcidid: 0000-0001-8155-6200
  surname: Wu
  fullname: Wu, Quanwang
  email: wqw@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Mengchu
  orcidid: 0000-0002-5408-8752
  surname: Zhou
  fullname: Zhou, Mengchu
  email: zhou@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
BookMark eNp9kF9LwzAUxYNMcM59APEl4HNnmtu0zeMo0wkTxU3wraRpqhltM5N0sG9v64YPPvh0_3DOvYffJRq1plUIXYdkFoaE322y9XpGCQ1nQBhLKZyhMYUEgiRK4tHQUx5wGr1foKlzW0JISBlLKBmjYo6Xh8LqEr9YU4hC19p5LfFTV3ttiq2SXu8VXuxN3fWLVtgDntcfxmr_2eDKWJyZplFWalHjVyWHoS3FIMXrg_OqcVfovBK1U9NTnaC3-8UmWwar54fHbL4KJOXgg4iWEUSKRTIWjFRlmZCSF33WlAgheAlEUiiqinER0VQBKBELDnGailJBv5ig2-PdnTVfnXI-35rOtv3LnDKAiJOQkV6VHFXSGuesqnKp_U9eb4Wu85DkA9N8YJoPTPMT094Z_nHurG56IP96bo4erZT61fepASiFb9n2hag
CODEN ITCSGL
CitedBy_id crossref_primary_10_1016_j_procs_2023_01_114
crossref_primary_10_1109_TCE_2023_3318754
crossref_primary_10_1007_s10489_023_05105_2
crossref_primary_10_1109_TEVC_2022_3166815
crossref_primary_10_1109_TCSS_2022_3140310
crossref_primary_10_1007_s10489_023_05212_0
crossref_primary_10_1016_j_engappai_2024_108477
crossref_primary_10_1109_TETCI_2022_3230942
crossref_primary_10_1109_TNSE_2021_3079415
crossref_primary_10_3390_s22010011
crossref_primary_10_3389_fonc_2025_1604041
crossref_primary_10_1016_j_ins_2024_120921
crossref_primary_10_1109_TCYB_2021_3126711
crossref_primary_10_1016_j_jksuci_2024_102237
crossref_primary_10_1109_TCSS_2022_3158318
crossref_primary_10_1109_TCYB_2021_3079346
crossref_primary_10_3390_math10101739
crossref_primary_10_1109_TETCI_2024_3359093
crossref_primary_10_1109_TETCI_2022_3189084
crossref_primary_10_1109_TASE_2023_3296733
crossref_primary_10_1177_18724981251346889
crossref_primary_10_1016_j_swevo_2024_101548
crossref_primary_10_1109_TCSS_2023_3266520
crossref_primary_10_1109_JIOT_2023_3262849
crossref_primary_10_1007_s10489_024_05854_8
crossref_primary_10_1109_TKDE_2022_3222047
crossref_primary_10_1016_j_ins_2022_03_068
crossref_primary_10_1177_14727978251376402
crossref_primary_10_3389_fpubh_2025_1588270
crossref_primary_10_1109_TBDATA_2021_3090905
crossref_primary_10_1007_s40747_025_01891_z
crossref_primary_10_1109_TCSS_2022_3195816
crossref_primary_10_1016_j_eswa_2022_119457
crossref_primary_10_1007_s10489_025_06781_y
crossref_primary_10_1109_TCYB_2021_3119591
crossref_primary_10_1109_JAS_2024_124806
crossref_primary_10_1109_JAS_2021_1004308
crossref_primary_10_1007_s10844_025_00935_7
crossref_primary_10_1109_TCYB_2022_3185554
crossref_primary_10_1142_S0219467825500433
crossref_primary_10_1109_TETCI_2022_3186673
crossref_primary_10_1109_TITS_2022_3140351
crossref_primary_10_1109_TEVC_2021_3091615
crossref_primary_10_1016_j_eswa_2025_126636
crossref_primary_10_1109_TASE_2023_3267609
crossref_primary_10_1145_3674982
crossref_primary_10_1016_j_apenergy_2023_121123
crossref_primary_10_1007_s11042_023_15141_2
crossref_primary_10_1109_TNNLS_2021_3105901
crossref_primary_10_1007_s42979_024_02667_x
Cites_doi 10.1016/j.jpdc.2016.10.014
10.1007/978-3-030-23381-5_4
10.1109/MC.2009.263
10.1109/ACCESS.2020.2990193
10.1016/j.ins.2019.11.028
10.1016/j.eswa.2017.08.008
10.1109/TASE.2018.2862380
10.1109/JSYST.2018.2883214
10.1109/TSMC.2015.2507161
10.1016/j.eswa.2017.06.020
10.1109/TASE.2019.2918691
10.1109/TITS.2016.2638898
10.1109/JAS.2020.1003177
10.1109/MCI.2014.2369894
10.1016/j.physa.2016.02.021
10.1109/TCSS.2019.2932288
10.1109/TNNLS.2019.2955567
10.1016/j.knosys.2016.04.018
10.1145/3298689.3346998
10.1109/TII.2019.2958696
10.1109/TCBB.2017.2705094
10.1109/TCYB.2016.2545688
10.1109/TCSS.2019.2938239
10.1109/JAS.2017.7510538
10.1109/TKDE.2019.2895033
10.1109/JAS.2020.1003204
10.1145/963770.963772
10.1016/j.knosys.2013.03.012
10.1109/4235.996017
10.1016/j.eswa.2020.113648
10.1007/s11280-017-0437-1
10.1109/TEVC.2007.892759
10.1109/JAS.2019.1911450
10.1007/3-540-36970-8_2
10.1103/PhysRevE.76.046115
10.1109/TEVC.2013.2281535
10.1016/j.ejor.2006.08.008
10.1109/CEC.2016.7743898
10.1109/TSMC.2018.2818175
10.1109/TBDATA.2019.2916868
10.1109/TII.2015.2443723
10.1155/2018/1716352
10.1145/3376916
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSS.2021.3055823
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2373-7476
EndPage 598
ExternalDocumentID 10_1109_TCSS_2021_3055823
9363322
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61702060; 61672117
  funderid: 10.13039/501100001809
– fundername: Deanship of Scientific Research (DSR) at King Abdulaziz University
  grantid: D-503-135-1441
  funderid: 10.13039/501100004054
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-42d434e54c6a50fdd70d9b00080aaa9d30c23bff59a428e33ea6a93688ade38e3
IEDL.DBID RIE
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655822700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-924X
IngestDate Sun Nov 30 04:11:53 EST 2025
Sat Nov 29 01:37:08 EST 2025
Tue Nov 18 22:30:58 EST 2025
Wed Aug 27 02:30:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-42d434e54c6a50fdd70d9b00080aaa9d30c23bff59a428e33ea6a93688ade38e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8155-6200
0000-0002-5408-8752
PQID 2533490150
PQPubID 2040411
PageCount 10
ParticipantIDs proquest_journals_2533490150
crossref_citationtrail_10_1109_TCSS_2021_3055823
crossref_primary_10_1109_TCSS_2021_3055823
ieee_primary_9363322
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on computational social systems
PublicationTitleAbbrev TCSS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
milojkovic (ref22) 2019
zitzler (ref26) 2001; 103
ref46
ref24
ref45
ref23
guo (ref32) 2020
ref25
ref20
ref42
ref41
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref12
  doi: 10.1016/j.jpdc.2016.10.014
– ident: ref5
  doi: 10.1007/978-3-030-23381-5_4
– ident: ref33
  doi: 10.1109/MC.2009.263
– ident: ref29
  doi: 10.1109/ACCESS.2020.2990193
– ident: ref23
  doi: 10.1016/j.ins.2019.11.028
– ident: ref2
  doi: 10.1016/j.eswa.2017.08.008
– ident: ref46
  doi: 10.1109/TASE.2018.2862380
– ident: ref41
  doi: 10.1109/JSYST.2018.2883214
– ident: ref31
  doi: 10.1109/TSMC.2015.2507161
– ident: ref3
  doi: 10.1016/j.eswa.2017.06.020
– ident: ref16
  doi: 10.1109/TASE.2019.2918691
– ident: ref19
  doi: 10.1109/TITS.2016.2638898
– ident: ref44
  doi: 10.1109/JAS.2020.1003177
– ident: ref11
  doi: 10.1109/MCI.2014.2369894
– ident: ref8
  doi: 10.1016/j.physa.2016.02.021
– ident: ref42
  doi: 10.1109/TCSS.2019.2932288
– ident: ref43
  doi: 10.1109/TNNLS.2019.2955567
– ident: ref13
  doi: 10.1016/j.knosys.2016.04.018
– ident: ref18
  doi: 10.1145/3298689.3346998
– ident: ref6
  doi: 10.1109/TII.2019.2958696
– ident: ref35
  doi: 10.1109/TCBB.2017.2705094
– ident: ref37
  doi: 10.1109/TCYB.2016.2545688
– ident: ref39
  doi: 10.1109/TCSS.2019.2938239
– ident: ref38
  doi: 10.1109/JAS.2017.7510538
– ident: ref10
  doi: 10.1109/TKDE.2019.2895033
– ident: ref45
  doi: 10.1109/JAS.2020.1003204
– ident: ref4
  doi: 10.1145/963770.963772
– ident: ref1
  doi: 10.1016/j.knosys.2013.03.012
– ident: ref15
  doi: 10.1109/4235.996017
– ident: ref24
  doi: 10.1016/j.eswa.2020.113648
– ident: ref9
  doi: 10.1007/s11280-017-0437-1
– year: 2020
  ident: ref32
  article-title: Multiresource-constrained selective disassembly with maximal profit and minimal energy consumption
  publication-title: IEEE Trans Autom Sci Eng
– ident: ref30
  doi: 10.1109/TEVC.2007.892759
– ident: ref21
  doi: 10.1109/JAS.2019.1911450
– ident: ref34
  doi: 10.1007/3-540-36970-8_2
– ident: ref7
  doi: 10.1103/PhysRevE.76.046115
– ident: ref25
  doi: 10.1109/TEVC.2013.2281535
– ident: ref17
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref28
  doi: 10.1109/CEC.2016.7743898
– ident: ref20
  doi: 10.1109/TSMC.2018.2818175
– year: 2019
  ident: ref22
  article-title: Multi-gradient descent for multi-objective recommender systems
  publication-title: arXiv 2001 00846
– volume: 103
  start-page: 1
  year: 2001
  ident: ref26
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: TIK-Report
– ident: ref40
  doi: 10.1109/TBDATA.2019.2916868
– ident: ref36
  doi: 10.1109/TII.2015.2443723
– ident: ref14
  doi: 10.1155/2018/1716352
– ident: ref27
  doi: 10.1145/3376916
SSID ssj0001255720
Score 2.4515755
Snippet As big-data-driven complex systems, commercial recommendation systems (RSs) have been widely used in such companies as Amazon and Ebay. Their core aim is to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 589
SubjectTerms Accuracy
Cold start
Complex systems
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Genetics
Linear programming
Measurement
multiobjective evolutionary algorithm (MOEA)
Optimization
Pareto optimization
Probabilistic logic
profit
recommendation system (RS)
Recommender systems
Title A Hybrid Probabilistic Multiobjective Evolutionary Algorithm for Commercial Recommendation Systems
URI https://ieeexplore.ieee.org/document/9363322
https://www.proquest.com/docview/2533490150
Volume 8
WOSCitedRecordID wos000655822700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2373-7476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255720
  issn: 2329-924X
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8B4sGLX2hE0fTgQY2Dbe2-joRAOBhCAhpuS7t2ikFmxiDhv7ftCtFoTLxtS7uvX9v30fd7D-CGsZBy4qYW5g61iNSwrYikxCIuF2ESSIGioyqfH4PhMJxOo1EFHnZcGCGEDj4TLXWo9_J5lqyUq6wdYR_LAViFahD4JVfriz_F8wJ3u3Hp2FF70h2PpQHoOi2V1Sp08TfRo2up_FiAtVTpH_7vfY7gwGiPqFPCfQwVsTiBRkmxRWaaLtGtySV9VwfWQYONImWhUS5nroqEVYmZkebdZuytXO5Qb21GIM03qDN_yfJZ8fqOpEKLFINEVWWSD1CmqjwxZZiQSXZ-Ck_93qQ7sExZBSuRsr1QMBBMhEcSn3p2ynlg80grAzalNOLYTlzM0tSLqLRNBMaC-lR-aihRFVheOIPaIluIc0BhQKUCZwuSMkpCzJjDhHA4lXaO5_EkaIC9_eNxYnKOq9IX81jbHnYUK5BiBVJsQGrA_a7LR5lw46_GdYXKrqEBpAHNLayxmZLL2FWkY-3gufi91yXsq3uXcWBNqBX5SlzBXrIuZsv8Wo-2T1oU1QY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD7BS6Iv3tCIovbBBzUOurVj2yMhEIxISEDD29KunWIUzEAT_r1tV4hGY-LbtrTptq_tufR85wCccx4yQb3UIcJlDlUathPRlDrUEzJMAiVQTFTlQyfodsPhMOoV4HrJhZFSmuAzWdGX5ixfTJJ37SqrRqRG1ARcgTWfUg_nbK0vHhXfD7zF0aWLo-qg0e8rE9BzKzqvVeiRb8LHVFP5sQUbudLa_t8b7cCW1R9RPQd8FwpyvAelnGSL7EKdogubTfqyCLyO2nNNy0K9TK1dHQurUzMjw7yd8Od8w0PNDzsHWTZH9ZfHSTaaPb0ipdIizSHRdZnUANpYVTe2EBOy6c734b7VHDTaji2s4CRKus80EJRQ6dOkxnycChFgERl1ADPGIkFw4hGepn7ElHUiCZGsxtSnhgpXSdSDA1gdT8byEFAYMKXCYUlTzmhIOHe5lK5gytLxfZEEJcCLPx4nNuu4Ln7xEhvrA0exBinWIMUWpBJcLbu85Sk3_mpc1KgsG1pASlBewBrbRTmNPU07Ni6eo997ncFGe3DXiTs33dtj2NTj5FFhZVidZe_yBNaTj9lomp2amfcJkunYTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Probabilistic+Multiobjective+Evolutionary+Algorithm+for+Commercial+Recommendation+Systems&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Guoshuai+Wei&rft.au=Wu%2C+Quanwang&rft.au=Zhou%2C+Mengchu&rft.date=2021-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2373-7476&rft.volume=8&rft.issue=3&rft.spage=589&rft_id=info:doi/10.1109%2FTCSS.2021.3055823&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon