Convolutional Sparse Coding Using Pathfinder Algorithm-Optimized Orthogonal Matching Pursuit With Asymmetric Gaussian Chirplet Model in Bearing Fault Detection

Sparse representation has been widely used in bearing fault impact detection, which can find the impact that best matches the fault waveform from the pre-defined dictionary and recover the fault impulse waveform. However, the current dictionary of sparse representation and the efficiency of sparse r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 21; číslo 16; s. 18132 - 18145
Hlavní autoři: Zhou, Qiuyang, Zhang, Yuhui, Yi, Cai, Lin, Jianhui, He, Liu, Hu, Qiwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Sparse representation has been widely used in bearing fault impact detection, which can find the impact that best matches the fault waveform from the pre-defined dictionary and recover the fault impulse waveform. However, the current dictionary of sparse representation and the efficiency of sparse representation algorithm need to be improved. In order to accurately detect the fault impulse in the original signal, a convolutional sparse coding using pathfinder algorithm-optimized orthogonal matching pursuit with asymmetric Gaussian chirplet model (CSC-OAGCM) is proposed in this paper. A new time-frequency atom prototype, AGCM, is used to match the fault impulse waveform. The specific application steps of the proposed algorithm are as follows: Firstly, a convolution dictionary is constructed with atoms generated by AGCM. Subsequently, based on the convolution dictionary, a pathfinder algorithm-optimized orthogonal matching pursuit algorithm is used to solve the sparse representation and optimize the atomic parameters to achieve the best approximation of the original signal. In other words, the proposed method detects the convolutional sparse patterns in the signal. A simulation signal, two sets of mixed signals of experimental data collected from the experimental platform and an axle box vibration signal collected from the actual operating train are used to verify the effectiveness of proposed method. Additionally, the spectral kurtosis and empirical wavelet transform are also used to process these signals, and their processing results are compared with those obtained by the proposed method to demonstrate the superiority of the proposed method.
AbstractList Sparse representation has been widely used in bearing fault impact detection, which can find the impact that best matches the fault waveform from the pre-defined dictionary and recover the fault impulse waveform. However, the current dictionary of sparse representation and the efficiency of sparse representation algorithm need to be improved. In order to accurately detect the fault impulse in the original signal, a convolutional sparse coding using pathfinder algorithm-optimized orthogonal matching pursuit with asymmetric Gaussian chirplet model (CSC-OAGCM) is proposed in this paper. A new time-frequency atom prototype, AGCM, is used to match the fault impulse waveform. The specific application steps of the proposed algorithm are as follows: Firstly, a convolution dictionary is constructed with atoms generated by AGCM. Subsequently, based on the convolution dictionary, a pathfinder algorithm-optimized orthogonal matching pursuit algorithm is used to solve the sparse representation and optimize the atomic parameters to achieve the best approximation of the original signal. In other words, the proposed method detects the convolutional sparse patterns in the signal. A simulation signal, two sets of mixed signals of experimental data collected from the experimental platform and an axle box vibration signal collected from the actual operating train are used to verify the effectiveness of proposed method. Additionally, the spectral kurtosis and empirical wavelet transform are also used to process these signals, and their processing results are compared with those obtained by the proposed method to demonstrate the superiority of the proposed method.
Author He, Liu
Zhou, Qiuyang
Zhang, Yuhui
Yi, Cai
Lin, Jianhui
Hu, Qiwei
Author_xml – sequence: 1
  givenname: Qiuyang
  orcidid: 0000-0002-1532-6551
  surname: Zhou
  fullname: Zhou, Qiuyang
  email: 496153308@qq.com
  organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China
– sequence: 2
  givenname: Yuhui
  orcidid: 0000-0001-5204-3860
  surname: Zhang
  fullname: Zhang, Yuhui
  email: podddam@sina.com
  organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China
– sequence: 3
  givenname: Cai
  orcidid: 0000-0001-5641-6791
  surname: Yi
  fullname: Yi, Cai
  email: yicai@swjtu.edu.cn
  organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China
– sequence: 4
  givenname: Jianhui
  orcidid: 0000-0002-5868-9360
  surname: Lin
  fullname: Lin, Jianhui
  email: lin13008104673@126.com
  organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China
– sequence: 5
  givenname: Liu
  orcidid: 0000-0003-0211-9323
  surname: He
  fullname: He, Liu
  email: aremiki@163.com
  organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China
– sequence: 6
  givenname: Qiwei
  surname: Hu
  fullname: Hu, Qiwei
  email: hqw940808@icloud.com
  organization: China Railway Electrification Survey Design and Research Institute Company Ltd., Tianjin, China
BookMark eNp9kc9u1DAQxi1UJPqHB0BcLHHOYsdxnByX0BZQ263UIrhFE2eycZXEqe0glZfpq3bdrXrgwGVmDt9v9M18R-RgshMS8oGzFees_Pzj5vRqlbKUrwQrcsblG3LIpSwSrrLiIM6CJZlQv9-RI-_vGOOlkuqQPFZ2-mOHJRg7wUBvZnAeaWVbM23pTx_rNYS-M1OLjq6HrXUm9GOymYMZzV9s6caF3m6f6UsIun9GFucXE-ivnZau_cM4YnBG03NYvDcw0ao3bh4w0Evb4kDNRL8guIiewTIE-hUD6ujphLztYPD4_qUfk9uz09vqW3KxOf9erS8SnZYiJBkHrkudq040WiktCwHYMd01gmGWNTyXHFimSgWNahuZiw7bJkcQaVt2uTgmn_ZrZ2fvF_ShvrOL293k61TmrNz9VEaV2qu0s9477GptAkSbwYEZas7qGEYdw6hjGPVLGDuS_0POzozgHv7LfNwzBhFf9WWW5UXBxBMcfJtp
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124453
crossref_primary_10_1016_j_measurement_2023_112770
crossref_primary_10_1177_14759217231185571
crossref_primary_10_1155_2021_9929306
crossref_primary_10_1109_JSEN_2023_3235537
crossref_primary_10_1177_10775463231205362
crossref_primary_10_1109_JSEN_2022_3159116
crossref_primary_10_1109_JSEN_2022_3210450
crossref_primary_10_1109_TASE_2022_3179457
crossref_primary_10_1186_s42162_024_00330_6
crossref_primary_10_1007_s42235_024_00510_w
crossref_primary_10_1016_j_jfranklin_2024_107392
crossref_primary_10_1109_JSEN_2022_3160054
crossref_primary_10_1088_1361_6501_ada630
crossref_primary_10_1142_S0218126625503992
crossref_primary_10_1016_j_measurement_2021_110360
crossref_primary_10_1177_14759217241255126
crossref_primary_10_1109_TVT_2023_3271588
crossref_primary_10_1109_TIM_2024_3375978
Cites_doi 10.1016/j.ymssp.2018.01.027
10.1109/TIT.2011.2146090
10.3901/CJME.2014.1103.166
10.1016/j.jsv.2018.07.039
10.1016/j.ymssp.2014.09.007
10.1016/j.measurement.2019.05.049
10.1016/j.measurement.2017.12.010
10.1016/j.ymssp.2014.04.006
10.1016/j.advengsoft.2013.12.007
10.1016/j.ymssp.2004.09.001
10.1016/j.ymssp.2009.02.003
10.1016/j.asoc.2019.03.012
10.1016/j.jfranklin.2013.09.028
10.1016/j.ymssp.2018.12.054
10.1016/j.ymssp.2015.06.007
10.1016/j.sigpro.2016.07.023
10.1109/TASSP.1987.1165070
10.1109/I2MTC.2015.7151381
10.1137/090777761
10.1142/S1793536909000047
10.1016/j.ymssp.2017.08.038
10.1201/9781420004892
10.1016/j.measurement.2017.02.031
10.1016/j.ymssp.2009.12.007
10.1016/j.ymssp.2018.04.003
10.1016/j.ymssp.2005.12.002
10.1016/j.ymssp.2015.03.030
10.1190/geo2015-0696.1
10.1016/j.jsv.2015.12.020
10.1007/978-3-540-72950-1_77
10.1016/j.advengsoft.2017.07.002
10.1016/j.ymssp.2019.02.023
10.1016/j.ymssp.2018.04.012
10.1109/ICNN.1995.488968
10.1088/1361-6501/aa8a57
10.1016/j.measurement.2016.01.023
10.1016/j.dsp.2006.02.002
10.1109/ICASSP.2014.6854992
10.1016/j.ymssp.2012.09.014
10.1109/JSTSP.2007.910281
10.1109/TIT.2004.834793
10.1190/geo2015-0063.1
10.1016/j.ymssp.2017.02.013
10.1006/mssp.2000.1304
10.1016/j.ymssp.2004.09.002
10.1016/j.ymssp.2010.07.017
10.1109/TSP.2013.2265222
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2021.3086015
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 18145
ExternalDocumentID 10_1109_JSEN_2021_3086015
9446880
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2019M663899XB
  funderid: 10.13039/501100002858
– fundername: Research Fund of the State Key Laboratory of Traction Power
  grantid: 2020TPL-T14
  funderid: 10.13039/501100011422
– fundername: National Natural Science Foundation of China
  grantid: 51905453
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Foundations for the Central Universities
  grantid: 2682020CX50
  funderid: 10.13039/501100012226
– fundername: National Key Research and Development Program of China
  grantid: 2020YFB1200300ZL-03; 2018YFB1201603-14
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-41a1c9c67f3bc77c583aef0cfb30e44b1651a04797ab7db563fedb6ea32d9f63
IEDL.DBID RIE
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684707400078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:24:43 EDT 2025
Tue Nov 18 22:23:51 EST 2025
Sat Nov 29 05:43:12 EST 2025
Wed Aug 27 02:39:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-41a1c9c67f3bc77c583aef0cfb30e44b1651a04797ab7db563fedb6ea32d9f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1532-6551
0000-0001-5641-6791
0000-0002-5868-9360
0000-0003-0211-9323
0000-0001-5204-3860
PQID 2560908656
PQPubID 75733
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2021_3086015
crossref_primary_10_1109_JSEN_2021_3086015
proquest_journals_2560908656
ieee_primary_9446880
PublicationCentury 2000
PublicationDate 2021-08-15
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref46
ref24
ref45
ref23
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref32
  doi: 10.1016/j.ymssp.2018.01.027
– ident: ref25
  doi: 10.1109/TIT.2011.2146090
– ident: ref10
  doi: 10.3901/CJME.2014.1103.166
– ident: ref22
  doi: 10.1016/j.jsv.2018.07.039
– ident: ref4
  doi: 10.1016/j.ymssp.2014.09.007
– ident: ref23
  doi: 10.1016/j.measurement.2019.05.049
– ident: ref1
  doi: 10.1016/j.measurement.2017.12.010
– ident: ref21
  doi: 10.1016/j.ymssp.2014.04.006
– ident: ref35
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref14
  doi: 10.1016/j.ymssp.2004.09.001
– ident: ref9
  doi: 10.1016/j.ymssp.2009.02.003
– ident: ref37
  doi: 10.1016/j.asoc.2019.03.012
– ident: ref40
  doi: 10.1016/j.jfranklin.2013.09.028
– ident: ref38
  doi: 10.1016/j.ymssp.2018.12.054
– ident: ref5
  doi: 10.1016/j.ymssp.2015.06.007
– ident: ref13
  doi: 10.1016/j.sigpro.2016.07.023
– ident: ref11
  doi: 10.1109/TASSP.1987.1165070
– ident: ref12
  doi: 10.1109/I2MTC.2015.7151381
– ident: ref31
  doi: 10.1137/090777761
– ident: ref18
  doi: 10.1142/S1793536909000047
– ident: ref7
  doi: 10.1016/j.ymssp.2017.08.038
– ident: ref47
  doi: 10.1201/9781420004892
– ident: ref39
  doi: 10.1016/j.measurement.2017.02.031
– ident: ref45
  doi: 10.1016/j.ymssp.2009.12.007
– ident: ref28
  doi: 10.1016/j.ymssp.2018.04.003
– ident: ref16
  doi: 10.1016/j.ymssp.2005.12.002
– ident: ref6
  doi: 10.1016/j.ymssp.2015.03.030
– ident: ref42
  doi: 10.1190/geo2015-0696.1
– ident: ref26
  doi: 10.1016/j.jsv.2015.12.020
– ident: ref34
  doi: 10.1007/978-3-540-72950-1_77
– ident: ref36
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: ref27
  doi: 10.1016/j.ymssp.2019.02.023
– ident: ref46
  doi: 10.1016/j.ymssp.2018.04.012
– ident: ref33
  doi: 10.1109/ICNN.1995.488968
– ident: ref17
  doi: 10.1088/1361-6501/aa8a57
– ident: ref2
  doi: 10.1016/j.measurement.2016.01.023
– ident: ref24
  doi: 10.1016/j.dsp.2006.02.002
– ident: ref43
  doi: 10.1109/ICASSP.2014.6854992
– ident: ref3
  doi: 10.1016/j.ymssp.2012.09.014
– ident: ref30
  doi: 10.1109/JSTSP.2007.910281
– ident: ref29
  doi: 10.1109/TIT.2004.834793
– ident: ref41
  doi: 10.1190/geo2015-0063.1
– ident: ref19
  doi: 10.1016/j.ymssp.2017.02.013
– ident: ref44
  doi: 10.1006/mssp.2000.1304
– ident: ref15
  doi: 10.1016/j.ymssp.2004.09.002
– ident: ref8
  doi: 10.1016/j.ymssp.2010.07.017
– ident: ref20
  doi: 10.1109/TSP.2013.2265222
SSID ssj0019757
Score 2.4208786
Snippet Sparse representation has been widely used in bearing fault impact detection, which can find the impact that best matches the fault waveform from the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18132
SubjectTerms Algorithms
asymmetric Gaussian chirplet model
Asymmetry
Axleboxes
Bearing fault diagnosis
Coding
Convolution
Convolutional codes
convolutional sparse coding
Dictionaries
Encoding
Fault detection
Fault diagnosis
Kurtosis
Matched pursuit
Matching
Matching pursuit algorithms
orthogonal matching pursuit
pathfinder algorithm
Representations
Signal processing
Vibrations
Waveforms
Wavelet transforms
Title Convolutional Sparse Coding Using Pathfinder Algorithm-Optimized Orthogonal Matching Pursuit With Asymmetric Gaussian Chirplet Model in Bearing Fault Detection
URI https://ieeexplore.ieee.org/document/9446880
https://www.proquest.com/docview/2560908656
Volume 21
WOSCitedRecordID wos000684707400078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXaCgk4FGhBLBTkAydEWjuJ481xWbogBNtKrWBvkeOMm0i7ySofldo_w19l7HVXlUBIHCLl4IkivRn7jceeR8i7FJCDayYCDCYVxAITFAwpFYQajCoEhNI19fnxTc7n48UiPd8hH7Z3YQDAHT6DY_vqavlFowe7VXaSYu6C_rZLdqVMNne1thWDVLqunhjALIgjufAVTM7Sk68Xp3PMBEN-HCGBZ1YB994a5ERV_piJ3fIye_J_P_aU7HsaSScb3J-RHagPyON7zQUPyEOvb17eHJJf06a-9k6GZhdrTGeBThu7cFF3aoCeIxW0BWxo6WR51bRVX66CM5xQVtUtFPSs7cvmyll_x9m7dCZD2w1VT3_iWDrpblYrK8-l6Wc1dPZuJp2WVbtGx6BWcW1Jq5p-xMCypjM1LHv6CXp3Eqx-Ti5np5fTL4GXZgg08oM-iLniOtWJNFGupdRiHCkwTJs8YhDHOU8EV7Z7vVS5LHKRRAaKPAEVhUVqkugF2aubGl4SygEkPqGIFJIjo8aK8VyYJMxzY1gyHhF2h1Wmfdtyq56xzFz6wtLMwptZeDMP74i835qsNz07_jX40OK5HeihHJGjO4fIfFR3maWHKZqJ5NXfrV6TR_bbds-ZiyOy17cDvCEP9HVfde1b57C_AS287AM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKQSocKLRFbGnBB06ItM6H481xu-1SYLut1BXsLXKccRNpN1nlo1L7Z_irjL3pqhIIiUOkHDxKpDdjv_HY8wj5GAFycMW4g8EknYBjgoIhJR1PgZYpB0_Ypj4_xmIy6c9m0dUG-by-CwMA9vAZHJlXW8tPS9WarbLjCHMX9Lcn5CkPAo-tbmutawaRsH09MYSZE_hi1tUwXRYdf7s-m2Au6LlHPlJ4ZjRwH61CVlblj7nYLjCj7f_7tVfkZUck6WCF_GuyAcUOefGoveAO2eoUzrO7XfJrWBa3nZuh2fUSE1qgw9IsXdSeG6BXSAZNCRsqOpjflFXeZAvnEqeURX4PKb2smqy8sdYXOH9n1qSt6jZv6E8cSwf13WJhBLoU_SLb2tzOpMMsr5boGtRors1pXtATDC1jOpLtvKGn0NizYMUemY7OpsNzpxNncBQyhMYJXOmqSIVC-4kSQvG-L0EzpROfQRAkbshdafrXC5mINOGhryFNQpC-l0Y69N-QzaIs4C2hLoDAx-O-RHqkZV8yN-E69JJEaxb2e4Q9YBWrrnG50c-YxzaBYVFs4I0NvHEHb498WpssV107_jV41-C5HthB2SMHDw4Rd3Fdx4YgRmjGw_2_W30gW-fTi3E8_jr5_o48N98xO9AuPyCbTdXCIXmmbpu8rt5b5_0Nkh3vSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Sparse+Coding+Using+Pathfinder+Algorithm-Optimized+Orthogonal+Matching+Pursuit+With+Asymmetric+Gaussian+Chirplet+Model+in+Bearing+Fault+Detection&rft.jtitle=IEEE+sensors+journal&rft.au=Zhou%2C+Qiuyang&rft.au=Zhang%2C+Yuhui&rft.au=Yi%2C+Cai&rft.au=Lin%2C+Jianhui&rft.date=2021-08-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=21&rft.issue=16&rft.spage=18132&rft.epage=18145&rft_id=info:doi/10.1109%2FJSEN.2021.3086015&rft.externalDocID=9446880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon