Convolutional Sparse Coding Using Pathfinder Algorithm-Optimized Orthogonal Matching Pursuit With Asymmetric Gaussian Chirplet Model in Bearing Fault Detection
Sparse representation has been widely used in bearing fault impact detection, which can find the impact that best matches the fault waveform from the pre-defined dictionary and recover the fault impulse waveform. However, the current dictionary of sparse representation and the efficiency of sparse r...
Uložené v:
| Vydané v: | IEEE sensors journal Ročník 21; číslo 16; s. 18132 - 18145 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
15.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Sparse representation has been widely used in bearing fault impact detection, which can find the impact that best matches the fault waveform from the pre-defined dictionary and recover the fault impulse waveform. However, the current dictionary of sparse representation and the efficiency of sparse representation algorithm need to be improved. In order to accurately detect the fault impulse in the original signal, a convolutional sparse coding using pathfinder algorithm-optimized orthogonal matching pursuit with asymmetric Gaussian chirplet model (CSC-OAGCM) is proposed in this paper. A new time-frequency atom prototype, AGCM, is used to match the fault impulse waveform. The specific application steps of the proposed algorithm are as follows: Firstly, a convolution dictionary is constructed with atoms generated by AGCM. Subsequently, based on the convolution dictionary, a pathfinder algorithm-optimized orthogonal matching pursuit algorithm is used to solve the sparse representation and optimize the atomic parameters to achieve the best approximation of the original signal. In other words, the proposed method detects the convolutional sparse patterns in the signal. A simulation signal, two sets of mixed signals of experimental data collected from the experimental platform and an axle box vibration signal collected from the actual operating train are used to verify the effectiveness of proposed method. Additionally, the spectral kurtosis and empirical wavelet transform are also used to process these signals, and their processing results are compared with those obtained by the proposed method to demonstrate the superiority of the proposed method. |
|---|---|
| AbstractList | Sparse representation has been widely used in bearing fault impact detection, which can find the impact that best matches the fault waveform from the pre-defined dictionary and recover the fault impulse waveform. However, the current dictionary of sparse representation and the efficiency of sparse representation algorithm need to be improved. In order to accurately detect the fault impulse in the original signal, a convolutional sparse coding using pathfinder algorithm-optimized orthogonal matching pursuit with asymmetric Gaussian chirplet model (CSC-OAGCM) is proposed in this paper. A new time-frequency atom prototype, AGCM, is used to match the fault impulse waveform. The specific application steps of the proposed algorithm are as follows: Firstly, a convolution dictionary is constructed with atoms generated by AGCM. Subsequently, based on the convolution dictionary, a pathfinder algorithm-optimized orthogonal matching pursuit algorithm is used to solve the sparse representation and optimize the atomic parameters to achieve the best approximation of the original signal. In other words, the proposed method detects the convolutional sparse patterns in the signal. A simulation signal, two sets of mixed signals of experimental data collected from the experimental platform and an axle box vibration signal collected from the actual operating train are used to verify the effectiveness of proposed method. Additionally, the spectral kurtosis and empirical wavelet transform are also used to process these signals, and their processing results are compared with those obtained by the proposed method to demonstrate the superiority of the proposed method. |
| Author | He, Liu Zhou, Qiuyang Zhang, Yuhui Yi, Cai Lin, Jianhui Hu, Qiwei |
| Author_xml | – sequence: 1 givenname: Qiuyang orcidid: 0000-0002-1532-6551 surname: Zhou fullname: Zhou, Qiuyang email: 496153308@qq.com organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China – sequence: 2 givenname: Yuhui orcidid: 0000-0001-5204-3860 surname: Zhang fullname: Zhang, Yuhui email: podddam@sina.com organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China – sequence: 3 givenname: Cai orcidid: 0000-0001-5641-6791 surname: Yi fullname: Yi, Cai email: yicai@swjtu.edu.cn organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China – sequence: 4 givenname: Jianhui orcidid: 0000-0002-5868-9360 surname: Lin fullname: Lin, Jianhui email: lin13008104673@126.com organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China – sequence: 5 givenname: Liu orcidid: 0000-0003-0211-9323 surname: He fullname: He, Liu email: aremiki@163.com organization: State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China – sequence: 6 givenname: Qiwei surname: Hu fullname: Hu, Qiwei email: hqw940808@icloud.com organization: China Railway Electrification Survey Design and Research Institute Company Ltd., Tianjin, China |
| BookMark | eNp9kc9u1DAQxi1UJPqHB0BcLHHOYsdxnByX0BZQ263UIrhFE2eycZXEqe0glZfpq3bdrXrgwGVmDt9v9M18R-RgshMS8oGzFees_Pzj5vRqlbKUrwQrcsblG3LIpSwSrrLiIM6CJZlQv9-RI-_vGOOlkuqQPFZ2-mOHJRg7wUBvZnAeaWVbM23pTx_rNYS-M1OLjq6HrXUm9GOymYMZzV9s6caF3m6f6UsIun9GFucXE-ivnZau_cM4YnBG03NYvDcw0ao3bh4w0Evb4kDNRL8guIiewTIE-hUD6ujphLztYPD4_qUfk9uz09vqW3KxOf9erS8SnZYiJBkHrkudq040WiktCwHYMd01gmGWNTyXHFimSgWNahuZiw7bJkcQaVt2uTgmn_ZrZ2fvF_ShvrOL293k61TmrNz9VEaV2qu0s9477GptAkSbwYEZas7qGEYdw6hjGPVLGDuS_0POzozgHv7LfNwzBhFf9WWW5UXBxBMcfJtp |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124453 crossref_primary_10_1016_j_measurement_2023_112770 crossref_primary_10_1177_14759217231185571 crossref_primary_10_1155_2021_9929306 crossref_primary_10_1109_JSEN_2023_3235537 crossref_primary_10_1177_10775463231205362 crossref_primary_10_1109_JSEN_2022_3159116 crossref_primary_10_1109_JSEN_2022_3210450 crossref_primary_10_1109_TASE_2022_3179457 crossref_primary_10_1186_s42162_024_00330_6 crossref_primary_10_1007_s42235_024_00510_w crossref_primary_10_1016_j_jfranklin_2024_107392 crossref_primary_10_1109_JSEN_2022_3160054 crossref_primary_10_1088_1361_6501_ada630 crossref_primary_10_1142_S0218126625503992 crossref_primary_10_1016_j_measurement_2021_110360 crossref_primary_10_1177_14759217241255126 crossref_primary_10_1109_TVT_2023_3271588 crossref_primary_10_1109_TIM_2024_3375978 |
| Cites_doi | 10.1016/j.ymssp.2018.01.027 10.1109/TIT.2011.2146090 10.3901/CJME.2014.1103.166 10.1016/j.jsv.2018.07.039 10.1016/j.ymssp.2014.09.007 10.1016/j.measurement.2019.05.049 10.1016/j.measurement.2017.12.010 10.1016/j.ymssp.2014.04.006 10.1016/j.advengsoft.2013.12.007 10.1016/j.ymssp.2004.09.001 10.1016/j.ymssp.2009.02.003 10.1016/j.asoc.2019.03.012 10.1016/j.jfranklin.2013.09.028 10.1016/j.ymssp.2018.12.054 10.1016/j.ymssp.2015.06.007 10.1016/j.sigpro.2016.07.023 10.1109/TASSP.1987.1165070 10.1109/I2MTC.2015.7151381 10.1137/090777761 10.1142/S1793536909000047 10.1016/j.ymssp.2017.08.038 10.1201/9781420004892 10.1016/j.measurement.2017.02.031 10.1016/j.ymssp.2009.12.007 10.1016/j.ymssp.2018.04.003 10.1016/j.ymssp.2005.12.002 10.1016/j.ymssp.2015.03.030 10.1190/geo2015-0696.1 10.1016/j.jsv.2015.12.020 10.1007/978-3-540-72950-1_77 10.1016/j.advengsoft.2017.07.002 10.1016/j.ymssp.2019.02.023 10.1016/j.ymssp.2018.04.012 10.1109/ICNN.1995.488968 10.1088/1361-6501/aa8a57 10.1016/j.measurement.2016.01.023 10.1016/j.dsp.2006.02.002 10.1109/ICASSP.2014.6854992 10.1016/j.ymssp.2012.09.014 10.1109/JSTSP.2007.910281 10.1109/TIT.2004.834793 10.1190/geo2015-0063.1 10.1016/j.ymssp.2017.02.013 10.1006/mssp.2000.1304 10.1016/j.ymssp.2004.09.002 10.1016/j.ymssp.2010.07.017 10.1109/TSP.2013.2265222 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2021.3086015 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 18145 |
| ExternalDocumentID | 10_1109_JSEN_2021_3086015 9446880 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2019M663899XB funderid: 10.13039/501100002858 – fundername: Research Fund of the State Key Laboratory of Traction Power grantid: 2020TPL-T14 funderid: 10.13039/501100011422 – fundername: National Natural Science Foundation of China grantid: 51905453 funderid: 10.13039/501100001809 – fundername: Fundamental Research Foundations for the Central Universities grantid: 2682020CX50 funderid: 10.13039/501100012226 – fundername: National Key Research and Development Program of China grantid: 2020YFB1200300ZL-03; 2018YFB1201603-14 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-41a1c9c67f3bc77c583aef0cfb30e44b1651a04797ab7db563fedb6ea32d9f63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684707400078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:24:43 EDT 2025 Tue Nov 18 22:23:51 EST 2025 Sat Nov 29 05:43:12 EST 2025 Wed Aug 27 02:39:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-41a1c9c67f3bc77c583aef0cfb30e44b1651a04797ab7db563fedb6ea32d9f63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1532-6551 0000-0001-5641-6791 0000-0002-5868-9360 0000-0003-0211-9323 0000-0001-5204-3860 |
| PQID | 2560908656 |
| PQPubID | 75733 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2021_3086015 crossref_primary_10_1109_JSEN_2021_3086015 proquest_journals_2560908656 ieee_primary_9446880 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-15 |
| PublicationDateYYYYMMDD | 2021-08-15 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref46 ref24 ref45 ref23 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref32 doi: 10.1016/j.ymssp.2018.01.027 – ident: ref25 doi: 10.1109/TIT.2011.2146090 – ident: ref10 doi: 10.3901/CJME.2014.1103.166 – ident: ref22 doi: 10.1016/j.jsv.2018.07.039 – ident: ref4 doi: 10.1016/j.ymssp.2014.09.007 – ident: ref23 doi: 10.1016/j.measurement.2019.05.049 – ident: ref1 doi: 10.1016/j.measurement.2017.12.010 – ident: ref21 doi: 10.1016/j.ymssp.2014.04.006 – ident: ref35 doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref14 doi: 10.1016/j.ymssp.2004.09.001 – ident: ref9 doi: 10.1016/j.ymssp.2009.02.003 – ident: ref37 doi: 10.1016/j.asoc.2019.03.012 – ident: ref40 doi: 10.1016/j.jfranklin.2013.09.028 – ident: ref38 doi: 10.1016/j.ymssp.2018.12.054 – ident: ref5 doi: 10.1016/j.ymssp.2015.06.007 – ident: ref13 doi: 10.1016/j.sigpro.2016.07.023 – ident: ref11 doi: 10.1109/TASSP.1987.1165070 – ident: ref12 doi: 10.1109/I2MTC.2015.7151381 – ident: ref31 doi: 10.1137/090777761 – ident: ref18 doi: 10.1142/S1793536909000047 – ident: ref7 doi: 10.1016/j.ymssp.2017.08.038 – ident: ref47 doi: 10.1201/9781420004892 – ident: ref39 doi: 10.1016/j.measurement.2017.02.031 – ident: ref45 doi: 10.1016/j.ymssp.2009.12.007 – ident: ref28 doi: 10.1016/j.ymssp.2018.04.003 – ident: ref16 doi: 10.1016/j.ymssp.2005.12.002 – ident: ref6 doi: 10.1016/j.ymssp.2015.03.030 – ident: ref42 doi: 10.1190/geo2015-0696.1 – ident: ref26 doi: 10.1016/j.jsv.2015.12.020 – ident: ref34 doi: 10.1007/978-3-540-72950-1_77 – ident: ref36 doi: 10.1016/j.advengsoft.2017.07.002 – ident: ref27 doi: 10.1016/j.ymssp.2019.02.023 – ident: ref46 doi: 10.1016/j.ymssp.2018.04.012 – ident: ref33 doi: 10.1109/ICNN.1995.488968 – ident: ref17 doi: 10.1088/1361-6501/aa8a57 – ident: ref2 doi: 10.1016/j.measurement.2016.01.023 – ident: ref24 doi: 10.1016/j.dsp.2006.02.002 – ident: ref43 doi: 10.1109/ICASSP.2014.6854992 – ident: ref3 doi: 10.1016/j.ymssp.2012.09.014 – ident: ref30 doi: 10.1109/JSTSP.2007.910281 – ident: ref29 doi: 10.1109/TIT.2004.834793 – ident: ref41 doi: 10.1190/geo2015-0063.1 – ident: ref19 doi: 10.1016/j.ymssp.2017.02.013 – ident: ref44 doi: 10.1006/mssp.2000.1304 – ident: ref15 doi: 10.1016/j.ymssp.2004.09.002 – ident: ref8 doi: 10.1016/j.ymssp.2010.07.017 – ident: ref20 doi: 10.1109/TSP.2013.2265222 |
| SSID | ssj0019757 |
| Score | 2.4208786 |
| Snippet | Sparse representation has been widely used in bearing fault impact detection, which can find the impact that best matches the fault waveform from the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 18132 |
| SubjectTerms | Algorithms asymmetric Gaussian chirplet model Asymmetry Axleboxes Bearing fault diagnosis Coding Convolution Convolutional codes convolutional sparse coding Dictionaries Encoding Fault detection Fault diagnosis Kurtosis Matched pursuit Matching Matching pursuit algorithms orthogonal matching pursuit pathfinder algorithm Representations Signal processing Vibrations Waveforms Wavelet transforms |
| Title | Convolutional Sparse Coding Using Pathfinder Algorithm-Optimized Orthogonal Matching Pursuit With Asymmetric Gaussian Chirplet Model in Bearing Fault Detection |
| URI | https://ieeexplore.ieee.org/document/9446880 https://www.proquest.com/docview/2560908656 |
| Volume | 21 |
| WOSCitedRecordID | wos000684707400078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaCgk48GipWCjIB06ItHadxOvjsnRBCLaVWom9RbYzbiLtJqs8KpU_w1_F401XlUBI3HLwF0X6xvPI2PMR8k7IJHExd1HODUQYoSPDxiaSzsVKGqkSE5j-Jufz8WKhLnbIh-1dGAAIh8_gGB9DLz-vbY-_yk6Ur128ve2SXSnTzV2tbcdAyTDV029gFsVCLoYOJmfq5Ovl2dxXgqf8WPgEnqEC7r0YFERV_vDEIbzMnv7fhz0jT4Y0kk42vD8nO1Dtk8f3hgvuk4eDvnlxe0B-TevqZjAyD7tc-3IW6LTGwEXDqQF64VNBbGBDQyfL67opu2IVnXuHsip_Qk7Pm66orwP6u_feRYD0TduXHf3h19JJe7taoTyXpZ913-LdTDotymbtDYOi4tqSlhX96DcWQme6X3b0E3ThJFj1glzNzq6mX6JBmiGyPj_oophrbpVNpRPGSmmTsdDgmHVGMIhjw9OEa5xeL7WRuUlS4SA3KWhxmiuXikOyV9UVvCQUJ9D7GjMFDiLWQhgN3stwnbs4HwNTI8LuuMrsMLYc1TOWWShfmMqQ3gzpzQZ6R-T9FrLezOz41-ID5HO7cKByRI7uDCIbdnWbYXqoPCxJX_0d9Zo8wnfjP2eeHJG9runhDXlgb7qybd4Gg_0Ng0LruQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGQBo8cNlAFAb4gSdENrt24vqxlJUBXTdplehbZDvHa6Q2qXKZNP4MfxXbzapJICTe8uBPifQdn0uOfT6E3jMRx5ZTG2VUQ-QjdKTJQEfCWi6FFjLWgemJmE4H87m82EEft3dhACAcPoMj_xh6-VlpWv-r7Fi62sXZ2z10P-a8Tza3tbY9AynCXE-3hUnEmZh3PUxK5PG3y5OpqwX79Ii5FJ54Ddw7USjIqvzhi0OAGT_5v097ih53iSQebph_hnag2EeP7owX3Ed7ncL54uYA_RqVxXVnZg52uXYFLeBR6UMXDucG8IVLBn0LGyo8XF6VVd4sVtG5cymr_Cdk-LxqFuVVQJ85_70IkLaq27zBP9xaPKxvVisv0GXwF9XW_nYmHi3yau1MA3vNtSXOC_zJbS0PHat22eDP0ISzYMVzNBufzEanUSfOEBmXITQRp4oaaRJhmTZCmHjAFFhirGYEONc0iany8-uF0iLTccIsZDoBxfqZtAl7gXaLsoCXCPsZ9K7KTIAC44oxrcD5Gaoyy7MBENlD5Jar1HSDy71-xjINBQyRqac39fSmHb099GELWW-mdvxr8YHnc7uwo7KHDm8NIu32dZ36BFE6WJy8-jvqHdo7nZ1N0snX6ffX6KF_j_8DTeNDtNtULbxBD8x1k9fV22C8vwHkue8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Sparse+Coding+Using+Pathfinder+Algorithm-Optimized+Orthogonal+Matching+Pursuit+With+Asymmetric+Gaussian+Chirplet+Model+in+Bearing+Fault+Detection&rft.jtitle=IEEE+sensors+journal&rft.au=Zhou%2C+Qiuyang&rft.au=Zhang%2C+Yuhui&rft.au=Yi%2C+Cai&rft.au=Lin%2C+Jianhui&rft.date=2021-08-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=16&rft.spage=18132&rft.epage=18145&rft_id=info:doi/10.1109%2FJSEN.2021.3086015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2021_3086015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |