i-SRAM: Interleaved Wordlines for Vector Boolean Operations Using SRAMs
The generic approach toward SRAM based in-memory computations has been to activate multiple memory rows simultaneously and read out a logic function of the constituent rows. In general, these schemes introduce errors in computations due to their analog nature, limiting their usage to error-resilient...
Uloženo v:
| Vydáno v: | IEEE transactions on circuits and systems. I, Regular papers Ročník 67; číslo 12; s. 4651 - 4659 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1549-8328, 1558-0806 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The generic approach toward SRAM based in-memory computations has been to activate multiple memory rows simultaneously and read out a logic function of the constituent rows. In general, these schemes introduce errors in computations due to their analog nature, limiting their usage to error-resilient applications such as machine learning. In contrast, in-memory bulk bit-wise Boolean computations are suitable not only for error-resilient applications, but also those that require accurate computations like encryption. Prior works have indeed accomplished such bit-wise computations, however, they require modifications to the normal SRAM read operations leading to degraded read-stability or lower sense-margin. In this paper, we propose interleaving the word-lines (i-SRAM) as the basic approach for embedding bit-wise computations in SRAM arrays. Further, our i-SRAM read operation is identical to the normal memory read operation without loss of read-robustness or sense-margin. Even at deeply scaled nodes, as long as normal SRAM read stability is ascertained, the presented proposal works equally well. As opposed to prior works, this is a key benefactor in allowing the proposal to be seamlessly integrated in state-of-the-art SRAM compilers. We propose different configurations of i-SRAM for 6T and 8T-bit-cells, with minimal area overhead. We further demonstrate upto <inline-formula> <tex-math notation="LaTeX">\sim 2 \times </tex-math></inline-formula> improvement in energy and <inline-formula> <tex-math notation="LaTeX">\sim 8 \times </tex-math></inline-formula> improvement in throughput for a binary neural network (BNN) and <inline-formula> <tex-math notation="LaTeX">\sim 3.5 \times </tex-math></inline-formula> improvement in energy and <inline-formula> <tex-math notation="LaTeX">\sim 3 \times </tex-math></inline-formula> improvement in throughput for AES encryption using the proposed i-SRAM in a modified von-Neuamnn machine. |
|---|---|
| AbstractList | The generic approach toward SRAM based in-memory computations has been to activate multiple memory rows simultaneously and read out a logic function of the constituent rows. In general, these schemes introduce errors in computations due to their analog nature, limiting their usage to error-resilient applications such as machine learning. In contrast, in-memory bulk bit-wise Boolean computations are suitable not only for error-resilient applications, but also those that require accurate computations like encryption. Prior works have indeed accomplished such bit-wise computations, however, they require modifications to the normal SRAM read operations leading to degraded read-stability or lower sense-margin. In this paper, we propose interleaving the word-lines (i-SRAM) as the basic approach for embedding bit-wise computations in SRAM arrays. Further, our i-SRAM read operation is identical to the normal memory read operation without loss of read-robustness or sense-margin. Even at deeply scaled nodes, as long as normal SRAM read stability is ascertained, the presented proposal works equally well. As opposed to prior works, this is a key benefactor in allowing the proposal to be seamlessly integrated in state-of-the-art SRAM compilers. We propose different configurations of i-SRAM for 6T and 8T-bit-cells, with minimal area overhead. We further demonstrate upto [Formula Omitted] improvement in energy and [Formula Omitted] improvement in throughput for a binary neural network (BNN) and [Formula Omitted] improvement in energy and [Formula Omitted] improvement in throughput for AES encryption using the proposed i-SRAM in a modified von-Neuamnn machine. The generic approach toward SRAM based in-memory computations has been to activate multiple memory rows simultaneously and read out a logic function of the constituent rows. In general, these schemes introduce errors in computations due to their analog nature, limiting their usage to error-resilient applications such as machine learning. In contrast, in-memory bulk bit-wise Boolean computations are suitable not only for error-resilient applications, but also those that require accurate computations like encryption. Prior works have indeed accomplished such bit-wise computations, however, they require modifications to the normal SRAM read operations leading to degraded read-stability or lower sense-margin. In this paper, we propose interleaving the word-lines (i-SRAM) as the basic approach for embedding bit-wise computations in SRAM arrays. Further, our i-SRAM read operation is identical to the normal memory read operation without loss of read-robustness or sense-margin. Even at deeply scaled nodes, as long as normal SRAM read stability is ascertained, the presented proposal works equally well. As opposed to prior works, this is a key benefactor in allowing the proposal to be seamlessly integrated in state-of-the-art SRAM compilers. We propose different configurations of i-SRAM for 6T and 8T-bit-cells, with minimal area overhead. We further demonstrate upto <inline-formula> <tex-math notation="LaTeX">\sim 2 \times </tex-math></inline-formula> improvement in energy and <inline-formula> <tex-math notation="LaTeX">\sim 8 \times </tex-math></inline-formula> improvement in throughput for a binary neural network (BNN) and <inline-formula> <tex-math notation="LaTeX">\sim 3.5 \times </tex-math></inline-formula> improvement in energy and <inline-formula> <tex-math notation="LaTeX">\sim 3 \times </tex-math></inline-formula> improvement in throughput for AES encryption using the proposed i-SRAM in a modified von-Neuamnn machine. |
| Author | Sharmin, Saima Roy, Kaushik Agrawal, Amogh Ali, Mustafa F. Jaiswal, Akhilesh |
| Author_xml | – sequence: 1 givenname: Akhilesh orcidid: 0000-0001-9911-2624 surname: Jaiswal fullname: Jaiswal, Akhilesh email: jaiswal@purdue.edu organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 2 givenname: Amogh orcidid: 0000-0001-9999-9085 surname: Agrawal fullname: Agrawal, Amogh email: agrawa64@purdue.edu organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 3 givenname: Mustafa F. orcidid: 0000-0002-4452-6464 surname: Ali fullname: Ali, Mustafa F. email: ali102@purdue.edu organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 4 givenname: Saima orcidid: 0000-0002-1866-9138 surname: Sharmin fullname: Sharmin, Saima email: ssharmin@purdue.edu organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 5 givenname: Kaushik orcidid: 0000-0002-0735-9695 surname: Roy fullname: Roy, Kaushik email: kaushik@purdue.edu organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA |
| BookMark | eNp9kE9LAzEQxYNUsK1-APGy4Hlr_u4m3mrRWqgUbKvHkM3OSkrd1GQr-O3dtcWDB09vYN5vHvMGqFf7GhC6JHhECFY3q8lyNqKY4hHDWOSSnaA-EUKmWOKs181cpZJReYYGMW4wpgoz0kdTly6fx0-3yaxuIGzBfEKZvPpQbl0NMal8SF7ANq3ced-u62Sxg2Aa5-uYrKOr35KOj-fotDLbCBdHHaL1w_1q8pjOF9PZZDxPLVWsSTkuOEhSFEQUVFiRg8kySwSueFliYbklAFZVkpckF7aisgIlDC8INYYKxYbo-nB3F_zHHmKjN34f6jZSU57lVGWc0dZFDi4bfIwBKr0L7t2EL02w7vrSXV-660sf-2qZ_A9jXfPzaBOM2_5LXh1IBwC_SYrwjBHKvgERlXjn |
| CODEN | ITCSCH |
| CitedBy_id | crossref_primary_10_1007_s11227_024_06700_x crossref_primary_10_1109_TCSII_2021_3123512 crossref_primary_10_1145_3766540 crossref_primary_10_1109_TCSI_2024_3353464 crossref_primary_10_1109_TVLSI_2022_3164756 crossref_primary_10_1109_TCSI_2024_3381935 crossref_primary_10_1109_TNS_2022_3186083 crossref_primary_10_1109_TVLSI_2025_3526973 crossref_primary_10_1109_TCAD_2021_3124757 crossref_primary_10_1109_JSSC_2022_3206318 crossref_primary_10_1080_03772063_2024_2413862 crossref_primary_10_1088_1674_4926_43_3_031401 crossref_primary_10_3390_electronics10182291 crossref_primary_10_1109_TCSI_2025_3554533 crossref_primary_10_1109_TVLSI_2022_3148327 crossref_primary_10_1109_TC_2023_3301156 crossref_primary_10_1016_j_sysarc_2021_102276 crossref_primary_10_1109_JETCAS_2023_3243192 crossref_primary_10_1049_ell2_12675 crossref_primary_10_1109_TCSI_2024_3463184 |
| Cites_doi | 10.1109/2.375174 10.1109/ISSCC.2018.8310397 10.1109/JSSC.2016.2642198 10.1109/ICASSP.2014.6855225 10.1109/TCSI.2020.2981901 10.1109/CICC.1992.591879 10.1109/TCSI.2019.2945617 10.1007/978-3-319-46493-0_32 10.1109/ISCA.2018.00040 10.1109/VLSIT.2018.8510687 10.1109/HPCA.2017.21 10.1109/JSSC.2017.2782087 10.1109/ISSCC.2019.8662435 10.1109/TCSI.2018.2848999 10.1109/JSSC.2018.2822703 10.1145/3007787.3001139 10.1145/3297858.3304049 10.1109/.2005.1469239 10.1109/JSSC.2018.2867275 10.1109/ISSCC.2019.8662392 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCSI.2020.3005783 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0806 |
| EndPage | 4659 |
| ExternalDocumentID | 10_1109_TCSI_2020_3005783 9146312 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: DARPA funderid: 10.13039/100000185 – fundername: Vannevar Bush Faculty Fellowship – fundername: C-BRIC, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) Program funderid: 10.13039/100000028 – fundername: National Science Foundation, Intel Corporation funderid: 10.13039/100002418 |
| GroupedDBID | 0R~ 29I 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF M43 O9- OCL PZZ RIA RIE RNS VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c293t-40b4e81bb15b25c57ea66c150f4dd05c4c1eec9f84d175cf28fe95a4b12aa2593 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596021000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-8328 |
| IngestDate | Mon Jun 30 03:22:07 EDT 2025 Sat Nov 29 06:23:53 EST 2025 Tue Nov 18 21:55:21 EST 2025 Wed Aug 27 02:32:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-40b4e81bb15b25c57ea66c150f4dd05c4c1eec9f84d175cf28fe95a4b12aa2593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1866-9138 0000-0001-9999-9085 0000-0002-4452-6464 0000-0001-9911-2624 0000-0002-0735-9695 |
| PQID | 2467296432 |
| PQPubID | 85411 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_9146312 crossref_primary_10_1109_TCSI_2020_3005783 crossref_citationtrail_10_1109_TCSI_2020_3005783 proquest_journals_2467296432 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems. I, Regular papers |
| PublicationTitleAbbrev | TCSI |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 ref10 (ref21) 2020 jaiswal (ref11) 2018 ref2 courbariaux (ref24) 2016 agrawal (ref12) 2018 ref17 ref16 ref19 ref18 dworkin (ref29) 2001 krizhevsky (ref25) 2009 (ref26) 2019 ref23 dong (ref1) 2017 ref20 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 (ref22) 2017 |
| References_xml | – ident: ref13 doi: 10.1109/2.375174 – ident: ref7 doi: 10.1109/ISSCC.2018.8310397 – ident: ref6 doi: 10.1109/JSSC.2016.2642198 – year: 2017 ident: ref22 publication-title: Avalon Interface Specifications – ident: ref16 doi: 10.1109/ICASSP.2014.6855225 – start-page: 160c year: 2017 ident: ref1 article-title: A 0.3 V VDDmin 4+2T SRAM for searching and in-memory computing using 55 nm DDC technology publication-title: Proc Symp VLSI Circuits – ident: ref19 doi: 10.1109/TCSI.2020.2981901 – ident: ref14 doi: 10.1109/CICC.1992.591879 – year: 2018 ident: ref11 article-title: 8T SRAM cell as a multi-bit dot product engine for beyond von-Neumann computing publication-title: arXiv 1802 08601 – ident: ref15 doi: 10.1109/TCSI.2019.2945617 – year: 2016 ident: ref24 article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or ?1 publication-title: arXiv 1602 02830 [cs] – ident: ref23 doi: 10.1007/978-3-319-46493-0_32 – ident: ref3 doi: 10.1109/ISCA.2018.00040 – ident: ref9 doi: 10.1109/VLSIT.2018.8510687 – ident: ref18 doi: 10.1109/HPCA.2017.21 – year: 2001 ident: ref29 article-title: Recommendation for block cipher modes of operation. Methods and techniques – ident: ref4 doi: 10.1109/JSSC.2017.2782087 – ident: ref8 doi: 10.1109/ISSCC.2019.8662435 – ident: ref2 doi: 10.1109/TCSI.2018.2848999 – year: 2009 ident: ref25 article-title: Learning multiple layers of features from tiny images – year: 2020 ident: ref21 publication-title: CACTI 6 0 A Tool to Understand Large Caches – year: 2019 ident: ref26 publication-title: Advanced Encryption Standard – ident: ref5 doi: 10.1109/JSSC.2018.2822703 – year: 2018 ident: ref12 article-title: Xcel-RAM: Accelerating binary neural networks in high-throughput SRAM compute arrays publication-title: arXiv 1807 00343 – ident: ref27 doi: 10.1145/3007787.3001139 – ident: ref28 doi: 10.1145/3297858.3304049 – ident: ref20 doi: 10.1109/.2005.1469239 – ident: ref17 doi: 10.1109/JSSC.2018.2867275 – ident: ref10 doi: 10.1109/ISSCC.2019.8662392 |
| SSID | ssj0029031 |
| Score | 2.482553 |
| Snippet | The generic approach toward SRAM based in-memory computations has been to activate multiple memory rows simultaneously and read out a logic function of the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4651 |
| SubjectTerms | Arrays binary neural network Boolean Boolean algebra Encryption In-memory computing interleaved word-lines Layout Logic gates Machine learning Neural networks Proposals Random access memory SRAMs Stability Static random access memory Throughput von Neumann bottleneck |
| Title | i-SRAM: Interleaved Wordlines for Vector Boolean Operations Using SRAMs |
| URI | https://ieeexplore.ieee.org/document/9146312 https://www.proquest.com/docview/2467296432 |
| Volume | 67 |
| WOSCitedRecordID | wos000596021000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-0806 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029031 issn: 1549-8328 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9z-KAPfk1xOiUPPol1bZp-xLc5nAo6xc25t9KmVxiMdqzb_n4vaVcURfCtkA_K7y65-yWXO0IuYm6HURL7RoS-gqGUwghRzEYihbQ86UipM96Mnrx-3x-PxWuNXFVvYQBAB5_BtfrUd_lxJpfqqKwtcFnbqqTwhue5xVutilwJ0y5yo3JhoJb65Q2mZYr2sDt4RCbIkKCqt5e-_c0G6aIqP3ZibV56u__7sT2yU7qRtFPIfZ_UID0g21-SCzbI_cQYvHWeb6g-9JtCuIKYfiDXVI5lTtFZpSN9ZE9vswybU_oyg0IfcqojCaganx-S997dsPtglGUTDIm2e4GMMOKA3mhkORFzpONB6LoIuZnwODYdyaUFIEXi8xh9B5kwPwHhhDyyWBgiG7KPSD3NUjgmNHSF4ICQCUtguxAsBm67lsrRLq2ENYm5BjKQZU5xVdpiGmhuYYpAYR8o7IMS-ya5rIbMioQaf3VuKLCrjiXOTdJaSysol1weMNzy1R2yzU5-H3VKttTcRSxKi9QX8yWckU25Wkzy-bnWpk_tbMT9 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEL4QNVEf_G1EUfvgk3GydR2sviERMSIaQeRt2bpbQkKAMODv99pNotGY-Lakbbp8d-3d117vAC5i4YZREvtWRL6CpZXCCknMVqKkcqrKU8pkvOm1qu223-_LlwJcLd_CIKIJPsNr_Wnu8uOxmuujsrKkZe3qksKrnhDczl5rLemVtN0sO6qQFumpn99hOrYsd-udB-KCnCiqfn3pu9-skCmr8mMvNgamsf2_X9uBrdyRZLVM8rtQwNEebH5JL7gP9wOr81p7umHm2G-I4QJj9k5sU7uWKSN3lfXMoT27HY-pecSeJ5hpRMpMLAHT49MDeGvcdetNKy-cYCmy3jPihJFA8kcjx4u4p7wqhpUKgW4nIo5tTwnlICqZ-CIm70El3E9QeqGIHB6GxIfcQ1gZjUd4BCysSCmQIJOOpHYpeYzCrTg6S7tyEl4E-xPIQOVZxXVxi2Fg2IUtA419oLEPcuyLcLkcMslSavzVeV-DveyY41yE0qe0gnzRpQGnTV_fIrv8-PdR57De7D61gtZD-_EENvQ8WWRKCVZm0zmewppazAbp9Mxo1gdbIchE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=i-SRAM%3A+Interleaved+Wordlines+for+Vector+Boolean+Operations+Using+SRAMs&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Jaiswal%2C+Akhilesh&rft.au=Agrawal%2C+Amogh&rft.au=Ali%2C+Mustafa+F.&rft.au=Sharmin%2C+Saima&rft.date=2020-12-01&rft.pub=IEEE&rft.issn=1549-8328&rft.volume=67&rft.issue=12&rft.spage=4651&rft.epage=4659&rft_id=info:doi/10.1109%2FTCSI.2020.3005783&rft.externalDocID=9146312 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon |