i-SRAM: Interleaved Wordlines for Vector Boolean Operations Using SRAMs

The generic approach toward SRAM based in-memory computations has been to activate multiple memory rows simultaneously and read out a logic function of the constituent rows. In general, these schemes introduce errors in computations due to their analog nature, limiting their usage to error-resilient...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. I, Regular papers Vol. 67; no. 12; pp. 4651 - 4659
Main Authors: Jaiswal, Akhilesh, Agrawal, Amogh, Ali, Mustafa F., Sharmin, Saima, Roy, Kaushik
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1549-8328, 1558-0806
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The generic approach toward SRAM based in-memory computations has been to activate multiple memory rows simultaneously and read out a logic function of the constituent rows. In general, these schemes introduce errors in computations due to their analog nature, limiting their usage to error-resilient applications such as machine learning. In contrast, in-memory bulk bit-wise Boolean computations are suitable not only for error-resilient applications, but also those that require accurate computations like encryption. Prior works have indeed accomplished such bit-wise computations, however, they require modifications to the normal SRAM read operations leading to degraded read-stability or lower sense-margin. In this paper, we propose interleaving the word-lines (i-SRAM) as the basic approach for embedding bit-wise computations in SRAM arrays. Further, our i-SRAM read operation is identical to the normal memory read operation without loss of read-robustness or sense-margin. Even at deeply scaled nodes, as long as normal SRAM read stability is ascertained, the presented proposal works equally well. As opposed to prior works, this is a key benefactor in allowing the proposal to be seamlessly integrated in state-of-the-art SRAM compilers. We propose different configurations of i-SRAM for 6T and 8T-bit-cells, with minimal area overhead. We further demonstrate upto <inline-formula> <tex-math notation="LaTeX">\sim 2 \times </tex-math></inline-formula> improvement in energy and <inline-formula> <tex-math notation="LaTeX">\sim 8 \times </tex-math></inline-formula> improvement in throughput for a binary neural network (BNN) and <inline-formula> <tex-math notation="LaTeX">\sim 3.5 \times </tex-math></inline-formula> improvement in energy and <inline-formula> <tex-math notation="LaTeX">\sim 3 \times </tex-math></inline-formula> improvement in throughput for AES encryption using the proposed i-SRAM in a modified von-Neuamnn machine.
AbstractList The generic approach toward SRAM based in-memory computations has been to activate multiple memory rows simultaneously and read out a logic function of the constituent rows. In general, these schemes introduce errors in computations due to their analog nature, limiting their usage to error-resilient applications such as machine learning. In contrast, in-memory bulk bit-wise Boolean computations are suitable not only for error-resilient applications, but also those that require accurate computations like encryption. Prior works have indeed accomplished such bit-wise computations, however, they require modifications to the normal SRAM read operations leading to degraded read-stability or lower sense-margin. In this paper, we propose interleaving the word-lines (i-SRAM) as the basic approach for embedding bit-wise computations in SRAM arrays. Further, our i-SRAM read operation is identical to the normal memory read operation without loss of read-robustness or sense-margin. Even at deeply scaled nodes, as long as normal SRAM read stability is ascertained, the presented proposal works equally well. As opposed to prior works, this is a key benefactor in allowing the proposal to be seamlessly integrated in state-of-the-art SRAM compilers. We propose different configurations of i-SRAM for 6T and 8T-bit-cells, with minimal area overhead. We further demonstrate upto [Formula Omitted] improvement in energy and [Formula Omitted] improvement in throughput for a binary neural network (BNN) and [Formula Omitted] improvement in energy and [Formula Omitted] improvement in throughput for AES encryption using the proposed i-SRAM in a modified von-Neuamnn machine.
The generic approach toward SRAM based in-memory computations has been to activate multiple memory rows simultaneously and read out a logic function of the constituent rows. In general, these schemes introduce errors in computations due to their analog nature, limiting their usage to error-resilient applications such as machine learning. In contrast, in-memory bulk bit-wise Boolean computations are suitable not only for error-resilient applications, but also those that require accurate computations like encryption. Prior works have indeed accomplished such bit-wise computations, however, they require modifications to the normal SRAM read operations leading to degraded read-stability or lower sense-margin. In this paper, we propose interleaving the word-lines (i-SRAM) as the basic approach for embedding bit-wise computations in SRAM arrays. Further, our i-SRAM read operation is identical to the normal memory read operation without loss of read-robustness or sense-margin. Even at deeply scaled nodes, as long as normal SRAM read stability is ascertained, the presented proposal works equally well. As opposed to prior works, this is a key benefactor in allowing the proposal to be seamlessly integrated in state-of-the-art SRAM compilers. We propose different configurations of i-SRAM for 6T and 8T-bit-cells, with minimal area overhead. We further demonstrate upto <inline-formula> <tex-math notation="LaTeX">\sim 2 \times </tex-math></inline-formula> improvement in energy and <inline-formula> <tex-math notation="LaTeX">\sim 8 \times </tex-math></inline-formula> improvement in throughput for a binary neural network (BNN) and <inline-formula> <tex-math notation="LaTeX">\sim 3.5 \times </tex-math></inline-formula> improvement in energy and <inline-formula> <tex-math notation="LaTeX">\sim 3 \times </tex-math></inline-formula> improvement in throughput for AES encryption using the proposed i-SRAM in a modified von-Neuamnn machine.
Author Sharmin, Saima
Roy, Kaushik
Agrawal, Amogh
Ali, Mustafa F.
Jaiswal, Akhilesh
Author_xml – sequence: 1
  givenname: Akhilesh
  orcidid: 0000-0001-9911-2624
  surname: Jaiswal
  fullname: Jaiswal, Akhilesh
  email: jaiswal@purdue.edu
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Amogh
  orcidid: 0000-0001-9999-9085
  surname: Agrawal
  fullname: Agrawal, Amogh
  email: agrawa64@purdue.edu
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 3
  givenname: Mustafa F.
  orcidid: 0000-0002-4452-6464
  surname: Ali
  fullname: Ali, Mustafa F.
  email: ali102@purdue.edu
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 4
  givenname: Saima
  orcidid: 0000-0002-1866-9138
  surname: Sharmin
  fullname: Sharmin, Saima
  email: ssharmin@purdue.edu
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 5
  givenname: Kaushik
  orcidid: 0000-0002-0735-9695
  surname: Roy
  fullname: Roy, Kaushik
  email: kaushik@purdue.edu
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
BookMark eNp9kE9LAzEQxYNUsK1-APGy4Hlr_u4m3mrRWqgUbKvHkM3OSkrd1GQr-O3dtcWDB09vYN5vHvMGqFf7GhC6JHhECFY3q8lyNqKY4hHDWOSSnaA-EUKmWOKs181cpZJReYYGMW4wpgoz0kdTly6fx0-3yaxuIGzBfEKZvPpQbl0NMal8SF7ANq3ced-u62Sxg2Aa5-uYrKOr35KOj-fotDLbCBdHHaL1w_1q8pjOF9PZZDxPLVWsSTkuOEhSFEQUVFiRg8kySwSueFliYbklAFZVkpckF7aisgIlDC8INYYKxYbo-nB3F_zHHmKjN34f6jZSU57lVGWc0dZFDi4bfIwBKr0L7t2EL02w7vrSXV-660sf-2qZ_A9jXfPzaBOM2_5LXh1IBwC_SYrwjBHKvgERlXjn
CODEN ITCSCH
CitedBy_id crossref_primary_10_1007_s11227_024_06700_x
crossref_primary_10_1109_TCSII_2021_3123512
crossref_primary_10_1145_3766540
crossref_primary_10_1109_TCSI_2024_3353464
crossref_primary_10_1109_TVLSI_2022_3164756
crossref_primary_10_1109_TCSI_2024_3381935
crossref_primary_10_1109_TNS_2022_3186083
crossref_primary_10_1109_TVLSI_2025_3526973
crossref_primary_10_1109_TCAD_2021_3124757
crossref_primary_10_1109_JSSC_2022_3206318
crossref_primary_10_1080_03772063_2024_2413862
crossref_primary_10_1088_1674_4926_43_3_031401
crossref_primary_10_3390_electronics10182291
crossref_primary_10_1109_TCSI_2025_3554533
crossref_primary_10_1109_TVLSI_2022_3148327
crossref_primary_10_1109_TC_2023_3301156
crossref_primary_10_1016_j_sysarc_2021_102276
crossref_primary_10_1109_JETCAS_2023_3243192
crossref_primary_10_1049_ell2_12675
crossref_primary_10_1109_TCSI_2024_3463184
Cites_doi 10.1109/2.375174
10.1109/ISSCC.2018.8310397
10.1109/JSSC.2016.2642198
10.1109/ICASSP.2014.6855225
10.1109/TCSI.2020.2981901
10.1109/CICC.1992.591879
10.1109/TCSI.2019.2945617
10.1007/978-3-319-46493-0_32
10.1109/ISCA.2018.00040
10.1109/VLSIT.2018.8510687
10.1109/HPCA.2017.21
10.1109/JSSC.2017.2782087
10.1109/ISSCC.2019.8662435
10.1109/TCSI.2018.2848999
10.1109/JSSC.2018.2822703
10.1145/3007787.3001139
10.1145/3297858.3304049
10.1109/.2005.1469239
10.1109/JSSC.2018.2867275
10.1109/ISSCC.2019.8662392
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSI.2020.3005783
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 4659
ExternalDocumentID 10_1109_TCSI_2020_3005783
9146312
Genre orig-research
GrantInformation_xml – fundername: DARPA
  funderid: 10.13039/100000185
– fundername: Vannevar Bush Faculty Fellowship
– fundername: C-BRIC, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) Program
  funderid: 10.13039/100000028
– fundername: National Science Foundation, Intel Corporation
  funderid: 10.13039/100002418
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-40b4e81bb15b25c57ea66c150f4dd05c4c1eec9f84d175cf28fe95a4b12aa2593
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596021000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-8328
IngestDate Mon Jun 30 03:22:07 EDT 2025
Sat Nov 29 06:23:53 EST 2025
Tue Nov 18 21:55:21 EST 2025
Wed Aug 27 02:32:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-40b4e81bb15b25c57ea66c150f4dd05c4c1eec9f84d175cf28fe95a4b12aa2593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1866-9138
0000-0001-9999-9085
0000-0002-4452-6464
0000-0001-9911-2624
0000-0002-0735-9695
PQID 2467296432
PQPubID 85411
PageCount 9
ParticipantIDs ieee_primary_9146312
crossref_primary_10_1109_TCSI_2020_3005783
crossref_citationtrail_10_1109_TCSI_2020_3005783
proquest_journals_2467296432
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref10
(ref21) 2020
jaiswal (ref11) 2018
ref2
courbariaux (ref24) 2016
agrawal (ref12) 2018
ref17
ref16
ref19
ref18
dworkin (ref29) 2001
krizhevsky (ref25) 2009
(ref26) 2019
ref23
dong (ref1) 2017
ref20
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
(ref22) 2017
References_xml – ident: ref13
  doi: 10.1109/2.375174
– ident: ref7
  doi: 10.1109/ISSCC.2018.8310397
– ident: ref6
  doi: 10.1109/JSSC.2016.2642198
– year: 2017
  ident: ref22
  publication-title: Avalon Interface Specifications
– ident: ref16
  doi: 10.1109/ICASSP.2014.6855225
– start-page: 160c
  year: 2017
  ident: ref1
  article-title: A 0.3 V VDDmin 4+2T SRAM for searching and in-memory computing using 55 nm DDC technology
  publication-title: Proc Symp VLSI Circuits
– ident: ref19
  doi: 10.1109/TCSI.2020.2981901
– ident: ref14
  doi: 10.1109/CICC.1992.591879
– year: 2018
  ident: ref11
  article-title: 8T SRAM cell as a multi-bit dot product engine for beyond von-Neumann computing
  publication-title: arXiv 1802 08601
– ident: ref15
  doi: 10.1109/TCSI.2019.2945617
– year: 2016
  ident: ref24
  article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or ?1
  publication-title: arXiv 1602 02830 [cs]
– ident: ref23
  doi: 10.1007/978-3-319-46493-0_32
– ident: ref3
  doi: 10.1109/ISCA.2018.00040
– ident: ref9
  doi: 10.1109/VLSIT.2018.8510687
– ident: ref18
  doi: 10.1109/HPCA.2017.21
– year: 2001
  ident: ref29
  article-title: Recommendation for block cipher modes of operation. Methods and techniques
– ident: ref4
  doi: 10.1109/JSSC.2017.2782087
– ident: ref8
  doi: 10.1109/ISSCC.2019.8662435
– ident: ref2
  doi: 10.1109/TCSI.2018.2848999
– year: 2009
  ident: ref25
  article-title: Learning multiple layers of features from tiny images
– year: 2020
  ident: ref21
  publication-title: CACTI 6 0 A Tool to Understand Large Caches
– year: 2019
  ident: ref26
  publication-title: Advanced Encryption Standard
– ident: ref5
  doi: 10.1109/JSSC.2018.2822703
– year: 2018
  ident: ref12
  article-title: Xcel-RAM: Accelerating binary neural networks in high-throughput SRAM compute arrays
  publication-title: arXiv 1807 00343
– ident: ref27
  doi: 10.1145/3007787.3001139
– ident: ref28
  doi: 10.1145/3297858.3304049
– ident: ref20
  doi: 10.1109/.2005.1469239
– ident: ref17
  doi: 10.1109/JSSC.2018.2867275
– ident: ref10
  doi: 10.1109/ISSCC.2019.8662392
SSID ssj0029031
Score 2.482553
Snippet The generic approach toward SRAM based in-memory computations has been to activate multiple memory rows simultaneously and read out a logic function of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4651
SubjectTerms Arrays
binary neural network
Boolean
Boolean algebra
Encryption
In-memory computing
interleaved word-lines
Layout
Logic gates
Machine learning
Neural networks
Proposals
Random access memory
SRAMs
Stability
Static random access memory
Throughput
von Neumann bottleneck
Title i-SRAM: Interleaved Wordlines for Vector Boolean Operations Using SRAMs
URI https://ieeexplore.ieee.org/document/9146312
https://www.proquest.com/docview/2467296432
Volume 67
WOSCitedRecordID wos000596021000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0806
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029031
  issn: 1549-8328
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5z-KAP_pridEoefBLr2jRtGt_mcCroFDfn3kqbXmAw2rFu-_tN0q4oiuBboUloL5fc910udwhdSB-40KE4iQxciwaJY8WS-Zbn-B6hAD4z_o7RE-v3g_GYv9bQVXUXBgBM8Blc60dzlp9kYqldZW2ulrWrSwpvMOYXd7UqcsVtt8iNSrmltDQoTzAdm7eH3cGjYoJEEVR99zJwv9kgU1Tlx05szEtv938ftod2ShiJO8W876MapAdo-0tywQa6n1iDt87zDTZOvylEK0jwh-KaGljmWIFVPDIue3ybZep1il9mUOhDjk0kAdb980P03rsbdh-ssmyCJZTtXihGGFNQaDR2vJh4wmMQ-b5QwE_SJLE9QYUDILgMaKKwg5AkkMC9iMYOiSLFhtwjVE-zFI4R9tVvRboCjKtaayQmXRYIBlIyCiIhTWSvBRmKMqe4Lm0xDQ23sHmoZR9q2Yel7JvosuoyKxJq_NW4oYVdNSzl3ESt9WyF5ZLLQ6K2fH2G7JKT33udoi09dhGL0kL1xXwJZ2hTrBaTfH5utOkTM2rFFQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GCuqD3-J0ah58Eqttmn7EtzmcE-cUN6dvpU0vIEg31m1_v0lai6IIvhWakPZyyf1-l8sdwIn0kQsdipPK0LVYmDpWIgPf8hzfowzRD4y_Y9gNer3w9ZU_1uCsuguDiCb4DM_1oznLT0dipl1lF1wta1eXFF70GKN2cVurolfcdovsqIxbSk_D8gzTsfnFoNW_VVyQKoqqb1-G7jcrZMqq_NiLjYFpr__v0zZgrQSSpFnM_CbUMNuC1S_pBbfh5s3qPzXvL4lx-71jPMeUvCi2qaFlThRcJUPjtCdXo5F6nZGHMRYakRMTS0B0_3wHntvXg1bHKgsnWEJZ76nihAlDhUcTx0uoJ7wAY98XCvpJlqa2J5hwEAWXIUsVehCShhK5F7PEoXGs-JC7CwvZKMM9IL76rVjXgHFVa43FpBuEIkApA4YipXWwPwUZiTKruC5u8R4ZdmHzSMs-0rKPStnX4bTqMi5SavzVeFsLu2pYyrkOjc_ZispFl0dUbfr6FNml-7_3OoblzuC-G3Vve3cHsKLHKSJTGrAwnczwEJbEfPqWT46MZn0AoU7IXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=i-SRAM+%3A+Interleaved+Wordlines+for+Vector+Boolean+Operations+Using+SRAMs&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Jaiswal%2C+Akhilesh&rft.au=Agrawal%2C+Amogh&rft.au=Ali%2C+Mustafa+F.&rft.au=Sharmin%2C+Saima&rft.date=2020-12-01&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=67&rft.issue=12&rft.spage=4651&rft.epage=4659&rft_id=info:doi/10.1109%2FTCSI.2020.3005783&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSI_2020_3005783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon