A Deep Learning Approach for Long-Term Traffic Flow Prediction With Multifactor Fusion Using Spatiotemporal Graph Convolutional Network
As a vital research subject in the field of intelligent transportation systems (ITSs), traffic flow prediction using deep learning methods has attracted much attention in recent years. However, numerous existing studies mainly focus on short-term traffic flow predictions and fail to consider the inf...
Saved in:
| Published in: | IEEE transactions on intelligent transportation systems Vol. 24; no. 8; pp. 1 - 14 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1524-9050, 1558-0016 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As a vital research subject in the field of intelligent transportation systems (ITSs), traffic flow prediction using deep learning methods has attracted much attention in recent years. However, numerous existing studies mainly focus on short-term traffic flow predictions and fail to consider the influence of external factors. Effective long-term traffic flow prediction has become a challenging issue. As a solution to these challenges, this paper proposes a deep learning approach based on a spatiotemporal graph convolutional network for long-term traffic flow prediction with multiple factors. In the proposed method, our innovative idea is to introduce an attribute feature unit (AF-unit) to fuse external factors into a spatiotemporal graph convolutional network. The proposed method consists of (1) constructing a weighted adjacency matrix using Gaussian similarity functions; (2) assembling a feature matrix to store time-series traffic flow; (3) building an external attribute matrix composed of external factors, including temperature, visibility, and weather conditions; and (4) building a spatiotemporal graph convolutional network based on a deep learning architecture (i.e., T-GCN). The experimental results indicate that (1) the performance of our method considering spatiotemporal dependence has better prediction capability than baseline models; (2) the fusion of meteorological factors can reduce the inaccuracy of traffic prediction; and (3) our method has high accuracy and stability in long-term traffic flow prediction. |
|---|---|
| AbstractList | As a vital research subject in the field of intelligent transportation systems (ITSs), traffic flow prediction using deep learning methods has attracted much attention in recent years. However, numerous existing studies mainly focus on short-term traffic flow predictions and fail to consider the influence of external factors. Effective long-term traffic flow prediction has become a challenging issue. As a solution to these challenges, this paper proposes a deep learning approach based on a spatiotemporal graph convolutional network for long-term traffic flow prediction with multiple factors. In the proposed method, our innovative idea is to introduce an attribute feature unit (AF-unit) to fuse external factors into a spatiotemporal graph convolutional network. The proposed method consists of (1) constructing a weighted adjacency matrix using Gaussian similarity functions; (2) assembling a feature matrix to store time-series traffic flow; (3) building an external attribute matrix composed of external factors, including temperature, visibility, and weather conditions; and (4) building a spatiotemporal graph convolutional network based on a deep learning architecture (i.e., T-GCN). The experimental results indicate that (1) the performance of our method considering spatiotemporal dependence has better prediction capability than baseline models; (2) the fusion of meteorological factors can reduce the inaccuracy of traffic prediction; and (3) our method has high accuracy and stability in long-term traffic flow prediction. |
| Author | Piccialli, Francesco Tu, Jingzhi Xi, Ning Mei, Gang Qi, Xiaoyu |
| Author_xml | – sequence: 1 givenname: Xiaoyu surname: Qi fullname: Qi, Xiaoyu organization: School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China – sequence: 2 givenname: Gang orcidid: 0000-0003-0026-5423 surname: Mei fullname: Mei, Gang organization: School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China – sequence: 3 givenname: Jingzhi orcidid: 0000-0001-8292-9582 surname: Tu fullname: Tu, Jingzhi organization: School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China – sequence: 4 givenname: Ning surname: Xi fullname: Xi, Ning organization: School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China – sequence: 5 givenname: Francesco orcidid: 0000-0002-5179-2496 surname: Piccialli fullname: Piccialli, Francesco organization: Department of Mathematics and Applications, University of Naples Federico II, Naples, Italy |
| BookMark | eNp9kEFv2yAYhlGVSm3a_oBpF6SdnQIG2xyjbOkipVulutrRwuSjoXOMB3jVfkH_drES7bDDTqBX7_PB98zRrHc9IPSBkgWlRN7Wm_pxwQhji5wRWpXyDF1SIaqMEFrMpjvjmSSCXKB5CC8p5YLSS_S2xJ8BBrwF5XvbP-PlMHin9B4b5_HW9c9ZDf6Aa6-MsRqvO_eKHzzsrI7W9fiHjXt8P3bRGqVjQtZjmPKnMA17HFRqRTgMzqsO33k17PHK9b9dN054yr5BfHX-5zU6N6oLcHM6r9DT-ku9-pptv99tVsttppnMY5YbuZOtFnJXMkYLxplQkkNbFoaQUosWeEHBKEFNVUDZGqmK3EBuyrxqOeH5Ffp0nJu2_DVCiM2LG336SGhYxblMXgqSWvTY0t6F4ME0g7cH5f80lDST72by3Uy-m5PvxJT_MNrGaf0-emW7_5Ifj6QFgL8vyaoUhFX5O99okVQ |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1038_s41598_025_10794_5 crossref_primary_10_1080_21680566_2024_2380915 crossref_primary_10_1109_ACCESS_2023_3349032 crossref_primary_10_1109_ACCESS_2023_3311818 crossref_primary_10_3390_modelling6020039 crossref_primary_10_1038_s41598_025_88706_w crossref_primary_10_1080_17445302_2025_2472438 crossref_primary_10_1007_s10044_025_01519_5 crossref_primary_10_1109_TFUZZ_2024_3502775 crossref_primary_10_1007_s11831_025_10336_2 crossref_primary_10_1007_s10489_023_04508_5 crossref_primary_10_1007_s10489_025_06760_3 crossref_primary_10_1016_j_trc_2024_104744 crossref_primary_10_1016_j_eswa_2024_126085 crossref_primary_10_1007_s11831_025_10286_9 crossref_primary_10_1038_s41598_025_10287_5 crossref_primary_10_3390_electronics13112094 crossref_primary_10_1016_j_meaene_2025_100061 crossref_primary_10_32604_cmc_2024_057494 crossref_primary_10_1007_s11227_025_07354_z crossref_primary_10_1016_j_array_2025_100513 crossref_primary_10_48130_dts_0025_0005 crossref_primary_10_3390_app14072893 crossref_primary_10_3390_app14114913 crossref_primary_10_1007_s42452_025_07198_5 crossref_primary_10_1109_JIOT_2023_3340182 crossref_primary_10_1007_s40747_023_01299_7 crossref_primary_10_3390_ijgi12030100 crossref_primary_10_7717_peerj_cs_1913 crossref_primary_10_54097_6d3ry666 crossref_primary_10_1038_s41598_025_93179_y crossref_primary_10_1007_s12239_025_00355_0 crossref_primary_10_3390_s25041225 crossref_primary_10_1109_TKDE_2025_3579406 crossref_primary_10_1016_j_engappai_2025_111646 |
| Cites_doi | 10.1109/ICNC.2007.661 10.1155/2021/1997212 10.1109/TVT.2016.2585575 10.1109/ITSC.2019.8917213 10.1609/aaai.v33i01.33013656 10.1109/TITS.2014.2371993 10.1155/2021/6662959 10.1109/ACCESS.2021.3069770 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.1016/j.trc.2015.03.014 10.1016/j.trc.2005.03.001 10.1016/j.neucom.2018.08.067 10.3115/v1/D14-1179 10.1016/j.knosys.2019.105020 10.1016/j.neucom.2018.12.016 10.18653/v1/P18-1026 10.1109/CVPR.2019.00910 10.1109/IJCNN.2005.1555942 10.1145/3383972.3384038 10.1016/j.physa.2021.126293 10.1007/s13177-011-0037-x 10.1109/ACCESS.2021.3062114 10.1109/TFUZZ.2020.2986995 10.1016/j.trc.2015.11.002 10.1007/s11222-007-9033-z 10.1049/iet-its.2017.0313 10.1109/ACCESS.2017.2783320 10.1109/TITS.2014.2345663 10.1088/1757-899X/245/4/042024 10.1109/TITS.2012.2225049 10.24963/ijcai.2018/505 10.1016/0191-2615(84)90002-X 10.1061/(ASCE)UP.1943-5444.0000055 10.1061/JTEPBS.0000491 10.1016/j.apenergy.2009.03.026 10.1109/IJCNN.2018.8489600 10.1109/TITS.2018.2878068 10.1109/VNIS.1989.98810 10.1155/2017/6575947 10.1016/j.trc.2010.10.002 10.1061/(ASCE)0733-947X(1995)121:3(249) 10.1109/YAC.2016.7804912 10.1007/s00521-021-06084-6 10.1109/ACCESS.2021.3050836 10.1609/aaai.v34i01.5477 10.1155/2020/6703703 10.3141/1805-03 10.1145/3035918.3054772 10.3390/s17040818 10.1109/BigData50022.2020.9378143 10.1109/TITS.2019.2935152 10.7307/ptt.v26i5.1429 10.1109/TITS.2020.2995546 10.1162/neco.2006.18.7.1527 10.1162/neco.1997.9.8.1735 10.1609/aaai.v33i01.3301922 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2022.3201879 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TITS_2022_3201879 9875028 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11602235 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for China Central Universities grantid: 2652018091 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-3f9d9bc59d722162425a94eb76f007c5be461efa51f86e7bf9a63fe3f738b4043 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852223700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sun Nov 09 05:59:01 EST 2025 Tue Nov 18 22:25:23 EST 2025 Sat Nov 29 06:35:01 EST 2025 Wed Aug 27 02:29:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-3f9d9bc59d722162425a94eb76f007c5be461efa51f86e7bf9a63fe3f738b4043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5179-2496 0000-0003-0026-5423 0000-0001-8292-9582 |
| PQID | 2844901460 |
| PQPubID | 75735 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2844901460 crossref_primary_10_1109_TITS_2022_3201879 crossref_citationtrail_10_1109_TITS_2022_3201879 ieee_primary_9875028 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref10 ref54 ref17 kipf (ref40) 2017 ref16 ref18 chung (ref58) 2015; 37 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 wang (ref31) 2021; 583 ref6 ref5 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref1 ref39 ref38 kingma (ref60) 2015 bai (ref59) 2020; 33 ref24 ref23 ref26 abadi (ref61) 2016 ref25 ref20 ref22 ref21 ref28 ref27 ref29 jia (ref55) 2017; 2017 ref62 shi (ref19) 2015; 28 |
| References_xml | – ident: ref57 doi: 10.1109/ICNC.2007.661 – ident: ref24 doi: 10.1155/2021/1997212 – ident: ref29 doi: 10.1109/TVT.2016.2585575 – ident: ref9 doi: 10.1109/ITSC.2019.8917213 – ident: ref26 doi: 10.1609/aaai.v33i01.33013656 – ident: ref35 doi: 10.1109/TITS.2014.2371993 – ident: ref1 doi: 10.1155/2021/6662959 – ident: ref42 doi: 10.1109/ACCESS.2021.3069770 – start-page: 265 year: 2016 ident: ref61 article-title: TensorFlow: A system for large-scale machine learning publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI) – ident: ref6 doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – ident: ref18 doi: 10.1016/j.trc.2015.03.014 – ident: ref46 doi: 10.1016/j.trc.2005.03.001 – ident: ref44 doi: 10.1016/j.neucom.2018.08.067 – ident: ref53 doi: 10.3115/v1/D14-1179 – ident: ref23 doi: 10.1016/j.knosys.2019.105020 – ident: ref2 doi: 10.1016/j.neucom.2018.12.016 – ident: ref21 doi: 10.18653/v1/P18-1026 – ident: ref22 doi: 10.1109/CVPR.2019.00910 – ident: ref17 doi: 10.1109/IJCNN.2005.1555942 – ident: ref34 doi: 10.1145/3383972.3384038 – volume: 583 year: 2021 ident: ref31 article-title: A hybrid deep learning model with 1DCNN-LSTM-attention networks for short-term traffic flow prediction publication-title: Phys A Stat Mech Appl doi: 10.1016/j.physa.2021.126293 – ident: ref33 doi: 10.1007/s13177-011-0037-x – ident: ref49 doi: 10.1109/ACCESS.2021.3062114 – ident: ref11 doi: 10.1109/TFUZZ.2020.2986995 – ident: ref10 doi: 10.1016/j.trc.2015.11.002 – ident: ref50 doi: 10.1007/s11222-007-9033-z – ident: ref3 doi: 10.1049/iet-its.2017.0313 – ident: ref62 doi: 10.1109/ACCESS.2017.2783320 – start-page: 1 year: 2017 ident: ref40 article-title: Semi-supervised classification with graph convolutional networks publication-title: Proc ICLR – ident: ref13 doi: 10.1109/TITS.2014.2345663 – ident: ref28 doi: 10.1088/1757-899X/245/4/042024 – ident: ref32 doi: 10.1109/TITS.2012.2225049 – start-page: 1 year: 2015 ident: ref60 article-title: Adam: A method for stochastic optimization publication-title: Proc 3rd Int Conf Learn Represent – ident: ref51 doi: 10.24963/ijcai.2018/505 – ident: ref7 doi: 10.1016/0191-2615(84)90002-X – ident: ref41 doi: 10.1061/(ASCE)UP.1943-5444.0000055 – ident: ref54 doi: 10.1061/JTEPBS.0000491 – ident: ref43 doi: 10.1016/j.apenergy.2009.03.026 – ident: ref16 doi: 10.1109/IJCNN.2018.8489600 – ident: ref36 doi: 10.1109/TITS.2018.2878068 – ident: ref5 doi: 10.1109/VNIS.1989.98810 – volume: 2017 start-page: 1 year: 2017 ident: ref55 article-title: Traffic flow prediction with rainfall impact using a deep learning method publication-title: J Adv Transp doi: 10.1155/2017/6575947 – ident: ref48 doi: 10.1016/j.trc.2010.10.002 – ident: ref56 doi: 10.1061/(ASCE)0733-947X(1995)121:3(249) – ident: ref20 doi: 10.1109/YAC.2016.7804912 – ident: ref38 doi: 10.1007/s00521-021-06084-6 – ident: ref37 doi: 10.1109/ACCESS.2021.3050836 – ident: ref27 doi: 10.1609/aaai.v34i01.5477 – ident: ref45 doi: 10.1155/2020/6703703 – ident: ref15 doi: 10.3141/1805-03 – volume: 28 start-page: 1 year: 2015 ident: ref19 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Proc 29th Annu Conf Neural Inf Process Syst (NIPS) – ident: ref47 doi: 10.1145/3035918.3054772 – ident: ref14 doi: 10.3390/s17040818 – ident: ref8 doi: 10.1109/BigData50022.2020.9378143 – ident: ref39 doi: 10.1109/TITS.2019.2935152 – ident: ref30 doi: 10.7307/ptt.v26i5.1429 – ident: ref4 doi: 10.1109/TITS.2020.2995546 – volume: 33 start-page: 17804 year: 2020 ident: ref59 article-title: Adaptive graph convolutional recurrent network for traffic forecasting publication-title: Proc 34th Conf Neural Inf Process Syst (NeurIPS) – ident: ref12 doi: 10.1162/neco.2006.18.7.1527 – ident: ref52 doi: 10.1162/neco.1997.9.8.1735 – volume: 37 start-page: 2067 year: 2015 ident: ref58 article-title: Gated feedback recurrent neural networks publication-title: Proc 32nd Int Conf Mach Learn – ident: ref25 doi: 10.1609/aaai.v33i01.3301922 |
| SSID | ssj0014511 |
| Score | 2.5698063 |
| Snippet | As a vital research subject in the field of intelligent transportation systems (ITSs), traffic flow prediction using deep learning methods has attracted much... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks Atmospheric models Convolution Data models Deep learning external factor Flow stability Forecasting Intelligent transportation systems Intelligent transportation systems (ITS) Logic gates long-term traffic flow prediction Predictive models spatiotemporal graph convolutional network Spatiotemporal phenomena Traffic flow Transportation networks Weather |
| Title | A Deep Learning Approach for Long-Term Traffic Flow Prediction With Multifactor Fusion Using Spatiotemporal Graph Convolutional Network |
| URI | https://ieeexplore.ieee.org/document/9875028 https://www.proquest.com/docview/2844901460 |
| Volume | 24 |
| WOSCitedRecordID | wos000852223700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7asIf2odv6g2brxj3sqcytbdmW9RjSZhuEEEhK82YkW2oLwS5p0v0J_berk5XQ0TLomzGSMXyS7k7f3XcAP5ipVJhWNkxV0gQJM3ZLiYoFWaiI1GK5aUVch3w0ymczMd6Cn5taGK21Sz7TZ_TouPyqKVd0VXZu4-PU2sNt2OY8a2u1NowB6Ww5bdQ4CUSYrhnMKBTn0z_TiY0E4_iMxdSDTvxjg1xTlVcnsTMvg4_v-7FPsOfdSOy1uH-GLV3vw-4LccEDeOrhhdb36BVUb7Dn5cPR-qk4bOqbYGqPZbTWimQkcDBv_uJ4QcQNgYXXd8tbdPW5bU8eHKzoZg1dkgFOXCa2F7aa4y_SvcZ-Uz_6pWzfjdoM80O4GlxO-78D33YhKK3tXwbMiEqoMhUVj-OI6kdSKRKteGasQ1GmSidZpI1MI5NnmisjZMaMZoazXJFYzxF06qbWx4BSS84iJWUuqkSbUHFjQ1CZV1luPxnzLoRrIIrSa5JTa4x54WKTUBSEXUHYFR67Lpxupty3ghz_G3xAYG0Gepy6cLJGu_Bb9qGwdjohTjkLv7w96yvsUK_5NvvvBDrLxUp_gw_l4_LuYfHdrcZnDTLedA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RilQ4lLaAWD7aOXBCDThxvnxc0W5BXVZIBJVbZCc2IK0StOzCT-Bv43G8q1ZUlXqLIjuK9GzPjN_MG4ADbmrFktqGqUqaIObGbilR8yBlikgtnptOxHWYjUb59bW4WIKvi1oYrbVLPtNH9Oi4_LqtZnRVdmzj48TawzfwNonjiHXVWgvOgJS2nDpqFAeCJXMOM2TiuDgrLm0sGEVHPKIudOIPK-Taqrw6i52BGaz_3699gPfekcR-h_xHWNLNJ1j7TV5wA577-E3re_QaqjfY9wLiaD1VHLbNTVDYgxmtvSIhCRyM2ye8mBB1Q3Dhr7vpLboK3a4rDw5mdLeGLs0AL10utpe2GuMPUr7Gk7Z59IvZvht1OeabcDX4XpycBr7xQlBZ6z8NuBG1UFUi6iyKQqogSaSItcpSY12KKlE6TkNtZBKaPNWZMkKm3GhuMp4rkuvZguWmbfQ2oNQy46GSMhd1rA1TmbFBqMzrNLefjLIesDkQZeVVyak5xrh00QkTJWFXEnalx64Hh4sp950kx78GbxBYi4Eepx7szdEu_aZ9KK2ljolVTtnO32d9gXenxfmwHJ6Nfu7CKnWe73IB92B5OpnpfVipHqd3D5PPbmW-AMKn4bs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Long-Term+Traffic+Flow+Prediction+With+Multifactor+Fusion+Using+Spatiotemporal+Graph+Convolutional+Network&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Qi%2C+Xiaoyu&rft.au=Mei%2C+Gang&rft.au=Tu%2C+Jingzhi&rft.au=Xi%2C+Ning&rft.date=2023-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=8&rft.spage=8687&rft_id=info:doi/10.1109%2FTITS.2022.3201879&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |