A Deep Learning Approach for Long-Term Traffic Flow Prediction With Multifactor Fusion Using Spatiotemporal Graph Convolutional Network

As a vital research subject in the field of intelligent transportation systems (ITSs), traffic flow prediction using deep learning methods has attracted much attention in recent years. However, numerous existing studies mainly focus on short-term traffic flow predictions and fail to consider the inf...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on intelligent transportation systems Ročník 24; číslo 8; s. 1 - 14
Hlavní autoři: Qi, Xiaoyu, Mei, Gang, Tu, Jingzhi, Xi, Ning, Piccialli, Francesco
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1524-9050, 1558-0016
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As a vital research subject in the field of intelligent transportation systems (ITSs), traffic flow prediction using deep learning methods has attracted much attention in recent years. However, numerous existing studies mainly focus on short-term traffic flow predictions and fail to consider the influence of external factors. Effective long-term traffic flow prediction has become a challenging issue. As a solution to these challenges, this paper proposes a deep learning approach based on a spatiotemporal graph convolutional network for long-term traffic flow prediction with multiple factors. In the proposed method, our innovative idea is to introduce an attribute feature unit (AF-unit) to fuse external factors into a spatiotemporal graph convolutional network. The proposed method consists of (1) constructing a weighted adjacency matrix using Gaussian similarity functions; (2) assembling a feature matrix to store time-series traffic flow; (3) building an external attribute matrix composed of external factors, including temperature, visibility, and weather conditions; and (4) building a spatiotemporal graph convolutional network based on a deep learning architecture (i.e., T-GCN). The experimental results indicate that (1) the performance of our method considering spatiotemporal dependence has better prediction capability than baseline models; (2) the fusion of meteorological factors can reduce the inaccuracy of traffic prediction; and (3) our method has high accuracy and stability in long-term traffic flow prediction.
AbstractList As a vital research subject in the field of intelligent transportation systems (ITSs), traffic flow prediction using deep learning methods has attracted much attention in recent years. However, numerous existing studies mainly focus on short-term traffic flow predictions and fail to consider the influence of external factors. Effective long-term traffic flow prediction has become a challenging issue. As a solution to these challenges, this paper proposes a deep learning approach based on a spatiotemporal graph convolutional network for long-term traffic flow prediction with multiple factors. In the proposed method, our innovative idea is to introduce an attribute feature unit (AF-unit) to fuse external factors into a spatiotemporal graph convolutional network. The proposed method consists of (1) constructing a weighted adjacency matrix using Gaussian similarity functions; (2) assembling a feature matrix to store time-series traffic flow; (3) building an external attribute matrix composed of external factors, including temperature, visibility, and weather conditions; and (4) building a spatiotemporal graph convolutional network based on a deep learning architecture (i.e., T-GCN). The experimental results indicate that (1) the performance of our method considering spatiotemporal dependence has better prediction capability than baseline models; (2) the fusion of meteorological factors can reduce the inaccuracy of traffic prediction; and (3) our method has high accuracy and stability in long-term traffic flow prediction.
Author Piccialli, Francesco
Tu, Jingzhi
Xi, Ning
Mei, Gang
Qi, Xiaoyu
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Qi
  fullname: Qi, Xiaoyu
  organization: School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China
– sequence: 2
  givenname: Gang
  orcidid: 0000-0003-0026-5423
  surname: Mei
  fullname: Mei, Gang
  organization: School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China
– sequence: 3
  givenname: Jingzhi
  orcidid: 0000-0001-8292-9582
  surname: Tu
  fullname: Tu, Jingzhi
  organization: School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China
– sequence: 4
  givenname: Ning
  surname: Xi
  fullname: Xi, Ning
  organization: School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China
– sequence: 5
  givenname: Francesco
  orcidid: 0000-0002-5179-2496
  surname: Piccialli
  fullname: Piccialli, Francesco
  organization: Department of Mathematics and Applications, University of Naples Federico II, Naples, Italy
BookMark eNp9kEFv2yAYhlGVSm3a_oBpF6SdnQIG2xyjbOkipVulutrRwuSjoXOMB3jVfkH_drES7bDDTqBX7_PB98zRrHc9IPSBkgWlRN7Wm_pxwQhji5wRWpXyDF1SIaqMEFrMpjvjmSSCXKB5CC8p5YLSS_S2xJ8BBrwF5XvbP-PlMHin9B4b5_HW9c9ZDf6Aa6-MsRqvO_eKHzzsrI7W9fiHjXt8P3bRGqVjQtZjmPKnMA17HFRqRTgMzqsO33k17PHK9b9dN054yr5BfHX-5zU6N6oLcHM6r9DT-ku9-pptv99tVsttppnMY5YbuZOtFnJXMkYLxplQkkNbFoaQUosWeEHBKEFNVUDZGqmK3EBuyrxqOeH5Ffp0nJu2_DVCiM2LG336SGhYxblMXgqSWvTY0t6F4ME0g7cH5f80lDST72by3Uy-m5PvxJT_MNrGaf0-emW7_5Ifj6QFgL8vyaoUhFX5O99okVQ
CODEN ITISFG
CitedBy_id crossref_primary_10_1038_s41598_025_10794_5
crossref_primary_10_1080_21680566_2024_2380915
crossref_primary_10_1109_ACCESS_2023_3349032
crossref_primary_10_1109_ACCESS_2023_3311818
crossref_primary_10_3390_modelling6020039
crossref_primary_10_1038_s41598_025_88706_w
crossref_primary_10_1080_17445302_2025_2472438
crossref_primary_10_1007_s10044_025_01519_5
crossref_primary_10_1109_TFUZZ_2024_3502775
crossref_primary_10_1007_s11831_025_10336_2
crossref_primary_10_1007_s10489_023_04508_5
crossref_primary_10_1007_s10489_025_06760_3
crossref_primary_10_1016_j_trc_2024_104744
crossref_primary_10_1016_j_eswa_2024_126085
crossref_primary_10_1007_s11831_025_10286_9
crossref_primary_10_1038_s41598_025_10287_5
crossref_primary_10_3390_electronics13112094
crossref_primary_10_1016_j_meaene_2025_100061
crossref_primary_10_32604_cmc_2024_057494
crossref_primary_10_1007_s11227_025_07354_z
crossref_primary_10_1016_j_array_2025_100513
crossref_primary_10_48130_dts_0025_0005
crossref_primary_10_3390_app14072893
crossref_primary_10_3390_app14114913
crossref_primary_10_1007_s42452_025_07198_5
crossref_primary_10_1109_JIOT_2023_3340182
crossref_primary_10_1007_s40747_023_01299_7
crossref_primary_10_3390_ijgi12030100
crossref_primary_10_7717_peerj_cs_1913
crossref_primary_10_54097_6d3ry666
crossref_primary_10_1038_s41598_025_93179_y
crossref_primary_10_1007_s12239_025_00355_0
crossref_primary_10_3390_s25041225
crossref_primary_10_1109_TKDE_2025_3579406
crossref_primary_10_1016_j_engappai_2025_111646
Cites_doi 10.1109/ICNC.2007.661
10.1155/2021/1997212
10.1109/TVT.2016.2585575
10.1109/ITSC.2019.8917213
10.1609/aaai.v33i01.33013656
10.1109/TITS.2014.2371993
10.1155/2021/6662959
10.1109/ACCESS.2021.3069770
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1016/j.trc.2015.03.014
10.1016/j.trc.2005.03.001
10.1016/j.neucom.2018.08.067
10.3115/v1/D14-1179
10.1016/j.knosys.2019.105020
10.1016/j.neucom.2018.12.016
10.18653/v1/P18-1026
10.1109/CVPR.2019.00910
10.1109/IJCNN.2005.1555942
10.1145/3383972.3384038
10.1016/j.physa.2021.126293
10.1007/s13177-011-0037-x
10.1109/ACCESS.2021.3062114
10.1109/TFUZZ.2020.2986995
10.1016/j.trc.2015.11.002
10.1007/s11222-007-9033-z
10.1049/iet-its.2017.0313
10.1109/ACCESS.2017.2783320
10.1109/TITS.2014.2345663
10.1088/1757-899X/245/4/042024
10.1109/TITS.2012.2225049
10.24963/ijcai.2018/505
10.1016/0191-2615(84)90002-X
10.1061/(ASCE)UP.1943-5444.0000055
10.1061/JTEPBS.0000491
10.1016/j.apenergy.2009.03.026
10.1109/IJCNN.2018.8489600
10.1109/TITS.2018.2878068
10.1109/VNIS.1989.98810
10.1155/2017/6575947
10.1016/j.trc.2010.10.002
10.1061/(ASCE)0733-947X(1995)121:3(249)
10.1109/YAC.2016.7804912
10.1007/s00521-021-06084-6
10.1109/ACCESS.2021.3050836
10.1609/aaai.v34i01.5477
10.1155/2020/6703703
10.3141/1805-03
10.1145/3035918.3054772
10.3390/s17040818
10.1109/BigData50022.2020.9378143
10.1109/TITS.2019.2935152
10.7307/ptt.v26i5.1429
10.1109/TITS.2020.2995546
10.1162/neco.2006.18.7.1527
10.1162/neco.1997.9.8.1735
10.1609/aaai.v33i01.3301922
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3201879
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 14
ExternalDocumentID 10_1109_TITS_2022_3201879
9875028
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11602235
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for China Central Universities
  grantid: 2652018091
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-3f9d9bc59d722162425a94eb76f007c5be461efa51f86e7bf9a63fe3f738b4043
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852223700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 09 05:59:01 EST 2025
Tue Nov 18 22:25:23 EST 2025
Sat Nov 29 06:35:01 EST 2025
Wed Aug 27 02:29:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-3f9d9bc59d722162425a94eb76f007c5be461efa51f86e7bf9a63fe3f738b4043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5179-2496
0000-0003-0026-5423
0000-0001-8292-9582
PQID 2844901460
PQPubID 75735
PageCount 14
ParticipantIDs proquest_journals_2844901460
crossref_primary_10_1109_TITS_2022_3201879
crossref_citationtrail_10_1109_TITS_2022_3201879
ieee_primary_9875028
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
kipf (ref40) 2017
ref16
ref18
chung (ref58) 2015; 37
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
wang (ref31) 2021; 583
ref6
ref5
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
ref38
kingma (ref60) 2015
bai (ref59) 2020; 33
ref24
ref23
ref26
abadi (ref61) 2016
ref25
ref20
ref22
ref21
ref28
ref27
ref29
jia (ref55) 2017; 2017
ref62
shi (ref19) 2015; 28
References_xml – ident: ref57
  doi: 10.1109/ICNC.2007.661
– ident: ref24
  doi: 10.1155/2021/1997212
– ident: ref29
  doi: 10.1109/TVT.2016.2585575
– ident: ref9
  doi: 10.1109/ITSC.2019.8917213
– ident: ref26
  doi: 10.1609/aaai.v33i01.33013656
– ident: ref35
  doi: 10.1109/TITS.2014.2371993
– ident: ref1
  doi: 10.1155/2021/6662959
– ident: ref42
  doi: 10.1109/ACCESS.2021.3069770
– start-page: 265
  year: 2016
  ident: ref61
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI)
– ident: ref6
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– ident: ref18
  doi: 10.1016/j.trc.2015.03.014
– ident: ref46
  doi: 10.1016/j.trc.2005.03.001
– ident: ref44
  doi: 10.1016/j.neucom.2018.08.067
– ident: ref53
  doi: 10.3115/v1/D14-1179
– ident: ref23
  doi: 10.1016/j.knosys.2019.105020
– ident: ref2
  doi: 10.1016/j.neucom.2018.12.016
– ident: ref21
  doi: 10.18653/v1/P18-1026
– ident: ref22
  doi: 10.1109/CVPR.2019.00910
– ident: ref17
  doi: 10.1109/IJCNN.2005.1555942
– ident: ref34
  doi: 10.1145/3383972.3384038
– volume: 583
  year: 2021
  ident: ref31
  article-title: A hybrid deep learning model with 1DCNN-LSTM-attention networks for short-term traffic flow prediction
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/j.physa.2021.126293
– ident: ref33
  doi: 10.1007/s13177-011-0037-x
– ident: ref49
  doi: 10.1109/ACCESS.2021.3062114
– ident: ref11
  doi: 10.1109/TFUZZ.2020.2986995
– ident: ref10
  doi: 10.1016/j.trc.2015.11.002
– ident: ref50
  doi: 10.1007/s11222-007-9033-z
– ident: ref3
  doi: 10.1049/iet-its.2017.0313
– ident: ref62
  doi: 10.1109/ACCESS.2017.2783320
– start-page: 1
  year: 2017
  ident: ref40
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proc ICLR
– ident: ref13
  doi: 10.1109/TITS.2014.2345663
– ident: ref28
  doi: 10.1088/1757-899X/245/4/042024
– ident: ref32
  doi: 10.1109/TITS.2012.2225049
– start-page: 1
  year: 2015
  ident: ref60
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Represent
– ident: ref51
  doi: 10.24963/ijcai.2018/505
– ident: ref7
  doi: 10.1016/0191-2615(84)90002-X
– ident: ref41
  doi: 10.1061/(ASCE)UP.1943-5444.0000055
– ident: ref54
  doi: 10.1061/JTEPBS.0000491
– ident: ref43
  doi: 10.1016/j.apenergy.2009.03.026
– ident: ref16
  doi: 10.1109/IJCNN.2018.8489600
– ident: ref36
  doi: 10.1109/TITS.2018.2878068
– ident: ref5
  doi: 10.1109/VNIS.1989.98810
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref55
  article-title: Traffic flow prediction with rainfall impact using a deep learning method
  publication-title: J Adv Transp
  doi: 10.1155/2017/6575947
– ident: ref48
  doi: 10.1016/j.trc.2010.10.002
– ident: ref56
  doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
– ident: ref20
  doi: 10.1109/YAC.2016.7804912
– ident: ref38
  doi: 10.1007/s00521-021-06084-6
– ident: ref37
  doi: 10.1109/ACCESS.2021.3050836
– ident: ref27
  doi: 10.1609/aaai.v34i01.5477
– ident: ref45
  doi: 10.1155/2020/6703703
– ident: ref15
  doi: 10.3141/1805-03
– volume: 28
  start-page: 1
  year: 2015
  ident: ref19
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Proc 29th Annu Conf Neural Inf Process Syst (NIPS)
– ident: ref47
  doi: 10.1145/3035918.3054772
– ident: ref14
  doi: 10.3390/s17040818
– ident: ref8
  doi: 10.1109/BigData50022.2020.9378143
– ident: ref39
  doi: 10.1109/TITS.2019.2935152
– ident: ref30
  doi: 10.7307/ptt.v26i5.1429
– ident: ref4
  doi: 10.1109/TITS.2020.2995546
– volume: 33
  start-page: 17804
  year: 2020
  ident: ref59
  article-title: Adaptive graph convolutional recurrent network for traffic forecasting
  publication-title: Proc 34th Conf Neural Inf Process Syst (NeurIPS)
– ident: ref12
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref52
  doi: 10.1162/neco.1997.9.8.1735
– volume: 37
  start-page: 2067
  year: 2015
  ident: ref58
  article-title: Gated feedback recurrent neural networks
  publication-title: Proc 32nd Int Conf Mach Learn
– ident: ref25
  doi: 10.1609/aaai.v33i01.3301922
SSID ssj0014511
Score 2.569869
Snippet As a vital research subject in the field of intelligent transportation systems (ITSs), traffic flow prediction using deep learning methods has attracted much...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Atmospheric models
Convolution
Data models
Deep learning
external factor
Flow stability
Forecasting
Intelligent transportation systems
Intelligent transportation systems (ITS)
Logic gates
long-term traffic flow prediction
Predictive models
spatiotemporal graph convolutional network
Spatiotemporal phenomena
Traffic flow
Transportation networks
Weather
Title A Deep Learning Approach for Long-Term Traffic Flow Prediction With Multifactor Fusion Using Spatiotemporal Graph Convolutional Network
URI https://ieeexplore.ieee.org/document/9875028
https://www.proquest.com/docview/2844901460
Volume 24
WOSCitedRecordID wos000852223700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RSxwxEA4qPrQPrdaWXqtlHnwqRrPJ7ubyeNheK8gheKW-LZvsRIVjV847-xP822ayuaPSUujbsmRg4cvmm8nMfMPYYSasc95Zroc18lw2lhstkBdKoESTZ5mLjcLnejIZXl2Ziw12tO6FQcRYfIbH9Bhz-U3nlnRVdhLi4yLw4Sbb1Lrse7XWGQPS2YraqDLnRhSrDGYmzMn0bHoZIkEpj5WkGXTmGQfFoSp_nMSRXsav_-_Ddtir5EbCqMd9l21g-4a9_E1ccI89juAL4h0kBdVrGCX5cAh-Kpx37TWfhmMZAluRjASMZ90vuJhT4obAgp-3ixuI_bn9TB4YL-lmDWKRAVzGSuwkbDWDb6R7Dadd-5C2cng36SvM37If46_T0-88jV3gLnD_gitvGmNdYRotZUb9I0VtcrS69MGhcIXFvMzQ10XmhyVq601dKo_KazW0JNbzjm21XYvvGXjvlUbpvGpEXofQBAvltEIsrRXBbMDECojKJU1yGo0xq2JsIkxF2FWEXZWwG7DPa5O7XpDjX4v3CKz1woTTgO2v0K7SL3tfBZ7OKadcig9_t_rIXtCs-b76b59tLeZLPGDb7mFxez__FHfjE0Jw32A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5qFawP9UcrPa2aB5_EtNlks7k8Hm3PFs-j0BX7tmyyk1o4dsv1rv4J_tsm2dxhUQTfliUDC18230xm5huA9xkz1jprqBrWSHPeGKoVQyoFQ446zzIbG4UnajodXl7q8w34uO6FQcRYfIYH4THm8pvOLsNV2aGPj6XnwwfwUOY5Z3231jpnEJS2ojoqz6lmcpXDzJg-LM_KCx8Lcn4geJhCp--xUByr8sdZHAlm_PT_Pu0ZbCdHkox65J_DBrYv4Mlv8oI78HNEjhFvSNJQvSKjJCBOvKdKJl17RUt_MBPPV0FIgoxn3Q9yPg-pmwAX-Xa9-E5ih24_lYeMl-FujcQyA3IRa7GTtNWMfArK1-Soa-_SZvbvpn2N-S58HZ-UR6c0DV6g1rP_ggqnG22s1I3iPAsdJLLWORpVOO9SWGkwLzJ0tczcsEBlnK4L4VA4JYYmyPW8hM22a3EPiHNOKOTWiYbltQ9OUAqrBGJhDPNmA2ArICqbVMnDcIxZFaMTpquAXRWwqxJ2A_iwNrnpJTn-tXgngLVemHAawP4K7Sr9tLeVZ-o8ZJUL9urvVu_g8Wn5ZVJNzqafX8NWmDzf1wLuw-ZivsQ38MjeLa5v52_jzvwFBGzipw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Long-Term+Traffic+Flow+Prediction+With+Multifactor+Fusion+Using+Spatiotemporal+Graph+Convolutional+Network&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Qi%2C+Xiaoyu&rft.au=Mei%2C+Gang&rft.au=Tu%2C+Jingzhi&rft.au=Xi%2C+Ning&rft.date=2023-08-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=8&rft.spage=8687&rft.epage=8700&rft_id=info:doi/10.1109%2FTITS.2022.3201879&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3201879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon