On Secure Distributed Linearly Separable Computation

Distributed linearly separable computation, where a user asks some distributed servers to compute a linearly separable function, was recently formulated by the same authors and aims to alleviate the bottlenecks of stragglers and communication cost in distributed computation. The data center assigns...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications Vol. 40; no. 3; pp. 912 - 926
Main Authors: Wan, Kai, Sun, Hua, Ji, Mingyue, Caire, Giuseppe
Format: Journal Article
Language:English
Published: New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0733-8716, 1558-0008
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Distributed linearly separable computation, where a user asks some distributed servers to compute a linearly separable function, was recently formulated by the same authors and aims to alleviate the bottlenecks of stragglers and communication cost in distributed computation. The data center assigns a subset of input datasets to each server in an uncoded manner, and each server computes some coded packets on the assigned datasets, which are then sent to the user. The user should recover the task function from the answers of a subset of servers, such that the effect of stragglers could be tolerated. In this paper, we formulate a novel secure framework for this distributed linearly separable computation, where we aim to let the user only retrieve the desired task function without obtaining any other information about the input datasets, even if it receives the answers of all servers. In order to preserve the security of the input datasets, some common randomness variable independent of the datasets should be introduced into the transmission. We show that any non-secure linear-coding based computing scheme for the original distributed linearly separable computation problem, can be made secure without increasing the communication cost (number of symbols the user should receive). Then we focus on the case where the computation cost of each server (number of datasets assigned to each server) is minimum and aim to minimize the size of the randomness variable (i.e., randomness size) introduced in the system while achieving the optimal communication cost. We first propose an information theoretic converse bound on the randomness size. We then propose secure computing schemes based on two well-known data assignments, namely fractional repetition assignment and cyclic assignment . These schemes are optimal subject to using these assignments. Motivated by the observation of the general limitation of these two schemes on the randomness size, we propose a computing scheme with novel assignment, which strictly outperforms the above two schemes. Some additional optimality results are also obtained.
AbstractList Distributed linearly separable computation, where a user asks some distributed servers to compute a linearly separable function, was recently formulated by the same authors and aims to alleviate the bottlenecks of stragglers and communication cost in distributed computation. The data center assigns a subset of input datasets to each server in an uncoded manner, and each server computes some coded packets on the assigned datasets, which are then sent to the user. The user should recover the task function from the answers of a subset of servers, such that the effect of stragglers could be tolerated. In this paper, we formulate a novel secure framework for this distributed linearly separable computation, where we aim to let the user only retrieve the desired task function without obtaining any other information about the input datasets, even if it receives the answers of all servers. In order to preserve the security of the input datasets, some common randomness variable independent of the datasets should be introduced into the transmission. We show that any non-secure linear-coding based computing scheme for the original distributed linearly separable computation problem, can be made secure without increasing the communication cost (number of symbols the user should receive). Then we focus on the case where the computation cost of each server (number of datasets assigned to each server) is minimum and aim to minimize the size of the randomness variable (i.e., randomness size) introduced in the system while achieving the optimal communication cost. We first propose an information theoretic converse bound on the randomness size. We then propose secure computing schemes based on two well-known data assignments, namely fractional repetition assignment and cyclic assignment . These schemes are optimal subject to using these assignments. Motivated by the observation of the general limitation of these two schemes on the randomness size, we propose a computing scheme with novel assignment, which strictly outperforms the above two schemes. Some additional optimality results are also obtained.
Author Wan, Kai
Caire, Giuseppe
Ji, Mingyue
Sun, Hua
Author_xml – sequence: 1
  givenname: Kai
  orcidid: 0000-0003-4671-3287
  surname: Wan
  fullname: Wan, Kai
  email: kai.wan@tu-berlin.de
  organization: Electrical Engineering and Computer Science Department, Technische Universität Berlin, Berlin, Germany
– sequence: 2
  givenname: Hua
  orcidid: 0000-0001-8777-7987
  surname: Sun
  fullname: Sun, Hua
  email: hua.sun@unt.edu
  organization: Department of Electrical Engineering, University of North Texas, Denton, TX, USA
– sequence: 3
  givenname: Mingyue
  orcidid: 0000-0002-7970-2245
  surname: Ji
  fullname: Ji, Mingyue
  email: mingyue.ji@utah.edu
  organization: Electrical and Computer Engineering Department, The University of Utah, Salt Lake City, UT, USA
– sequence: 4
  givenname: Giuseppe
  orcidid: 0000-0002-7749-1333
  surname: Caire
  fullname: Caire, Giuseppe
  email: caire@tu-berlin.de
  organization: Electrical Engineering and Computer Science Department, Technische Universität Berlin, Berlin, Germany
BookMark eNp9kD1rwzAQhkVJoUnaH1C6GDo7Pen05TG43wQypJ2FbCmg4NiubA_5941x6dCh0w33Pncvz4LM6qb2hNxSWFEK2cP7bp2vGDC2QsoZKrwgcyqETgFAz8gcFGKqFZVXZNF1BwDKuWZzwrd1svPlEH3yGLo-hmLovUs2ofY2VqfzrrXRFpVP8ubYDr3tQ1Nfk8u9rTp_8zOX5PP56SN_TTfbl7d8vUlLlmGfoitQMafBC-U492UmCik5MMGltFqUEhw4eS5oNSqqXLYHXzDFMgGCO45Lcj_dbWPzNfiuN4dmiPX5pWESATOQOKbUlCpj03XR700Zpp59tKEyFMyoyIyKzKjI_Cg6k_QP2cZwtPH0L3M3McF7_5vPpNJIEb8BoCRxKQ
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_TIT_2025_3556384
crossref_primary_10_1109_TIT_2024_3422087
crossref_primary_10_3390_e25040625
crossref_primary_10_1109_TIT_2023_3342571
crossref_primary_10_3390_e26060448
crossref_primary_10_1109_TIT_2023_3283967
Cites_doi 10.1145/322217.322225
10.1109/INFOCOM42981.2021.9488815
10.1007/3-540-09519-5_73
10.1109/TIT.2021.3127910
10.1145/62212.62213
10.1016/0020-0190(78)90067-4
10.1109/ISIT45174.2021.9517896
10.1109/TCOMM.2021.3107432
10.1109/TIT.2020.3029396
10.1109/TIT.2019.2927558
10.1145/62212.62214
10.1145/3133956.3133982
10.1109/TNET.2021.3122873
10.1109/ITW44776.2019.8989342
10.1002/j.1538-7305.1949.tb00928.x
10.1109/ISIT.2018.8437467
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2022.3142373
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 926
ExternalDocumentID 10_1109_JSAC_2022_3142373
9678313
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: CCF-2007108; CCF-2045656
  funderid: 10.13039/100000001
– fundername: NSF
  grantid: 1817154; 1824558
  funderid: 10.13039/100000001
– fundername: European Research Council under the ERC Advanced Grant
  grantid: 789190 (CARENET)
  funderid: 10.13039/501100000781
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-3db372d80e57d44ec95b664025466a85c60d0d6008a83717d9f0eb27295054d43
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757850600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8716
IngestDate Mon Jun 30 10:15:28 EDT 2025
Sat Nov 29 03:23:04 EST 2025
Tue Nov 18 22:23:38 EST 2025
Wed Aug 27 02:49:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-3db372d80e57d44ec95b664025466a85c60d0d6008a83717d9f0eb27295054d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4671-3287
0000-0002-7970-2245
0000-0001-8777-7987
0000-0002-7749-1333
PQID 2630390634
PQPubID 85481
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_JSAC_2022_3142373
ieee_primary_9678313
crossref_primary_10_1109_JSAC_2022_3142373
proquest_journals_2630390634
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref10
ref2
ref1
ref17
Yu (ref11)
ref19
ref18
ref8
ref7
Ye (ref4)
Bonawitz (ref9) 2016
ref3
ref6
ref5
Behrouzi-Far (ref16) 2020
References_xml – start-page: 5610
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref4
  article-title: Communication-computation efficient gradient coding
– ident: ref17
  doi: 10.1145/322217.322225
– ident: ref1
  doi: 10.1109/INFOCOM42981.2021.9488815
– ident: ref18
  doi: 10.1007/3-540-09519-5_73
– ident: ref3
  doi: 10.1109/TIT.2021.3127910
– ident: ref7
  doi: 10.1145/62212.62213
– ident: ref19
  doi: 10.1016/0020-0190(78)90067-4
– ident: ref15
  doi: 10.1109/ISIT45174.2021.9517896
– ident: ref6
  doi: 10.1109/TCOMM.2021.3107432
– ident: ref14
  doi: 10.1109/TIT.2020.3029396
– start-page: 1215
  volume-title: Proc. 22nd Int. Conf. Artif. Intell. Statist.
  ident: ref11
  article-title: Lagrange coded computing: Optimal design for resiliency, security, and privacy
– year: 2020
  ident: ref16
  article-title: Efficient replication for straggler mitigation in distributed computing
  publication-title: arXiv:2006.02318
– ident: ref2
  doi: 10.1109/TIT.2019.2927558
– ident: ref8
  doi: 10.1145/62212.62214
– ident: ref10
  doi: 10.1145/3133956.3133982
– ident: ref5
  doi: 10.1109/TNET.2021.3122873
– ident: ref12
  doi: 10.1109/ITW44776.2019.8989342
– ident: ref20
  doi: 10.1002/j.1538-7305.1949.tb00928.x
– ident: ref13
  doi: 10.1109/ISIT.2018.8437467
– year: 2016
  ident: ref9
  article-title: Practical secure aggregation for federated learning on user-held data
  publication-title: arXiv:1611.04482
SSID ssj0014482
Score 2.48396
Snippet Distributed linearly separable computation, where a user asks some distributed servers to compute a linearly separable function, was recently formulated by the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 912
SubjectTerms Communication
Computation
Costs
Data centers
Datasets
Distributed computing
Encoding
Information theory
Optimization
Randomness
Security
Servers
straggler mitigation
Sun
Task analysis
Title On Secure Distributed Linearly Separable Computation
URI https://ieeexplore.ieee.org/document/9678313
https://www.proquest.com/docview/2630390634
Volume 40
WOSCitedRecordID wos000757850600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7M4YM-eJvidEoffBLjuiZLmsehDhGZghf2VtrkFITRyS7-fk_SriiK4FuhSSnfSXLOl3MDOAsVWh7HlvUQcyZkrlmMKmXC2bIytNL6LNfXezUaxeOxfmzARZ0Lg4g--Awv3aP35dupWbqrsq6mk5W7FrVrSskyV6v2GBDN8B4DxTlzJKDyYPZC3b17GlwRE4wiIqguCoR_00G-qcqPk9irl-H2_35sB7YqMzIYlHLfhQYWe7D5pbhgC8RDEfjbdAyuXXVc19gKbUDkE11RY3rnyn5nEwzKzg5eRPvwMrx5vrplVY8EZkhRLxi3GVeRjUPsKysEGt3PpBQux13KNO4bwpsQJ02fEhXtKavzkMg0mdRk-ggr-AE0i2mBhxAYS9sxClNLm1pkMs90blKtcoxishOEbEO4Qi0xVQFx18dikngiEerEAZ04oJMK6Dac11Pey-oZfw1uOWTrgRWobeisRJNU-2ueRJJUrybzShz9PusYNty3y2ixDjQXsyWewLr5WLzNZ6d-6XwCEXe9-A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GFNQHv6Y4ndoHn8S6rE3T5nGoY-qcglP2VtrkCsLYZB_-_V7SriiK4FuhCS2_S3L3y30BnLEQtR9F2m0hZi4XmXQjDBOXG1tWMC20zXJ97YX9fjQcyqcKXJS5MIhog8_w0jxaX76eqIW5KmtKOll906J2JeDcY3m2VukzIKJhfQah77uGBhQ-zBaTzbvn9hVxQc8jimriQPxvWsi2VflxFlsF09n6369tw2ZhSDrtXPI7UMHxLmx8KS9YA_44dux9OjrXpj6uaW2F2iH6iaasMb0zhb_TETp5bwcrpD146dwMrrpu0SXBVaSq566vUz_0dMQwCDXnqGSQCsFNlrsQSRQoQpwwJ12fEBlthVpmjOg0GdVk_HDN_X2ojidjPABHadqQHks0bWueiiyVmUpkmKEXkaXARR3YErVYFSXETSeLUWypBJOxATo2QMcF0HU4L6e85_Uz_hpcM8iWAwtQ69BYiiYudtgs9gQpX0kGFj_8fdYprHUHD724d9u_P4J18508dqwB1fl0gcewqj7mb7PpiV1GnyNYwT8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Secure+Distributed+Linearly+Separable+Computation&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Wan%2C+Kai&rft.au=Sun%2C+Hua&rft.au=Ji%2C+Mingyue&rft.au=Caire%2C+Giuseppe&rft.date=2022-03-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=40&rft.issue=3&rft.spage=912&rft.epage=926&rft_id=info:doi/10.1109%2FJSAC.2022.3142373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2022_3142373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon