Learning and Adapting Robust Features for Satellite Image Segmentation on Heterogeneous Data Sets

This paper addresses the problem of training a deep neural network for satellite image segmentation so that it can be deployed over images whose statistics differ from those used for training. For example, in postdisaster damage assessment, the tight time constraints make it impractical to train a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 57; H. 9; S. 6517 - 6529
Hauptverfasser: Ghassemi, Sina, Fiandrotti, Attilio, Francini, Gianluca, Magli, Enrico
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper addresses the problem of training a deep neural network for satellite image segmentation so that it can be deployed over images whose statistics differ from those used for training. For example, in postdisaster damage assessment, the tight time constraints make it impractical to train a network from scratch for each image to be segmented. We propose a convolutional encoder-decoder network able to learn visual representations of increasing semantic level as its depth increases, allowing it to generalize over a wider range of satellite images. Then, we propose two additional methods to improve the network performance over each specific image to be segmented. First, we observe that updating the batch normalization layers' statistics over the target image improves the network performance without human intervention. Second, we show that refining a trained network over a few samples of the image boosts the network performance with minimal human intervention. We evaluate our architecture over three data sets of satellite images, showing the state-of-the-art performance in binary segmentation of previously unseen images and competitive performance with respect to more complex techniques in a multiclass segmentation task.
AbstractList This paper addresses the problem of training a deep neural network for satellite image segmentation so that it can be deployed over images whose statistics differ from those used for training. For example, in postdisaster damage assessment, the tight time constraints make it impractical to train a network from scratch for each image to be segmented. We propose a convolutional encoder-decoder network able to learn visual representations of increasing semantic level as its depth increases, allowing it to generalize over a wider range of satellite images. Then, we propose two additional methods to improve the network performance over each specific image to be segmented. First, we observe that updating the batch normalization layers' statistics over the target image improves the network performance without human intervention. Second, we show that refining a trained network over a few samples of the image boosts the network performance with minimal human intervention. We evaluate our architecture over three data sets of satellite images, showing the state-of-the-art performance in binary segmentation of previously unseen images and competitive performance with respect to more complex techniques in a multiclass segmentation task.
Author Ghassemi, Sina
Francini, Gianluca
Fiandrotti, Attilio
Magli, Enrico
Author_xml – sequence: 1
  givenname: Sina
  orcidid: 0000-0002-5046-3842
  surname: Ghassemi
  fullname: Ghassemi, Sina
  email: sina.ghassemi@polito.it
  organization: Electronics and Telecommunication Department, Polytechnic University of Turin, Turin, Italy
– sequence: 2
  givenname: Attilio
  surname: Fiandrotti
  fullname: Fiandrotti, Attilio
  organization: Electronics and Telecommunication Department, Polytechnic University of Turin, Turin, Italy
– sequence: 3
  givenname: Gianluca
  orcidid: 0000-0002-2350-8849
  surname: Francini
  fullname: Francini, Gianluca
  organization: Telecom Italia, Turin, Italy
– sequence: 4
  givenname: Enrico
  orcidid: 0000-0002-0901-0251
  surname: Magli
  fullname: Magli, Enrico
  organization: Electronics and Telecommunication Department, Polytechnic University of Turin, Turin, Italy
BookMark eNp9kU1rwzAMhs3oYG23HzB2Meyczh_58rF06wcUBm3vwYmVkJLane0c9u_nkLLDDgOBEHpeCb2aoYk2GhB6pmRBKRFvp83huGCEigUTJE1zcYemNEnyiKRxPEHT0Ekjlgv2gGbOnQmhcUKzKZJ7kFa3usFSK7xU8uqH4mDK3nm8Bul7Cw7XxuKj9NB1rQe8u8gG8BGaC2gvfWs0DrEFD9Y0oMH0Dr9LLwPi3SO6r2Xn4OmW5-i0_jitttH-c7NbLfdRxQT3Ea9kncQlxIxUlJacZJAlMuaU8nCNyAWAUCVnUuWKphVRdUVqkpSZUqLknM_R6zj2as1XD84XZ9NbHTYWjOUB4EkaByobqcoa5yzURdWOF3gr266gpBjsLAY7i8HO4mZnUNI_yqttL9J-_6t5GTUtAPzyeSp4eAr_AQktg0M
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_aerospace10100880
crossref_primary_10_1049_ipr2_70017
crossref_primary_10_1007_s12530_025_09736_3
crossref_primary_10_3390_rs13040683
crossref_primary_10_1016_j_isprsjprs_2021_09_005
crossref_primary_10_1109_JSTARS_2021_3119001
crossref_primary_10_1016_j_ecoinf_2021_101370
crossref_primary_10_1109_TMI_2020_3024923
crossref_primary_10_1109_LGRS_2020_3010591
crossref_primary_10_1109_TNNLS_2020_3041646
crossref_primary_10_1109_TGRS_2020_3006161
crossref_primary_10_1016_j_isprsjprs_2020_07_001
crossref_primary_10_3390_ijgi9100601
crossref_primary_10_3390_rs14010190
crossref_primary_10_1109_TSC_2024_3470341
crossref_primary_10_1109_JSTARS_2021_3105421
crossref_primary_10_1007_s11277_020_07247_9
crossref_primary_10_1145_3746224
crossref_primary_10_1007_s11831_023_09939_4
crossref_primary_10_1016_j_isprsjprs_2022_08_012
crossref_primary_10_1016_j_isprsjprs_2023_01_018
crossref_primary_10_1109_JSTARS_2021_3053067
crossref_primary_10_1109_TGRS_2020_2980417
crossref_primary_10_1109_LGRS_2020_2982783
crossref_primary_10_1016_j_isprsjprs_2020_09_019
crossref_primary_10_1109_TGRS_2021_3105182
crossref_primary_10_1016_j_jvcir_2021_103141
crossref_primary_10_1109_ACCESS_2021_3078742
crossref_primary_10_1016_j_earscirev_2025_105070
crossref_primary_10_4018_IJIRR_289951
Cites_doi 10.1109/TGRS.2006.876704
10.1109/TGRS.2015.2503885
10.1109/CVPR.2016.350
10.1109/5.726791
10.1109/TGRS.2007.910220
10.1109/TPAMI.2012.231
10.1117/12.829645
10.1007/s11263-014-0733-5
10.1109/CVPR.2015.7298965
10.1109/TGRS.2015.2449736
10.1109/TGRS.2018.2868851
10.1109/JPROC.2012.2229082
10.23919/EUSIPCO.2018.8553545
10.1109/TGRS.2007.912445
10.1007/978-3-319-46487-9_32
10.1109/LGRS.2017.2691013
10.1109/IGARSS.2008.4778790
10.1109/IGARSS.2017.8127684
10.1109/CVPR.2016.90
10.1109/TPAMI.2017.2699184
10.1109/MGRS.2016.2548504
10.1109/TGRS.2004.831865
10.1109/JSTARS.2012.2202881
10.1109/TGRS.2009.2019636
10.1127/1432-8364/2010/0041
10.1109/IGARSS.2018.8518525
10.1109/JSTARS.2016.2582921
10.1109/JSTARS.2017.2711360
10.1109/TGRS.2016.2616585
10.1016/j.isprsjprs.2017.11.009
10.1109/TGRS.2016.2523563
10.1109/JSTARS.2011.2168195
10.1109/CVPR.2010.5539957
10.1109/TGRS.2011.2162339
10.1109/TGRS.2014.2377785
10.1109/CVPRW.2016.90
10.1109/CVPRW.2015.7301381
10.1109/CVPR.2015.7298594
10.1109/TGRS.2004.842478
10.1109/72.279181
10.1016/j.patcog.2014.12.016
10.3390/rs9050446
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2019.2906689
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Statistics
EISSN 1558-0644
EndPage 6529
ExternalDocumentID 10_1109_TGRS_2019_2906689
8693644
Genre orig-research
GrantInformation_xml – fundername: TIM
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c293t-3caf54be420c11b307e75a43113689989ee9db32ad8d16c0dfc0f05b7dd9b333
IEDL.DBID RIE
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484209000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:26:38 EDT 2025
Sat Nov 29 02:49:59 EST 2025
Tue Nov 18 20:45:18 EST 2025
Wed Aug 27 02:46:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-3caf54be420c11b307e75a43113689989ee9db32ad8d16c0dfc0f05b7dd9b333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0901-0251
0000-0002-2350-8849
0000-0002-5046-3842
PQID 2283333564
PQPubID 85465
PageCount 13
ParticipantIDs proquest_journals_2283333564
crossref_primary_10_1109_TGRS_2019_2906689
crossref_citationtrail_10_1109_TGRS_2019_2906689
ieee_primary_8693644
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref18
ref51
ref50
ganin (ref20) 2016; 17
ref46
ref45
ref48
ref42
ronneberger (ref25) 2015
ref44
ref43
nair (ref40) 2010
ref49
ref8
ref7
chen (ref47) 2018
ref4
ioffe (ref41) 2015; 37
ref3
ref6
krizhevsky (ref1) 2012
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
goodfellow (ref19) 2014
ref2
ref39
ref38
ref23
ref26
sugiyama (ref9) 2017
ref22
ref21
audebert (ref5) 2016
glorot (ref24) 2010
ref28
ref27
ref29
References_xml – ident: ref29
  doi: 10.1109/TGRS.2006.876704
– ident: ref12
  doi: 10.1109/TGRS.2015.2503885
– start-page: 807
  year: 2010
  ident: ref40
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc Int Conf Int Conf Mach Learn (ICML)
– ident: ref46
  doi: 10.1109/CVPR.2016.350
– ident: ref2
  doi: 10.1109/5.726791
– ident: ref17
  doi: 10.1109/TGRS.2007.910220
– ident: ref34
  doi: 10.1109/TPAMI.2012.231
– ident: ref14
  doi: 10.1117/12.829645
– ident: ref45
  doi: 10.1007/s11263-014-0733-5
– ident: ref35
  doi: 10.1109/CVPR.2015.7298965
– start-page: 1097
  year: 2012
  ident: ref1
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref16
  doi: 10.1109/TGRS.2015.2449736
– ident: ref44
  doi: 10.1109/TGRS.2018.2868851
– ident: ref30
  doi: 10.1109/JPROC.2012.2229082
– ident: ref26
  doi: 10.23919/EUSIPCO.2018.8553545
– ident: ref13
  doi: 10.1109/TGRS.2007.912445
– ident: ref36
  doi: 10.1007/978-3-319-46487-9_32
– ident: ref38
  doi: 10.1109/LGRS.2017.2691013
– ident: ref43
  doi: 10.1109/IGARSS.2008.4778790
– ident: ref48
  doi: 10.1109/IGARSS.2017.8127684
– volume: 37
  start-page: 448
  year: 2015
  ident: ref41
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
– start-page: 833
  year: 2018
  ident: ref47
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proc Eur Conf Comput Vis
– ident: ref22
  doi: 10.1109/CVPR.2016.90
– ident: ref37
  doi: 10.1109/TPAMI.2017.2699184
– start-page: 2672
  year: 2014
  ident: ref19
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref10
  doi: 10.1109/MGRS.2016.2548504
– year: 2017
  ident: ref9
  publication-title: Dataset Shift in Machine Learning
– ident: ref33
  doi: 10.1109/TGRS.2004.831865
– ident: ref18
  doi: 10.1109/JSTARS.2012.2202881
– start-page: 180
  year: 2016
  ident: ref5
  article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks
  publication-title: Proc Asian Conf Comput Vis
– ident: ref11
  doi: 10.1109/TGRS.2009.2019636
– ident: ref52
  doi: 10.1127/1432-8364/2010/0041
– ident: ref49
  doi: 10.1109/IGARSS.2018.8518525
– ident: ref8
  doi: 10.1109/JSTARS.2016.2582921
– ident: ref21
  doi: 10.1109/JSTARS.2017.2711360
– ident: ref4
  doi: 10.1109/TGRS.2016.2616585
– ident: ref6
  doi: 10.1016/j.isprsjprs.2017.11.009
– ident: ref7
  doi: 10.1109/TGRS.2016.2523563
– volume: 17
  start-page: 2030
  year: 2016
  ident: ref20
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– ident: ref28
  doi: 10.1109/JSTARS.2011.2168195
– ident: ref42
  doi: 10.1109/CVPR.2010.5539957
– start-page: 249
  year: 2010
  ident: ref24
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref31
  doi: 10.1109/TGRS.2011.2162339
– ident: ref15
  doi: 10.1109/TGRS.2014.2377785
– ident: ref3
  doi: 10.1109/CVPRW.2016.90
– ident: ref50
  doi: 10.1109/CVPRW.2015.7301381
– ident: ref39
  doi: 10.1109/CVPR.2015.7298594
– ident: ref27
  doi: 10.1109/TGRS.2004.842478
– ident: ref23
  doi: 10.1109/72.279181
– start-page: 234
  year: 2015
  ident: ref25
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref32
  doi: 10.1016/j.patcog.2014.12.016
– ident: ref51
  doi: 10.3390/rs9050446
SSID ssj0014517
Score 2.4511263
Snippet This paper addresses the problem of training a deep neural network for satellite image segmentation so that it can be deployed over images whose statistics...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6517
SubjectTerms Artificial neural networks
Coders
Convolutional neural network (CNN)
Damage assessment
Datasets
deep learning
domain adaptation
encoder–decoder architecture
Human performance
Image processing
Image segmentation
Neural networks
satellite image segmentation
Satellite imagery
Spaceborne remote sensing
Statistical methods
Statistics
Target recognition
Training
Title Learning and Adapting Robust Features for Satellite Image Segmentation on Heterogeneous Data Sets
URI https://ieeexplore.ieee.org/document/8693644
https://www.proquest.com/docview/2283333564
Volume 57
WOSCitedRecordID wos000484209000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4tqJXgUFqgYgtFPvRUNeBHEq-PCArLZYV298At8mOCkEqCSNLfX9trVkhUSEQ55DCOony2Z8Yz8w3AD2-DM-pcmalaT7LccZkZzk1mneGSo_Y2iovNJuRsNrm9VTcj-LWuhUHEmHyGJ-ExxvJda4dwVHY6KZXw-nsDNqSUq1qtdcQgL1gqjS4z70TwFMFkVJ0ur-aLkMSlTgK3eRk6ur_QQbGpyqudOKqXy533fdhn-JTMSHK2wv0LjLDZhe0X5IK78DEmd9puD3QiUb0junHkzOnHkOtM5q0Zup4EI3DwTjfx5itZ6MjQ2SO5fvA7DVng3UOqTmqIv6che6b1kw7boSMXutdepO_2YXn5e3k-zVJrhcx6_d5nwuq6yA3mnFrGjF_oKAvtjQkmyuCBKUTljODaTRwrLXW1pTUtjHROGSHEV9hs2gYPgEhuHFOWY6D2ExS1slRbZ71rbZmoyzHQ539d2UQ7Hrpf_Kmi-0FVFeCpAjxVgmcMP9dDHlecG28J7wU81oIJijEcPQNapVXZVYHqx19FmX_7_6hD2ArvXuWQHcFm_zTgd_hg__b33dNxnHD_AEfG04A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RaFU4UApUXR7Fh56qBvzIY31EvBYBq4rdA7fIjwlCggSRpL8f22tWSFSViHLIYaxE-WzPjGfmG4CfzgZn1No8kZUaJqnlRaI514mxmhcclbNRbGg2UYzHw5sb-WcBfs9rYRAxJJ_hvn8MsXzbmN4flR0Mcymc_v4AS1macjar1prHDNKMxeLoPHFuBI8xTEblwfTseuLTuOS-ZzfPfU_3V1ootFV5sxcHBXP65X2ftgar0ZAkhzPkv8IC1uuw8opecB0-hfRO026AijSqt0TVlhxa9eizncl1o_u2I94M7J3bTZwBSyYqcHR2SM4f3F5DJnj7EOuTauLukc-fady0w6ZvybHqlBPp2k2Ynp5Mj0ZJbK6QGKfhu0QYVWWpxpRTw5h2Sx2LTDlzgonc-2ASUVotuLJDy3JDbWVoRTNdWCu1EOIbLNZNjd-BFFxbJg1HT-4nKCppqDLWOOfaMFHlA6Av_7o0kXjc97-4L4MDQmXp4Sk9PGWEZwC_5kMeZ6wb_xPe8HjMBSMUA9h5AbSM67ItPdmPu7I83fr3qD34PJpeXZaX5-OLbVj275lllO3AYvfU4y58NH-7u_bpR5h8z2-m1sc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+and+Adapting+Robust+Features+for+Satellite+Image+Segmentation+on+Heterogeneous+Data+Sets&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Ghassemi%2C+Sina&rft.au=Fiandrotti%2C+Attilio&rft.au=Francini%2C+Gianluca&rft.au=Magli%2C+Enrico&rft.date=2019-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=9&rft.spage=6517&rft_id=info:doi/10.1109%2FTGRS.2019.2906689&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon