Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images

Synthetic aperture radar (SAR) is an active microwave imaging sensor with the capability of working in all-weather, all-day to provide high-resolution SAR images. Recently, SAR images have been widely used in civilian and military fields, such as ship detection. The scales of different ships vary in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 57; číslo 11; s. 8983 - 8997
Hlavní autoři: Cui, Zongyong, Li, Qi, Cao, Zongjie, Liu, Nengyuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Synthetic aperture radar (SAR) is an active microwave imaging sensor with the capability of working in all-weather, all-day to provide high-resolution SAR images. Recently, SAR images have been widely used in civilian and military fields, such as ship detection. The scales of different ships vary in SAR images, especially for small-scale ships, which only occupy few pixels and have lower contrast. Compared with large-scale ships, the current ship detection methods are insensitive to small-scale ships. Therefore, the ship detection methods are facing difficulties with multi-scale ship detection in SAR images. A novel multi-scale ship detection method based on a dense attention pyramid network (DAPN) in SAR images is proposed in this paper. The DAPN adopts a pyramid structure, which densely connects convolutional block attention module (CBAM) to each concatenated feature map from top to bottom of the pyramid network. In this way, abundant features containing resolution and semantic information are extracted for multi-scale ship detection while refining concatenated feature maps to highlight salient features for specific scales by CBAM. Then, the salient features are integrated with global unblurred features to improve accuracy effectively in SAR images. Finally, the fused feature maps are fed to the detection network to obtain the final detection results. Experiments on the data set of SAR ship detection data set (SSDD) including multi-scale ships in various SAR images show that the proposed method can detect multi-scale ships in different scenes of SAR images with extremely high accuracy and outperforms other ship detection methods implemented on SSDD.
AbstractList Synthetic aperture radar (SAR) is an active microwave imaging sensor with the capability of working in all-weather, all-day to provide high-resolution SAR images. Recently, SAR images have been widely used in civilian and military fields, such as ship detection. The scales of different ships vary in SAR images, especially for small-scale ships, which only occupy few pixels and have lower contrast. Compared with large-scale ships, the current ship detection methods are insensitive to small-scale ships. Therefore, the ship detection methods are facing difficulties with multi-scale ship detection in SAR images. A novel multi-scale ship detection method based on a dense attention pyramid network (DAPN) in SAR images is proposed in this paper. The DAPN adopts a pyramid structure, which densely connects convolutional block attention module (CBAM) to each concatenated feature map from top to bottom of the pyramid network. In this way, abundant features containing resolution and semantic information are extracted for multi-scale ship detection while refining concatenated feature maps to highlight salient features for specific scales by CBAM. Then, the salient features are integrated with global unblurred features to improve accuracy effectively in SAR images. Finally, the fused feature maps are fed to the detection network to obtain the final detection results. Experiments on the data set of SAR ship detection data set (SSDD) including multi-scale ships in various SAR images show that the proposed method can detect multi-scale ships in different scenes of SAR images with extremely high accuracy and outperforms other ship detection methods implemented on SSDD.
Author Cao, Zongjie
Cui, Zongyong
Li, Qi
Liu, Nengyuan
Author_xml – sequence: 1
  givenname: Zongyong
  orcidid: 0000-0003-1155-786X
  surname: Cui
  fullname: Cui, Zongyong
  email: zycui@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Qi
  surname: Li
  fullname: Li, Qi
  email: lucialee0103@gmail.com
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Zongjie
  orcidid: 0000-0002-0117-9087
  surname: Cao
  fullname: Cao, Zongjie
  email: zjcao@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Nengyuan
  orcidid: 0000-0002-2827-3321
  surname: Liu
  fullname: Liu, Nengyuan
  email: nengyuanliu@outlook.com
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNp9kE1PwkAQhjcGEwH9AcbLJp6L-9V290hAkQTUUDw3y3aqi9Di7hLDv7cV4sGDpznM-8ybeXqoU9UVIHRNyYBSou6Wk0U2YISqAVOMKynPUJfGsYxIIkQHdZtNEjGp2AXqeb8mhIqYpl00H0PlAQ9DgCrYusIvB6e3tsBPEL5q9-FxWTs832-CjTKjN4Czd7vDYwhgfvK2wtlwgadb_Qb-Ep2XeuPh6jT76PXhfjl6jGbPk-loOIsMUzxE3GjGSiCKkBUXTIsikYVghmsS6wJkTHipJTMlg0Kzkog0KZTkhVwJyTUXvI9uj3d3rv7cgw_5ut67qqnMGaeNkISlbYoeU8bV3jso852zW-0OOSV5ay1vreWttfxkrWHSP4yxQbefBqft5l_y5khaAPhtkmnCFZX8G6upezo
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2025_3530926
crossref_primary_10_3390_rs17081478
crossref_primary_10_1080_01431161_2021_1986238
crossref_primary_10_1109_LGRS_2020_3022435
crossref_primary_10_3390_rs13183690
crossref_primary_10_3390_rs13193932
crossref_primary_10_1109_LGRS_2020_2999506
crossref_primary_10_3390_rs11212483
crossref_primary_10_3390_rs13245104
crossref_primary_10_1109_JSEN_2024_3509544
crossref_primary_10_1109_JSTARS_2021_3120009
crossref_primary_10_3390_rs15245772
crossref_primary_10_1109_JSTARS_2024_3481368
crossref_primary_10_1109_JSTARS_2021_3129182
crossref_primary_10_3390_rs14122832
crossref_primary_10_1109_ACCESS_2023_3262804
crossref_primary_10_1109_LGRS_2021_3115498
crossref_primary_10_1109_JSTARS_2025_3595436
crossref_primary_10_1007_s11760_024_03212_2
crossref_primary_10_1109_JSTARS_2025_3582808
crossref_primary_10_3390_rs14236058
crossref_primary_10_1109_TGRS_2022_3185298
crossref_primary_10_1088_1402_4896_ad9add
crossref_primary_10_32604_cmes_2021_013568
crossref_primary_10_1016_j_compmedimag_2025_102522
crossref_primary_10_1109_JSTARS_2024_3419770
crossref_primary_10_1080_17538947_2024_2405525
crossref_primary_10_1109_JSTARS_2024_3361927
crossref_primary_10_3390_s23136084
crossref_primary_10_3390_rs15082035
crossref_primary_10_1109_TGRS_2021_3139994
crossref_primary_10_1109_LGRS_2021_3103378
crossref_primary_10_1109_TGRS_2024_3354800
crossref_primary_10_3390_rs14061488
crossref_primary_10_1109_TGRS_2024_3419893
crossref_primary_10_32604_cmes_2023_043307
crossref_primary_10_3390_rs13173400
crossref_primary_10_3390_rs15245780
crossref_primary_10_1016_j_measurement_2025_118324
crossref_primary_10_1109_TGRS_2021_3128060
crossref_primary_10_3389_fmars_2022_1086140
crossref_primary_10_1109_JSTARS_2024_3485734
crossref_primary_10_1109_JSTARS_2020_2997081
crossref_primary_10_1109_TGRS_2023_3300536
crossref_primary_10_1007_s10489_021_03148_x
crossref_primary_10_1016_j_dsp_2024_104865
crossref_primary_10_3390_s22207961
crossref_primary_10_3390_jmse11071388
crossref_primary_10_1109_ACCESS_2020_3024546
crossref_primary_10_1109_JSEN_2025_3540901
crossref_primary_10_1109_LGRS_2021_3100572
crossref_primary_10_1109_JSEN_2024_3361084
crossref_primary_10_1109_TGRS_2021_3062038
crossref_primary_10_1049_rsn2_12609
crossref_primary_10_1016_j_rineng_2025_106297
crossref_primary_10_1109_JSTARS_2022_3230859
crossref_primary_10_3390_rs14246312
crossref_primary_10_3389_fmars_2023_1113669
crossref_primary_10_1109_JSTARS_2021_3087555
crossref_primary_10_3390_s23167027
crossref_primary_10_1109_JSTARS_2021_3049851
crossref_primary_10_3390_rs14030755
crossref_primary_10_1109_JSTARS_2024_3370722
crossref_primary_10_3390_jmse12091641
crossref_primary_10_1109_JSTARS_2022_3170361
crossref_primary_10_1109_JSTARS_2025_3547234
crossref_primary_10_3390_rs16101725
crossref_primary_10_1109_TGRS_2023_3243106
crossref_primary_10_3390_rs17030551
crossref_primary_10_3390_rs15174335
crossref_primary_10_1080_01431161_2021_1949069
crossref_primary_10_1016_j_est_2022_104480
crossref_primary_10_1109_JSTARS_2021_3109469
crossref_primary_10_1109_TGRS_2023_3298016
crossref_primary_10_1117_1_JEI_32_6_063021
crossref_primary_10_3390_rs17183254
crossref_primary_10_3390_rs16010178
crossref_primary_10_1109_LGRS_2020_2993899
crossref_primary_10_1109_TAES_2024_3489572
crossref_primary_10_1109_TGRS_2022_3155899
crossref_primary_10_1109_TGRS_2021_3096011
crossref_primary_10_3390_s21175693
crossref_primary_10_1109_JSTARS_2021_3099483
crossref_primary_10_1109_JSEN_2024_3359702
crossref_primary_10_1109_ACCESS_2022_3222364
crossref_primary_10_1016_j_isprsjprs_2021_10_010
crossref_primary_10_3390_rs13132582
crossref_primary_10_3390_en16073081
crossref_primary_10_1109_JSTARS_2022_3142025
crossref_primary_10_3390_app12104997
crossref_primary_10_3390_rs14040973
crossref_primary_10_1109_TGRS_2021_3137817
crossref_primary_10_1016_j_asr_2023_06_055
crossref_primary_10_1109_LGRS_2022_3183832
crossref_primary_10_1109_TGRS_2023_3341215
crossref_primary_10_1109_TGRS_2024_3421512
crossref_primary_10_1117_1_JRS_17_016511
crossref_primary_10_3390_rs13112171
crossref_primary_10_1109_ACCESS_2020_3020363
crossref_primary_10_1016_j_sigpro_2021_108021
crossref_primary_10_3390_s22187088
crossref_primary_10_3390_rs14112712
crossref_primary_10_1109_ACCESS_2023_3313390
crossref_primary_10_3390_rs12162619
crossref_primary_10_1016_j_isprsjprs_2023_07_006
crossref_primary_10_3390_rs14092165
crossref_primary_10_1007_s11802_021_4824_y
crossref_primary_10_1109_JSTARS_2025_3543531
crossref_primary_10_1109_TGRS_2023_3323485
crossref_primary_10_1109_JSTARS_2024_3437187
crossref_primary_10_3390_rs14041018
crossref_primary_10_1109_TGRS_2021_3082759
crossref_primary_10_1109_MGRS_2024_3450681
crossref_primary_10_1109_TGRS_2020_2997200
crossref_primary_10_1080_2150704X_2024_2442111
crossref_primary_10_1007_s00530_024_01374_0
crossref_primary_10_1109_TGRS_2024_3454308
crossref_primary_10_1016_j_oceaneng_2021_109435
crossref_primary_10_1109_JSTARS_2024_3452680
crossref_primary_10_1109_TGRS_2021_3095386
crossref_primary_10_3390_s22239331
crossref_primary_10_1007_s11227_024_06237_z
crossref_primary_10_1016_j_imavis_2024_105183
crossref_primary_10_1016_j_media_2021_102345
crossref_primary_10_1109_LGRS_2022_3161938
crossref_primary_10_1109_TGRS_2023_3331890
crossref_primary_10_3390_rs15204995
crossref_primary_10_3390_su14042103
crossref_primary_10_1109_TGRS_2020_3048384
crossref_primary_10_3390_rs14143321
crossref_primary_10_3390_s25164938
crossref_primary_10_1109_JSTARS_2024_3376070
crossref_primary_10_3390_rs14092034
crossref_primary_10_1109_TGRS_2023_3264231
crossref_primary_10_1109_TGRS_2023_3250507
crossref_primary_10_1038_s41598_024_66060_7
crossref_primary_10_3390_rs15020350
crossref_primary_10_1080_2150704X_2021_1987574
crossref_primary_10_1109_JSTARS_2024_3392433
crossref_primary_10_1109_TGRS_2023_3313204
crossref_primary_10_3390_rs15082200
crossref_primary_10_1109_JSTARS_2022_3204578
crossref_primary_10_3390_rs14133186
crossref_primary_10_3390_s21020519
crossref_primary_10_1109_JSTARS_2025_3559414
crossref_primary_10_3390_rs15112825
crossref_primary_10_1109_JSTARS_2023_3348269
crossref_primary_10_1016_j_eswa_2024_123670
crossref_primary_10_1016_j_dsp_2024_104810
crossref_primary_10_1109_JSTARS_2024_3488034
crossref_primary_10_1109_TGRS_2022_3227938
crossref_primary_10_1109_JSTARS_2022_3203230
crossref_primary_10_3390_rs14205276
crossref_primary_10_3390_rs13132558
crossref_primary_10_1080_01431161_2024_2343433
crossref_primary_10_1088_1742_6596_1544_1_012124
crossref_primary_10_3390_rs16030486
crossref_primary_10_1080_0951192X_2025_2493630
crossref_primary_10_1109_LGRS_2020_3033988
crossref_primary_10_1007_s42979_022_01218_6
crossref_primary_10_1109_TGRS_2023_3317143
crossref_primary_10_1109_TGRS_2020_3042506
crossref_primary_10_3390_s22093447
crossref_primary_10_1109_TIP_2022_3231126
crossref_primary_10_3390_rs14102389
crossref_primary_10_3390_rs14164070
crossref_primary_10_1109_TGRS_2023_3291356
crossref_primary_10_1109_TGRS_2023_3293535
crossref_primary_10_1080_07038992_2022_2118109
crossref_primary_10_1080_17455030_2022_2078016
crossref_primary_10_1109_LGRS_2021_3075436
crossref_primary_10_3390_rs13214209
crossref_primary_10_1109_TGRS_2021_3069056
crossref_primary_10_1109_TGRS_2024_3521971
crossref_primary_10_3390_rs14205268
crossref_primary_10_3390_rs14051153
crossref_primary_10_1016_j_rse_2021_112375
crossref_primary_10_3390_rs15133304
crossref_primary_10_3390_rs14081908
crossref_primary_10_1109_TGRS_2023_3267495
crossref_primary_10_1109_JSTARS_2024_3401723
crossref_primary_10_1109_ACCESS_2023_3323575
crossref_primary_10_1109_LGRS_2023_3310206
crossref_primary_10_1109_ACCESS_2023_3254206
crossref_primary_10_1109_TGRS_2024_3515150
crossref_primary_10_1109_JSTARS_2022_3206247
crossref_primary_10_3390_rs14246240
crossref_primary_10_3390_s24165317
crossref_primary_10_1016_j_oceaneng_2024_117075
crossref_primary_10_1109_TGRS_2020_3004911
crossref_primary_10_3390_s24175471
crossref_primary_10_1109_JSTARS_2023_3325376
crossref_primary_10_1109_ACCESS_2024_3385540
crossref_primary_10_1109_LGRS_2020_2981255
crossref_primary_10_1109_TGRS_2021_3130899
crossref_primary_10_1109_ACCESS_2020_3041372
crossref_primary_10_1109_JSTARS_2024_3514898
crossref_primary_10_1109_TGRS_2025_3559701
crossref_primary_10_3390_rs14143481
crossref_primary_10_1109_TGRS_2020_2976880
crossref_primary_10_3390_rs14205257
crossref_primary_10_1109_TCYB_2024_3392474
crossref_primary_10_3390_rs14030442
crossref_primary_10_3390_rs14092238
crossref_primary_10_1155_2022_8199418
crossref_primary_10_1109_TGRS_2022_3161499
crossref_primary_10_1109_JSTARS_2020_3041783
crossref_primary_10_1109_TGRS_2022_3192996
crossref_primary_10_3390_rs17030388
crossref_primary_10_1109_ACCESS_2020_2985637
crossref_primary_10_1016_j_scitotenv_2023_162826
crossref_primary_10_1109_LGRS_2024_3436855
crossref_primary_10_1109_JSTARS_2023_3324496
crossref_primary_10_3390_rs12091443
crossref_primary_10_3390_rs12122031
crossref_primary_10_1038_s41598_024_80239_y
crossref_primary_10_3390_rs13142771
crossref_primary_10_3390_rs14194857
crossref_primary_10_3390_s20082340
crossref_primary_10_1109_TGRS_2024_3489212
crossref_primary_10_3390_rs16060975
crossref_primary_10_1109_TGRS_2021_3073562
crossref_primary_10_3390_rs14205247
crossref_primary_10_1109_ACCESS_2024_3417322
crossref_primary_10_1117_1_JRS_18_034509
crossref_primary_10_3390_rs14153829
crossref_primary_10_3390_rs15112743
crossref_primary_10_1109_JSEN_2024_3393750
crossref_primary_10_3390_rs15235534
crossref_primary_10_1109_TGRS_2022_3200957
crossref_primary_10_1109_JSTARS_2021_3068530
crossref_primary_10_3390_rs13050871
crossref_primary_10_1109_TGRS_2024_3519891
crossref_primary_10_3390_rs13020200
crossref_primary_10_3390_smartcities6030076
crossref_primary_10_3390_s21134538
crossref_primary_10_1109_TAES_2023_3237520
crossref_primary_10_1080_01431161_2023_2203342
crossref_primary_10_1109_TGRS_2023_3235859
crossref_primary_10_1109_JSTARS_2022_3213583
crossref_primary_10_1109_JSTARS_2021_3112469
crossref_primary_10_3389_fcomp_2022_1012755
crossref_primary_10_1109_TGRS_2023_3303507
crossref_primary_10_3390_rs15112855
crossref_primary_10_3390_rs14051149
crossref_primary_10_1109_JSTARS_2024_3363491
crossref_primary_10_3390_rs15184480
crossref_primary_10_1109_LGRS_2023_3294483
crossref_primary_10_1016_j_oceaneng_2021_109380
crossref_primary_10_1109_JSEN_2023_3284959
crossref_primary_10_1109_JSTARS_2025_3601055
crossref_primary_10_1109_JSTSP_2021_3063805
crossref_primary_10_1109_JSEN_2023_3331877
crossref_primary_10_3390_rs12182997
crossref_primary_10_1109_ACCESS_2022_3154474
crossref_primary_10_1109_LGRS_2022_3205715
crossref_primary_10_3390_rs14246294
crossref_primary_10_3390_s25092940
crossref_primary_10_1109_TNNLS_2020_3028945
crossref_primary_10_3390_jmse11050906
crossref_primary_10_3390_rs13010034
crossref_primary_10_3390_rs17101770
crossref_primary_10_1016_j_engappai_2024_109049
crossref_primary_10_1016_j_procs_2024_04_170
crossref_primary_10_1109_TGRS_2021_3127986
crossref_primary_10_1109_TGRS_2025_3528224
crossref_primary_10_3390_rs17183214
crossref_primary_10_3390_jmse11112081
crossref_primary_10_3390_s24206564
crossref_primary_10_3390_app15126666
crossref_primary_10_3390_rs15082071
crossref_primary_10_1109_JSTARS_2023_3298483
crossref_primary_10_1109_TGRS_2023_3249349
crossref_primary_10_1109_JSTARS_2024_3420901
crossref_primary_10_1109_TGRS_2025_3534234
crossref_primary_10_1109_TGRS_2023_3275619
crossref_primary_10_1007_s10489_022_03683_1
crossref_primary_10_1080_01431161_2024_2360706
crossref_primary_10_3390_rs15030629
crossref_primary_10_3390_rs12010167
crossref_primary_10_1109_JSTARS_2024_3365807
crossref_primary_10_1109_TGRS_2024_3377704
crossref_primary_10_1080_01431161_2022_2042617
crossref_primary_10_1007_s10462_023_10455_x
crossref_primary_10_1109_JSTARS_2021_3109002
crossref_primary_10_3390_rs15030626
crossref_primary_10_1109_JSTARS_2021_3076085
crossref_primary_10_3390_rs14184670
crossref_primary_10_3389_fnbot_2024_1293992
crossref_primary_10_1016_j_oceaneng_2025_122077
crossref_primary_10_3389_fnins_2022_1074706
crossref_primary_10_1109_JSTARS_2023_3329252
crossref_primary_10_1155_2021_8893182
crossref_primary_10_1109_TGRS_2022_3142017
crossref_primary_10_1109_TGRS_2020_3010051
crossref_primary_10_1109_ACCESS_2022_3169501
crossref_primary_10_1109_TGRS_2024_3394157
crossref_primary_10_1007_s00500_022_07522_w
crossref_primary_10_1109_JSTARS_2025_3596074
crossref_primary_10_1109_TITS_2023_3235911
crossref_primary_10_1016_j_apor_2020_102455
crossref_primary_10_1016_j_isprsjprs_2023_05_009
crossref_primary_10_1109_JSTARS_2021_3123784
crossref_primary_10_1109_TGRS_2022_3152854
crossref_primary_10_1016_j_patcog_2020_107787
crossref_primary_10_1016_j_asoc_2024_111704
crossref_primary_10_1109_JSTARS_2022_3192455
crossref_primary_10_1109_LGRS_2023_3296514
crossref_primary_10_1109_TGRS_2022_3202495
crossref_primary_10_1109_TGRS_2023_3287863
crossref_primary_10_1109_TGRS_2025_3541583
crossref_primary_10_3390_rs14010143
crossref_primary_10_3390_rs16040664
crossref_primary_10_3390_rs15133326
crossref_primary_10_1016_j_isprsjprs_2020_05_016
crossref_primary_10_1109_TGRS_2020_3005151
crossref_primary_10_3390_jmse10081043
crossref_primary_10_3390_buildings15132367
crossref_primary_10_3390_rs12060989
crossref_primary_10_3390_rs14215596
crossref_primary_10_11948_20250101
crossref_primary_10_1109_TGRS_2022_3198940
crossref_primary_10_3390_jmse10060809
crossref_primary_10_1109_TGRS_2021_3068970
crossref_primary_10_3390_rs16183465
crossref_primary_10_3390_s20226673
crossref_primary_10_1109_TGRS_2021_3130117
crossref_primary_10_1016_j_engappai_2023_107133
crossref_primary_10_1109_LGRS_2020_3040308
crossref_primary_10_3390_rs13234781
crossref_primary_10_1109_JSTARS_2021_3131162
crossref_primary_10_1109_JSTARS_2025_3574184
crossref_primary_10_1109_LGRS_2022_3190855
crossref_primary_10_3390_rs16060944
crossref_primary_10_1016_j_ins_2024_120436
crossref_primary_10_1109_JSTARS_2025_3556893
crossref_primary_10_3390_app142411604
crossref_primary_10_3390_rs14010031
crossref_primary_10_3390_rs13142743
crossref_primary_10_3390_rs16060940
Cites_doi 10.1109/LGRS.2009.2024224
10.3390/s18020334
10.1109/TGRS.2002.805070
10.1109/TPAMI.2016.2577031
10.1109/TGRS.2018.2815592
10.1109/TPAMI.2015.2389824
10.1109/LGRS.2017.2789204
10.1109/TPAMI.2015.2437384
10.1080/07038992.2001.10854896
10.1109/ACCESS.2018.2825376
10.1109/LGRS.2012.2224317
10.1109/LGRS.2005.845033
10.3390/s18041196
10.1109/LGRS.2018.2882778
10.1109/36.508418
10.1109/ICCV.2015.169
10.1007/s12524-018-0787-x
10.1109/TGRS.2016.2572736
10.3390/rs9080860
10.1109/CVPR.2016.90
10.1109/7.135446
10.1007/978-3-030-01234-2_1
10.1080/2150704X.2018.1475770
10.1109/TGRS.2010.2071879
10.1109/BIGSARDATA.2017.8124934
10.1109/TPAMI.2012.59
10.1109/LGRS.2018.2838043
10.1109/TMI.2016.2528162
10.1080/07038992.2001.10854875
10.3390/s18020563
10.1109/36.581981
10.1117/1.JRS.12.016026
10.1109/JSTARS.2015.2417756
10.1080/07038992.2000.10874770
10.1109/JSTARS.2017.2687473
10.1109/JSTARS.2012.2184271
10.1109/83.552107
10.1109/CVPR.2017.106
10.1109/36.368224
10.3390/s18092851
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2019.2923988
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 8997
ExternalDocumentID 10_1109_TGRS_2019_2923988
8763918
Genre orig-research
GrantInformation_xml – fundername: Shanghai Aerospace Science and Technology Innovation Fund
  grantid: SAST2018-079
– fundername: National Natural Science Foundation of China
  grantid: 61801098
  funderid: 10.13039/501100001809
– fundername: Northwestern Polytechnical University
  grantid: 2672018ZYGX2018J013
  funderid: 10.13039/501100002663
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c293t-3ca22fe0900b342a4d68d42c3a05ade8503fa82cf2eda2f0476d983d8b483a343
IEDL.DBID RIE
ISICitedReferencesCount 405
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496155200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:24:11 EDT 2025
Sat Nov 29 02:50:00 EST 2025
Tue Nov 18 21:00:58 EST 2025
Wed Aug 27 02:40:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-3ca22fe0900b342a4d68d42c3a05ade8503fa82cf2eda2f0476d983d8b483a343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0117-9087
0000-0003-1155-786X
0000-0002-2827-3321
PQID 2311106274
PQPubID 85465
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2019_2923988
crossref_primary_10_1109_TGRS_2019_2923988
proquest_journals_2311106274
ieee_primary_8763918
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref19
ref18
qin (ref14) 2013; 10
crisp (ref16) 2004
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
liu (ref28) 2016
ref3
ref6
ref5
ref40
References_xml – ident: ref17
  doi: 10.1109/LGRS.2009.2024224
– ident: ref36
  doi: 10.3390/s18020334
– ident: ref18
  doi: 10.1109/TGRS.2002.805070
– ident: ref31
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref21
  doi: 10.1109/TGRS.2018.2815592
– ident: ref24
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref23
  doi: 10.1109/LGRS.2017.2789204
– ident: ref29
  doi: 10.1109/TPAMI.2015.2437384
– ident: ref3
  doi: 10.1080/07038992.2001.10854896
– ident: ref39
  doi: 10.1109/ACCESS.2018.2825376
– volume: 10
  start-page: 806
  year: 2013
  ident: ref14
  article-title: A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2012.2224317
– ident: ref9
  doi: 10.1109/LGRS.2005.845033
– ident: ref6
  doi: 10.3390/s18041196
– ident: ref27
  doi: 10.1109/LGRS.2018.2882778
– ident: ref8
  doi: 10.1109/36.508418
– ident: ref30
  doi: 10.1109/ICCV.2015.169
– ident: ref35
  doi: 10.1007/s12524-018-0787-x
– ident: ref20
  doi: 10.1109/TGRS.2016.2572736
– ident: ref41
  doi: 10.3390/rs9080860
– ident: ref42
  doi: 10.1109/CVPR.2016.90
– ident: ref11
  doi: 10.1109/7.135446
– ident: ref33
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref37
  doi: 10.1080/2150704X.2018.1475770
– ident: ref1
  doi: 10.1109/TGRS.2010.2071879
– ident: ref38
  doi: 10.1109/BIGSARDATA.2017.8124934
– ident: ref26
  doi: 10.1109/TPAMI.2012.59
– ident: ref7
  doi: 10.1109/LGRS.2018.2838043
– ident: ref25
  doi: 10.1109/TMI.2016.2528162
– ident: ref15
  doi: 10.1080/07038992.2001.10854875
– ident: ref10
  doi: 10.3390/s18020563
– ident: ref12
  doi: 10.1109/36.581981
– year: 2004
  ident: ref16
  article-title: The state-of-the-art in ship detection in synthetic aperture radar imagery
– start-page: 21
  year: 2016
  ident: ref28
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref5
  doi: 10.1117/1.JRS.12.016026
– ident: ref13
  doi: 10.1109/JSTARS.2015.2417756
– ident: ref2
  doi: 10.1080/07038992.2000.10874770
– ident: ref22
  doi: 10.1109/JSTARS.2017.2687473
– ident: ref19
  doi: 10.1109/JSTARS.2012.2184271
– ident: ref34
  doi: 10.1109/83.552107
– ident: ref32
  doi: 10.1109/CVPR.2017.106
– ident: ref4
  doi: 10.1109/36.368224
– ident: ref40
  doi: 10.3390/s18092851
SSID ssj0014517
Score 2.701983
Snippet Synthetic aperture radar (SAR) is an active microwave imaging sensor with the capability of working in all-weather, all-day to provide high-resolution SAR...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8983
SubjectTerms Accuracy
Datasets
Dense attention pyramid network (DAPN)
Detection
Detection algorithms
Feature extraction
Feature maps
Image detection
Image resolution
Imaging techniques
Marine vehicles
Microwave imaging
multi-scale feature maps
Multiscale analysis
Radar imaging
Radar polarimetry
Resolution
SAR (radar)
Semantics
ship detection
Ships
Synthetic aperture radar
synthetic aperture radar (SAR)
Weather
Title Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images
URI https://ieeexplore.ieee.org/document/8763918
https://www.proquest.com/docview/2311106274
Volume 57
WOSCitedRecordID wos000496155200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4oaAHPzbF-UUOnsS6LE3b5DjUqaBDtineSpqkOHBV1k7wvzdJu6EogrceklDeL30ffb_3HsBxmHS4TIjRfsbd8CiJhMeIIJ4UQWi81zTAjlX5eBv1--zpid8vwemiFkZr7chn-sw-uly-epUz-6usbbun8Q6rQS2KorJWa5ExoEGnKo0OPRNEkCqD2cG8PboaDC2Ji58RbtvdsW82yA1V-aGJnXnpbfzvxTZhvXIjUbfEfQuWdNaAtS_NBRuw4sidMm_C3YWJVTXqFkXJbUT3H1MxGSvULzngOTKeK3KluN7QYKbR8Hn8hi504XhaGRpnaNgdoJuJUT75Njz0Lkfn1141RsGTxpYXni8FIanGHOPEp0RQFTJFifQFDoTSLMB-KhiRKdFKkBTTKFSc-YollPnCp_4O1LPXTO8C0iZawiKUCms7pkQIGghjZTmxUWHCSQvwXLCxrHqM21EXL7GLNTCPLRaxxSKusGjByWLLW9lg46_FTSv8xcJK7i04mKMXV59gHhvH1RxiRwvt_b5rH1bt2WVh4QHUi-lMH8KyfC_G-fTI3a5P9m7KaA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCjiwI8rqAydEiuM4qX2s2FpRqqotiFvk2I6oBAE1AYm_x3ZCBQIhccvBTqJ5ziyZNzMAR1Hic5kQo_2Mu-FR0hAeI4J4UoSR8V7TEDtW5V2n0e2y-3vem4KTSS2M1tqRz3TdXrpcvnqWr_ZX2antnsZ9Ng2zIaXEL6u1JjkDGvpVcXTkmTCCVDlMH_PT4VV_YGlcvE64bXjHvlkhN1blhy52BuZy5X-vtgrLlSOJmiXyazCls3VY-tJecB3mHb1T5htwc26iVY2aRVGyG1HvfSyeRgp1SxZ4jozvilwxrjcwqGk0eBi9oHNdOKZWhkYZGjT7qP1k1E--CbeXF8OzllcNUvCkseaFF0hBSKoxxzgJKBFURUxRIgOBQ6E0C3GQCkZkSrQSJMW0ESnOAsUSygIR0GALZrLnTG8D0iZewiKSCms7qEQIGgpjZzmxcWHCSQ3wp2BjWXUZt8MuHmMXbWAeWyxii0VcYVGD48mWl7LFxl-LN6zwJwsruddg7xO9uPoI89i4ruYmdrjQzu-7DmGhNbzpxJ1293oXFu1zyjLDPZgpxq96H-bkWzHKxwfupH0AqN3Nrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dense+Attention+Pyramid+Networks+for+Multi-Scale+Ship+Detection+in+SAR+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Cui%2C+Zongyong&rft.au=Li%2C+Qi&rft.au=Cao%2C+Zongjie&rft.au=Liu%2C+Nengyuan&rft.date=2019-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=11&rft.spage=8983&rft_id=info:doi/10.1109%2FTGRS.2019.2923988&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon