Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images
Synthetic aperture radar (SAR) is an active microwave imaging sensor with the capability of working in all-weather, all-day to provide high-resolution SAR images. Recently, SAR images have been widely used in civilian and military fields, such as ship detection. The scales of different ships vary in...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 57; číslo 11; s. 8983 - 8997 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Synthetic aperture radar (SAR) is an active microwave imaging sensor with the capability of working in all-weather, all-day to provide high-resolution SAR images. Recently, SAR images have been widely used in civilian and military fields, such as ship detection. The scales of different ships vary in SAR images, especially for small-scale ships, which only occupy few pixels and have lower contrast. Compared with large-scale ships, the current ship detection methods are insensitive to small-scale ships. Therefore, the ship detection methods are facing difficulties with multi-scale ship detection in SAR images. A novel multi-scale ship detection method based on a dense attention pyramid network (DAPN) in SAR images is proposed in this paper. The DAPN adopts a pyramid structure, which densely connects convolutional block attention module (CBAM) to each concatenated feature map from top to bottom of the pyramid network. In this way, abundant features containing resolution and semantic information are extracted for multi-scale ship detection while refining concatenated feature maps to highlight salient features for specific scales by CBAM. Then, the salient features are integrated with global unblurred features to improve accuracy effectively in SAR images. Finally, the fused feature maps are fed to the detection network to obtain the final detection results. Experiments on the data set of SAR ship detection data set (SSDD) including multi-scale ships in various SAR images show that the proposed method can detect multi-scale ships in different scenes of SAR images with extremely high accuracy and outperforms other ship detection methods implemented on SSDD. |
|---|---|
| AbstractList | Synthetic aperture radar (SAR) is an active microwave imaging sensor with the capability of working in all-weather, all-day to provide high-resolution SAR images. Recently, SAR images have been widely used in civilian and military fields, such as ship detection. The scales of different ships vary in SAR images, especially for small-scale ships, which only occupy few pixels and have lower contrast. Compared with large-scale ships, the current ship detection methods are insensitive to small-scale ships. Therefore, the ship detection methods are facing difficulties with multi-scale ship detection in SAR images. A novel multi-scale ship detection method based on a dense attention pyramid network (DAPN) in SAR images is proposed in this paper. The DAPN adopts a pyramid structure, which densely connects convolutional block attention module (CBAM) to each concatenated feature map from top to bottom of the pyramid network. In this way, abundant features containing resolution and semantic information are extracted for multi-scale ship detection while refining concatenated feature maps to highlight salient features for specific scales by CBAM. Then, the salient features are integrated with global unblurred features to improve accuracy effectively in SAR images. Finally, the fused feature maps are fed to the detection network to obtain the final detection results. Experiments on the data set of SAR ship detection data set (SSDD) including multi-scale ships in various SAR images show that the proposed method can detect multi-scale ships in different scenes of SAR images with extremely high accuracy and outperforms other ship detection methods implemented on SSDD. |
| Author | Cao, Zongjie Cui, Zongyong Li, Qi Liu, Nengyuan |
| Author_xml | – sequence: 1 givenname: Zongyong orcidid: 0000-0003-1155-786X surname: Cui fullname: Cui, Zongyong email: zycui@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Qi surname: Li fullname: Li, Qi email: lucialee0103@gmail.com organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Zongjie orcidid: 0000-0002-0117-9087 surname: Cao fullname: Cao, Zongjie email: zjcao@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Nengyuan orcidid: 0000-0002-2827-3321 surname: Liu fullname: Liu, Nengyuan email: nengyuanliu@outlook.com organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China |
| BookMark | eNp9kE1PwkAQhjcGEwH9AcbLJp6L-9V290hAkQTUUDw3y3aqi9Di7hLDv7cV4sGDpznM-8ybeXqoU9UVIHRNyYBSou6Wk0U2YISqAVOMKynPUJfGsYxIIkQHdZtNEjGp2AXqeb8mhIqYpl00H0PlAQ9DgCrYusIvB6e3tsBPEL5q9-FxWTs832-CjTKjN4Czd7vDYwhgfvK2wtlwgadb_Qb-Ep2XeuPh6jT76PXhfjl6jGbPk-loOIsMUzxE3GjGSiCKkBUXTIsikYVghmsS6wJkTHipJTMlg0Kzkog0KZTkhVwJyTUXvI9uj3d3rv7cgw_5ut67qqnMGaeNkISlbYoeU8bV3jso852zW-0OOSV5ay1vreWttfxkrWHSP4yxQbefBqft5l_y5khaAPhtkmnCFZX8G6upezo |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2025_3530926 crossref_primary_10_3390_rs17081478 crossref_primary_10_1080_01431161_2021_1986238 crossref_primary_10_1109_LGRS_2020_3022435 crossref_primary_10_3390_rs13183690 crossref_primary_10_3390_rs13193932 crossref_primary_10_1109_LGRS_2020_2999506 crossref_primary_10_3390_rs11212483 crossref_primary_10_3390_rs13245104 crossref_primary_10_1109_JSEN_2024_3509544 crossref_primary_10_1109_JSTARS_2021_3120009 crossref_primary_10_3390_rs15245772 crossref_primary_10_1109_JSTARS_2024_3481368 crossref_primary_10_1109_JSTARS_2021_3129182 crossref_primary_10_3390_rs14122832 crossref_primary_10_1109_ACCESS_2023_3262804 crossref_primary_10_1109_LGRS_2021_3115498 crossref_primary_10_1109_JSTARS_2025_3595436 crossref_primary_10_1007_s11760_024_03212_2 crossref_primary_10_1109_JSTARS_2025_3582808 crossref_primary_10_3390_rs14236058 crossref_primary_10_1109_TGRS_2022_3185298 crossref_primary_10_1088_1402_4896_ad9add crossref_primary_10_32604_cmes_2021_013568 crossref_primary_10_1016_j_compmedimag_2025_102522 crossref_primary_10_1109_JSTARS_2024_3419770 crossref_primary_10_1080_17538947_2024_2405525 crossref_primary_10_1109_JSTARS_2024_3361927 crossref_primary_10_3390_s23136084 crossref_primary_10_3390_rs15082035 crossref_primary_10_1109_TGRS_2021_3139994 crossref_primary_10_1109_LGRS_2021_3103378 crossref_primary_10_1109_TGRS_2024_3354800 crossref_primary_10_3390_rs14061488 crossref_primary_10_1109_TGRS_2024_3419893 crossref_primary_10_32604_cmes_2023_043307 crossref_primary_10_3390_rs13173400 crossref_primary_10_3390_rs15245780 crossref_primary_10_1016_j_measurement_2025_118324 crossref_primary_10_1109_TGRS_2021_3128060 crossref_primary_10_3389_fmars_2022_1086140 crossref_primary_10_1109_JSTARS_2024_3485734 crossref_primary_10_1109_JSTARS_2020_2997081 crossref_primary_10_1109_TGRS_2023_3300536 crossref_primary_10_1007_s10489_021_03148_x crossref_primary_10_1016_j_dsp_2024_104865 crossref_primary_10_3390_s22207961 crossref_primary_10_3390_jmse11071388 crossref_primary_10_1109_ACCESS_2020_3024546 crossref_primary_10_1109_JSEN_2025_3540901 crossref_primary_10_1109_LGRS_2021_3100572 crossref_primary_10_1109_JSEN_2024_3361084 crossref_primary_10_1109_TGRS_2021_3062038 crossref_primary_10_1049_rsn2_12609 crossref_primary_10_1016_j_rineng_2025_106297 crossref_primary_10_1109_JSTARS_2022_3230859 crossref_primary_10_3390_rs14246312 crossref_primary_10_3389_fmars_2023_1113669 crossref_primary_10_1109_JSTARS_2021_3087555 crossref_primary_10_3390_s23167027 crossref_primary_10_1109_JSTARS_2021_3049851 crossref_primary_10_3390_rs14030755 crossref_primary_10_1109_JSTARS_2024_3370722 crossref_primary_10_3390_jmse12091641 crossref_primary_10_1109_JSTARS_2022_3170361 crossref_primary_10_1109_JSTARS_2025_3547234 crossref_primary_10_3390_rs16101725 crossref_primary_10_1109_TGRS_2023_3243106 crossref_primary_10_3390_rs17030551 crossref_primary_10_3390_rs15174335 crossref_primary_10_1080_01431161_2021_1949069 crossref_primary_10_1016_j_est_2022_104480 crossref_primary_10_1109_JSTARS_2021_3109469 crossref_primary_10_1109_TGRS_2023_3298016 crossref_primary_10_1117_1_JEI_32_6_063021 crossref_primary_10_3390_rs17183254 crossref_primary_10_3390_rs16010178 crossref_primary_10_1109_LGRS_2020_2993899 crossref_primary_10_1109_TAES_2024_3489572 crossref_primary_10_1109_TGRS_2022_3155899 crossref_primary_10_1109_TGRS_2021_3096011 crossref_primary_10_3390_s21175693 crossref_primary_10_1109_JSTARS_2021_3099483 crossref_primary_10_1109_JSEN_2024_3359702 crossref_primary_10_1109_ACCESS_2022_3222364 crossref_primary_10_1016_j_isprsjprs_2021_10_010 crossref_primary_10_3390_rs13132582 crossref_primary_10_3390_en16073081 crossref_primary_10_1109_JSTARS_2022_3142025 crossref_primary_10_3390_app12104997 crossref_primary_10_3390_rs14040973 crossref_primary_10_1109_TGRS_2021_3137817 crossref_primary_10_1016_j_asr_2023_06_055 crossref_primary_10_1109_LGRS_2022_3183832 crossref_primary_10_1109_TGRS_2023_3341215 crossref_primary_10_1109_TGRS_2024_3421512 crossref_primary_10_1117_1_JRS_17_016511 crossref_primary_10_3390_rs13112171 crossref_primary_10_1109_ACCESS_2020_3020363 crossref_primary_10_1016_j_sigpro_2021_108021 crossref_primary_10_3390_s22187088 crossref_primary_10_3390_rs14112712 crossref_primary_10_1109_ACCESS_2023_3313390 crossref_primary_10_3390_rs12162619 crossref_primary_10_1016_j_isprsjprs_2023_07_006 crossref_primary_10_3390_rs14092165 crossref_primary_10_1007_s11802_021_4824_y crossref_primary_10_1109_JSTARS_2025_3543531 crossref_primary_10_1109_TGRS_2023_3323485 crossref_primary_10_1109_JSTARS_2024_3437187 crossref_primary_10_3390_rs14041018 crossref_primary_10_1109_TGRS_2021_3082759 crossref_primary_10_1109_MGRS_2024_3450681 crossref_primary_10_1109_TGRS_2020_2997200 crossref_primary_10_1080_2150704X_2024_2442111 crossref_primary_10_1007_s00530_024_01374_0 crossref_primary_10_1109_TGRS_2024_3454308 crossref_primary_10_1016_j_oceaneng_2021_109435 crossref_primary_10_1109_JSTARS_2024_3452680 crossref_primary_10_1109_TGRS_2021_3095386 crossref_primary_10_3390_s22239331 crossref_primary_10_1007_s11227_024_06237_z crossref_primary_10_1016_j_imavis_2024_105183 crossref_primary_10_1016_j_media_2021_102345 crossref_primary_10_1109_LGRS_2022_3161938 crossref_primary_10_1109_TGRS_2023_3331890 crossref_primary_10_3390_rs15204995 crossref_primary_10_3390_su14042103 crossref_primary_10_1109_TGRS_2020_3048384 crossref_primary_10_3390_rs14143321 crossref_primary_10_3390_s25164938 crossref_primary_10_1109_JSTARS_2024_3376070 crossref_primary_10_3390_rs14092034 crossref_primary_10_1109_TGRS_2023_3264231 crossref_primary_10_1109_TGRS_2023_3250507 crossref_primary_10_1038_s41598_024_66060_7 crossref_primary_10_3390_rs15020350 crossref_primary_10_1080_2150704X_2021_1987574 crossref_primary_10_1109_JSTARS_2024_3392433 crossref_primary_10_1109_TGRS_2023_3313204 crossref_primary_10_3390_rs15082200 crossref_primary_10_1109_JSTARS_2022_3204578 crossref_primary_10_3390_rs14133186 crossref_primary_10_3390_s21020519 crossref_primary_10_1109_JSTARS_2025_3559414 crossref_primary_10_3390_rs15112825 crossref_primary_10_1109_JSTARS_2023_3348269 crossref_primary_10_1016_j_eswa_2024_123670 crossref_primary_10_1016_j_dsp_2024_104810 crossref_primary_10_1109_JSTARS_2024_3488034 crossref_primary_10_1109_TGRS_2022_3227938 crossref_primary_10_1109_JSTARS_2022_3203230 crossref_primary_10_3390_rs14205276 crossref_primary_10_3390_rs13132558 crossref_primary_10_1080_01431161_2024_2343433 crossref_primary_10_1088_1742_6596_1544_1_012124 crossref_primary_10_3390_rs16030486 crossref_primary_10_1080_0951192X_2025_2493630 crossref_primary_10_1109_LGRS_2020_3033988 crossref_primary_10_1007_s42979_022_01218_6 crossref_primary_10_1109_TGRS_2023_3317143 crossref_primary_10_1109_TGRS_2020_3042506 crossref_primary_10_3390_s22093447 crossref_primary_10_1109_TIP_2022_3231126 crossref_primary_10_3390_rs14102389 crossref_primary_10_3390_rs14164070 crossref_primary_10_1109_TGRS_2023_3291356 crossref_primary_10_1109_TGRS_2023_3293535 crossref_primary_10_1080_07038992_2022_2118109 crossref_primary_10_1080_17455030_2022_2078016 crossref_primary_10_1109_LGRS_2021_3075436 crossref_primary_10_3390_rs13214209 crossref_primary_10_1109_TGRS_2021_3069056 crossref_primary_10_1109_TGRS_2024_3521971 crossref_primary_10_3390_rs14205268 crossref_primary_10_3390_rs14051153 crossref_primary_10_1016_j_rse_2021_112375 crossref_primary_10_3390_rs15133304 crossref_primary_10_3390_rs14081908 crossref_primary_10_1109_TGRS_2023_3267495 crossref_primary_10_1109_JSTARS_2024_3401723 crossref_primary_10_1109_ACCESS_2023_3323575 crossref_primary_10_1109_LGRS_2023_3310206 crossref_primary_10_1109_ACCESS_2023_3254206 crossref_primary_10_1109_TGRS_2024_3515150 crossref_primary_10_1109_JSTARS_2022_3206247 crossref_primary_10_3390_rs14246240 crossref_primary_10_3390_s24165317 crossref_primary_10_1016_j_oceaneng_2024_117075 crossref_primary_10_1109_TGRS_2020_3004911 crossref_primary_10_3390_s24175471 crossref_primary_10_1109_JSTARS_2023_3325376 crossref_primary_10_1109_ACCESS_2024_3385540 crossref_primary_10_1109_LGRS_2020_2981255 crossref_primary_10_1109_TGRS_2021_3130899 crossref_primary_10_1109_ACCESS_2020_3041372 crossref_primary_10_1109_JSTARS_2024_3514898 crossref_primary_10_1109_TGRS_2025_3559701 crossref_primary_10_3390_rs14143481 crossref_primary_10_1109_TGRS_2020_2976880 crossref_primary_10_3390_rs14205257 crossref_primary_10_1109_TCYB_2024_3392474 crossref_primary_10_3390_rs14030442 crossref_primary_10_3390_rs14092238 crossref_primary_10_1155_2022_8199418 crossref_primary_10_1109_TGRS_2022_3161499 crossref_primary_10_1109_JSTARS_2020_3041783 crossref_primary_10_1109_TGRS_2022_3192996 crossref_primary_10_3390_rs17030388 crossref_primary_10_1109_ACCESS_2020_2985637 crossref_primary_10_1016_j_scitotenv_2023_162826 crossref_primary_10_1109_LGRS_2024_3436855 crossref_primary_10_1109_JSTARS_2023_3324496 crossref_primary_10_3390_rs12091443 crossref_primary_10_3390_rs12122031 crossref_primary_10_1038_s41598_024_80239_y crossref_primary_10_3390_rs13142771 crossref_primary_10_3390_rs14194857 crossref_primary_10_3390_s20082340 crossref_primary_10_1109_TGRS_2024_3489212 crossref_primary_10_3390_rs16060975 crossref_primary_10_1109_TGRS_2021_3073562 crossref_primary_10_3390_rs14205247 crossref_primary_10_1109_ACCESS_2024_3417322 crossref_primary_10_1117_1_JRS_18_034509 crossref_primary_10_3390_rs14153829 crossref_primary_10_3390_rs15112743 crossref_primary_10_1109_JSEN_2024_3393750 crossref_primary_10_3390_rs15235534 crossref_primary_10_1109_TGRS_2022_3200957 crossref_primary_10_1109_JSTARS_2021_3068530 crossref_primary_10_3390_rs13050871 crossref_primary_10_1109_TGRS_2024_3519891 crossref_primary_10_3390_rs13020200 crossref_primary_10_3390_smartcities6030076 crossref_primary_10_3390_s21134538 crossref_primary_10_1109_TAES_2023_3237520 crossref_primary_10_1080_01431161_2023_2203342 crossref_primary_10_1109_TGRS_2023_3235859 crossref_primary_10_1109_JSTARS_2022_3213583 crossref_primary_10_1109_JSTARS_2021_3112469 crossref_primary_10_3389_fcomp_2022_1012755 crossref_primary_10_1109_TGRS_2023_3303507 crossref_primary_10_3390_rs15112855 crossref_primary_10_3390_rs14051149 crossref_primary_10_1109_JSTARS_2024_3363491 crossref_primary_10_3390_rs15184480 crossref_primary_10_1109_LGRS_2023_3294483 crossref_primary_10_1016_j_oceaneng_2021_109380 crossref_primary_10_1109_JSEN_2023_3284959 crossref_primary_10_1109_JSTARS_2025_3601055 crossref_primary_10_1109_JSTSP_2021_3063805 crossref_primary_10_1109_JSEN_2023_3331877 crossref_primary_10_3390_rs12182997 crossref_primary_10_1109_ACCESS_2022_3154474 crossref_primary_10_1109_LGRS_2022_3205715 crossref_primary_10_3390_rs14246294 crossref_primary_10_3390_s25092940 crossref_primary_10_1109_TNNLS_2020_3028945 crossref_primary_10_3390_jmse11050906 crossref_primary_10_3390_rs13010034 crossref_primary_10_3390_rs17101770 crossref_primary_10_1016_j_engappai_2024_109049 crossref_primary_10_1016_j_procs_2024_04_170 crossref_primary_10_1109_TGRS_2021_3127986 crossref_primary_10_1109_TGRS_2025_3528224 crossref_primary_10_3390_rs17183214 crossref_primary_10_3390_jmse11112081 crossref_primary_10_3390_s24206564 crossref_primary_10_3390_app15126666 crossref_primary_10_3390_rs15082071 crossref_primary_10_1109_JSTARS_2023_3298483 crossref_primary_10_1109_TGRS_2023_3249349 crossref_primary_10_1109_JSTARS_2024_3420901 crossref_primary_10_1109_TGRS_2025_3534234 crossref_primary_10_1109_TGRS_2023_3275619 crossref_primary_10_1007_s10489_022_03683_1 crossref_primary_10_1080_01431161_2024_2360706 crossref_primary_10_3390_rs15030629 crossref_primary_10_3390_rs12010167 crossref_primary_10_1109_JSTARS_2024_3365807 crossref_primary_10_1109_TGRS_2024_3377704 crossref_primary_10_1080_01431161_2022_2042617 crossref_primary_10_1007_s10462_023_10455_x crossref_primary_10_1109_JSTARS_2021_3109002 crossref_primary_10_3390_rs15030626 crossref_primary_10_1109_JSTARS_2021_3076085 crossref_primary_10_3390_rs14184670 crossref_primary_10_3389_fnbot_2024_1293992 crossref_primary_10_1016_j_oceaneng_2025_122077 crossref_primary_10_3389_fnins_2022_1074706 crossref_primary_10_1109_JSTARS_2023_3329252 crossref_primary_10_1155_2021_8893182 crossref_primary_10_1109_TGRS_2022_3142017 crossref_primary_10_1109_TGRS_2020_3010051 crossref_primary_10_1109_ACCESS_2022_3169501 crossref_primary_10_1109_TGRS_2024_3394157 crossref_primary_10_1007_s00500_022_07522_w crossref_primary_10_1109_JSTARS_2025_3596074 crossref_primary_10_1109_TITS_2023_3235911 crossref_primary_10_1016_j_apor_2020_102455 crossref_primary_10_1016_j_isprsjprs_2023_05_009 crossref_primary_10_1109_JSTARS_2021_3123784 crossref_primary_10_1109_TGRS_2022_3152854 crossref_primary_10_1016_j_patcog_2020_107787 crossref_primary_10_1016_j_asoc_2024_111704 crossref_primary_10_1109_JSTARS_2022_3192455 crossref_primary_10_1109_LGRS_2023_3296514 crossref_primary_10_1109_TGRS_2022_3202495 crossref_primary_10_1109_TGRS_2023_3287863 crossref_primary_10_1109_TGRS_2025_3541583 crossref_primary_10_3390_rs14010143 crossref_primary_10_3390_rs16040664 crossref_primary_10_3390_rs15133326 crossref_primary_10_1016_j_isprsjprs_2020_05_016 crossref_primary_10_1109_TGRS_2020_3005151 crossref_primary_10_3390_jmse10081043 crossref_primary_10_3390_buildings15132367 crossref_primary_10_3390_rs12060989 crossref_primary_10_3390_rs14215596 crossref_primary_10_11948_20250101 crossref_primary_10_1109_TGRS_2022_3198940 crossref_primary_10_3390_jmse10060809 crossref_primary_10_1109_TGRS_2021_3068970 crossref_primary_10_3390_rs16183465 crossref_primary_10_3390_s20226673 crossref_primary_10_1109_TGRS_2021_3130117 crossref_primary_10_1016_j_engappai_2023_107133 crossref_primary_10_1109_LGRS_2020_3040308 crossref_primary_10_3390_rs13234781 crossref_primary_10_1109_JSTARS_2021_3131162 crossref_primary_10_1109_JSTARS_2025_3574184 crossref_primary_10_1109_LGRS_2022_3190855 crossref_primary_10_3390_rs16060944 crossref_primary_10_1016_j_ins_2024_120436 crossref_primary_10_1109_JSTARS_2025_3556893 crossref_primary_10_3390_app142411604 crossref_primary_10_3390_rs14010031 crossref_primary_10_3390_rs13142743 crossref_primary_10_3390_rs16060940 |
| Cites_doi | 10.1109/LGRS.2009.2024224 10.3390/s18020334 10.1109/TGRS.2002.805070 10.1109/TPAMI.2016.2577031 10.1109/TGRS.2018.2815592 10.1109/TPAMI.2015.2389824 10.1109/LGRS.2017.2789204 10.1109/TPAMI.2015.2437384 10.1080/07038992.2001.10854896 10.1109/ACCESS.2018.2825376 10.1109/LGRS.2012.2224317 10.1109/LGRS.2005.845033 10.3390/s18041196 10.1109/LGRS.2018.2882778 10.1109/36.508418 10.1109/ICCV.2015.169 10.1007/s12524-018-0787-x 10.1109/TGRS.2016.2572736 10.3390/rs9080860 10.1109/CVPR.2016.90 10.1109/7.135446 10.1007/978-3-030-01234-2_1 10.1080/2150704X.2018.1475770 10.1109/TGRS.2010.2071879 10.1109/BIGSARDATA.2017.8124934 10.1109/TPAMI.2012.59 10.1109/LGRS.2018.2838043 10.1109/TMI.2016.2528162 10.1080/07038992.2001.10854875 10.3390/s18020563 10.1109/36.581981 10.1117/1.JRS.12.016026 10.1109/JSTARS.2015.2417756 10.1080/07038992.2000.10874770 10.1109/JSTARS.2017.2687473 10.1109/JSTARS.2012.2184271 10.1109/83.552107 10.1109/CVPR.2017.106 10.1109/36.368224 10.3390/s18092851 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2019.2923988 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 8997 |
| ExternalDocumentID | 10_1109_TGRS_2019_2923988 8763918 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shanghai Aerospace Science and Technology Innovation Fund grantid: SAST2018-079 – fundername: National Natural Science Foundation of China grantid: 61801098 funderid: 10.13039/501100001809 – fundername: Northwestern Polytechnical University grantid: 2672018ZYGX2018J013 funderid: 10.13039/501100002663 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG |
| ID | FETCH-LOGICAL-c293t-3ca22fe0900b342a4d68d42c3a05ade8503fa82cf2eda2f0476d983d8b483a343 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 405 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496155200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:24:11 EDT 2025 Sat Nov 29 02:50:00 EST 2025 Tue Nov 18 21:00:58 EST 2025 Wed Aug 27 02:40:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-3ca22fe0900b342a4d68d42c3a05ade8503fa82cf2eda2f0476d983d8b483a343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0117-9087 0000-0003-1155-786X 0000-0002-2827-3321 |
| PQID | 2311106274 |
| PQPubID | 85465 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2019_2923988 crossref_primary_10_1109_TGRS_2019_2923988 proquest_journals_2311106274 ieee_primary_8763918 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref19 ref18 qin (ref14) 2013; 10 crisp (ref16) 2004 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 liu (ref28) 2016 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref17 doi: 10.1109/LGRS.2009.2024224 – ident: ref36 doi: 10.3390/s18020334 – ident: ref18 doi: 10.1109/TGRS.2002.805070 – ident: ref31 doi: 10.1109/TPAMI.2016.2577031 – ident: ref21 doi: 10.1109/TGRS.2018.2815592 – ident: ref24 doi: 10.1109/TPAMI.2015.2389824 – ident: ref23 doi: 10.1109/LGRS.2017.2789204 – ident: ref29 doi: 10.1109/TPAMI.2015.2437384 – ident: ref3 doi: 10.1080/07038992.2001.10854896 – ident: ref39 doi: 10.1109/ACCESS.2018.2825376 – volume: 10 start-page: 806 year: 2013 ident: ref14 article-title: A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2012.2224317 – ident: ref9 doi: 10.1109/LGRS.2005.845033 – ident: ref6 doi: 10.3390/s18041196 – ident: ref27 doi: 10.1109/LGRS.2018.2882778 – ident: ref8 doi: 10.1109/36.508418 – ident: ref30 doi: 10.1109/ICCV.2015.169 – ident: ref35 doi: 10.1007/s12524-018-0787-x – ident: ref20 doi: 10.1109/TGRS.2016.2572736 – ident: ref41 doi: 10.3390/rs9080860 – ident: ref42 doi: 10.1109/CVPR.2016.90 – ident: ref11 doi: 10.1109/7.135446 – ident: ref33 doi: 10.1007/978-3-030-01234-2_1 – ident: ref37 doi: 10.1080/2150704X.2018.1475770 – ident: ref1 doi: 10.1109/TGRS.2010.2071879 – ident: ref38 doi: 10.1109/BIGSARDATA.2017.8124934 – ident: ref26 doi: 10.1109/TPAMI.2012.59 – ident: ref7 doi: 10.1109/LGRS.2018.2838043 – ident: ref25 doi: 10.1109/TMI.2016.2528162 – ident: ref15 doi: 10.1080/07038992.2001.10854875 – ident: ref10 doi: 10.3390/s18020563 – ident: ref12 doi: 10.1109/36.581981 – year: 2004 ident: ref16 article-title: The state-of-the-art in ship detection in synthetic aperture radar imagery – start-page: 21 year: 2016 ident: ref28 article-title: SSD: Single shot multibox detector publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref5 doi: 10.1117/1.JRS.12.016026 – ident: ref13 doi: 10.1109/JSTARS.2015.2417756 – ident: ref2 doi: 10.1080/07038992.2000.10874770 – ident: ref22 doi: 10.1109/JSTARS.2017.2687473 – ident: ref19 doi: 10.1109/JSTARS.2012.2184271 – ident: ref34 doi: 10.1109/83.552107 – ident: ref32 doi: 10.1109/CVPR.2017.106 – ident: ref4 doi: 10.1109/36.368224 – ident: ref40 doi: 10.3390/s18092851 |
| SSID | ssj0014517 |
| Score | 2.701983 |
| Snippet | Synthetic aperture radar (SAR) is an active microwave imaging sensor with the capability of working in all-weather, all-day to provide high-resolution SAR... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8983 |
| SubjectTerms | Accuracy Datasets Dense attention pyramid network (DAPN) Detection Detection algorithms Feature extraction Feature maps Image detection Image resolution Imaging techniques Marine vehicles Microwave imaging multi-scale feature maps Multiscale analysis Radar imaging Radar polarimetry Resolution SAR (radar) Semantics ship detection Ships Synthetic aperture radar synthetic aperture radar (SAR) Weather |
| Title | Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images |
| URI | https://ieeexplore.ieee.org/document/8763918 https://www.proquest.com/docview/2311106274 |
| Volume | 57 |
| WOSCitedRecordID | wos000496155200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4oaAHPzbF-UUOnsS6LE3b5DjUqaBDtineSpqkOHBV1k7wvzdJu6EogrceklDeL30ffb_3HsBxmHS4TIjRfsbd8CiJhMeIIJ4UQWi81zTAjlX5eBv1--zpid8vwemiFkZr7chn-sw-uly-epUz-6usbbun8Q6rQS2KorJWa5ExoEGnKo0OPRNEkCqD2cG8PboaDC2Ji58RbtvdsW82yA1V-aGJnXnpbfzvxTZhvXIjUbfEfQuWdNaAtS_NBRuw4sidMm_C3YWJVTXqFkXJbUT3H1MxGSvULzngOTKeK3KluN7QYKbR8Hn8hi504XhaGRpnaNgdoJuJUT75Njz0Lkfn1141RsGTxpYXni8FIanGHOPEp0RQFTJFifQFDoTSLMB-KhiRKdFKkBTTKFSc-YollPnCp_4O1LPXTO8C0iZawiKUCms7pkQIGghjZTmxUWHCSQvwXLCxrHqM21EXL7GLNTCPLRaxxSKusGjByWLLW9lg46_FTSv8xcJK7i04mKMXV59gHhvH1RxiRwvt_b5rH1bt2WVh4QHUi-lMH8KyfC_G-fTI3a5P9m7KaA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCjiwI8rqAydEiuM4qX2s2FpRqqotiFvk2I6oBAE1AYm_x3ZCBQIhccvBTqJ5ziyZNzMAR1Hic5kQo_2Mu-FR0hAeI4J4UoSR8V7TEDtW5V2n0e2y-3vem4KTSS2M1tqRz3TdXrpcvnqWr_ZX2antnsZ9Ng2zIaXEL6u1JjkDGvpVcXTkmTCCVDlMH_PT4VV_YGlcvE64bXjHvlkhN1blhy52BuZy5X-vtgrLlSOJmiXyazCls3VY-tJecB3mHb1T5htwc26iVY2aRVGyG1HvfSyeRgp1SxZ4jozvilwxrjcwqGk0eBi9oHNdOKZWhkYZGjT7qP1k1E--CbeXF8OzllcNUvCkseaFF0hBSKoxxzgJKBFURUxRIgOBQ6E0C3GQCkZkSrQSJMW0ESnOAsUSygIR0GALZrLnTG8D0iZewiKSCms7qEQIGgpjZzmxcWHCSQ3wp2BjWXUZt8MuHmMXbWAeWyxii0VcYVGD48mWl7LFxl-LN6zwJwsruddg7xO9uPoI89i4ruYmdrjQzu-7DmGhNbzpxJ1293oXFu1zyjLDPZgpxq96H-bkWzHKxwfupH0AqN3Nrw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dense+Attention+Pyramid+Networks+for+Multi-Scale+Ship+Detection+in+SAR+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Cui%2C+Zongyong&rft.au=Li%2C+Qi&rft.au=Cao%2C+Zongjie&rft.au=Liu%2C+Nengyuan&rft.date=2019-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=11&rft.spage=8983&rft_id=info:doi/10.1109%2FTGRS.2019.2923988&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |