Semiclosed Greenhouse Climate Control Under Uncertainty via Machine Learning and Data-Driven Robust Model Predictive Control

This work proposes a novel data-driven robust model predictive control (DDRMPC) framework for automatic control of greenhouse in-door climate. The framework integrates dynamic control models of greenhouse temperature, humidity, and CO 2 concentration level with data-driven robust optimization models...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on control systems technology Ročník 30; číslo 3; s. 1186 - 1197
Hlavní autoři: Chen, Wei-Han, You, Fengqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6536, 1558-0865
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This work proposes a novel data-driven robust model predictive control (DDRMPC) framework for automatic control of greenhouse in-door climate. The framework integrates dynamic control models of greenhouse temperature, humidity, and CO 2 concentration level with data-driven robust optimization models that accurately and rigorously capture uncertainty in weather forecast error. Data-driven uncertainty sets for ambient temperature, solar radiation, and humidity are constructed from historical data by leveraging a machine learning approach, namely, support vector clustering with weighted generalized intersection kernel. A training-calibration procedure that tunes the size of uncertainty sets is implemented to ensure that data-driven uncertainty sets attain an appropriate performance guarantee. In order to solve the optimization problem in DDRMPC, an affine disturbance feedback policy is utilized to obtain tractable approximations of optimal control. A case study of controlling temperature, humidity, and CO 2 concentration of a semiclosed greenhouse in New York City is presented. The results show that the DDRMPC approach ends up with 14% and 4% lower total cost than rule-based control and robust model predictive control with L 1 -norm-based uncertainty set, respectively. The constraint violation probability, which is the percentage of time that the greenhouse system states violate the constraint throughout the whole growing period, for DDRMPC is only 0.39%. Hence, the proposed DDRMPC framework can prevent the greenhouse climate from becoming harmful to plants and fruits. In conclusion, the proposed DDRMPC approach can improve the greenhouse climate control performance and reduce cost compared with other control strategies.
AbstractList This work proposes a novel data-driven robust model predictive control (DDRMPC) framework for automatic control of greenhouse in-door climate. The framework integrates dynamic control models of greenhouse temperature, humidity, and CO 2 concentration level with data-driven robust optimization models that accurately and rigorously capture uncertainty in weather forecast error. Data-driven uncertainty sets for ambient temperature, solar radiation, and humidity are constructed from historical data by leveraging a machine learning approach, namely, support vector clustering with weighted generalized intersection kernel. A training-calibration procedure that tunes the size of uncertainty sets is implemented to ensure that data-driven uncertainty sets attain an appropriate performance guarantee. In order to solve the optimization problem in DDRMPC, an affine disturbance feedback policy is utilized to obtain tractable approximations of optimal control. A case study of controlling temperature, humidity, and CO 2 concentration of a semiclosed greenhouse in New York City is presented. The results show that the DDRMPC approach ends up with 14% and 4% lower total cost than rule-based control and robust model predictive control with L 1 -norm-based uncertainty set, respectively. The constraint violation probability, which is the percentage of time that the greenhouse system states violate the constraint throughout the whole growing period, for DDRMPC is only 0.39%. Hence, the proposed DDRMPC framework can prevent the greenhouse climate from becoming harmful to plants and fruits. In conclusion, the proposed DDRMPC approach can improve the greenhouse climate control performance and reduce cost compared with other control strategies.
This work proposes a novel data-driven robust model predictive control (DDRMPC) framework for automatic control of greenhouse in-door climate. The framework integrates dynamic control models of greenhouse temperature, humidity, and CO2 concentration level with data-driven robust optimization models that accurately and rigorously capture uncertainty in weather forecast error. Data-driven uncertainty sets for ambient temperature, solar radiation, and humidity are constructed from historical data by leveraging a machine learning approach, namely, support vector clustering with weighted generalized intersection kernel. A training-calibration procedure that tunes the size of uncertainty sets is implemented to ensure that data-driven uncertainty sets attain an appropriate performance guarantee. In order to solve the optimization problem in DDRMPC, an affine disturbance feedback policy is utilized to obtain tractable approximations of optimal control. A case study of controlling temperature, humidity, and CO2 concentration of a semiclosed greenhouse in New York City is presented. The results show that the DDRMPC approach ends up with 14% and 4% lower total cost than rule-based control and robust model predictive control with L1-norm-based uncertainty set, respectively. The constraint violation probability, which is the percentage of time that the greenhouse system states violate the constraint throughout the whole growing period, for DDRMPC is only 0.39%. Hence, the proposed DDRMPC framework can prevent the greenhouse climate from becoming harmful to plants and fruits. In conclusion, the proposed DDRMPC approach can improve the greenhouse climate control performance and reduce cost compared with other control strategies.
Author You, Fengqi
Chen, Wei-Han
Author_xml – sequence: 1
  givenname: Wei-Han
  orcidid: 0000-0001-5319-1806
  surname: Chen
  fullname: Chen, Wei-Han
  email: wc593@cornell.edu
  organization: Systems Engineering, College of Engineering, Cornell University, Ithaca, NY, USA
– sequence: 2
  givenname: Fengqi
  orcidid: 0000-0001-9609-4299
  surname: You
  fullname: You, Fengqi
  email: fengqi.you@cornell.edu
  organization: Systems Engineering and the Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
BookMark eNp9kE9LAzEQxYNU0FY_gHgJeN6abHY3m6PUv1BRbHtestmJRtZEk7Qg-OHN0urBg5eZgXlvHvMbo5F1FhA6oWRKKRHny9liOc1JTqeMiEIIsYcOaVnWGamrcpRmUrGsKll1gMYhvBJCizLnh-hrAW9G9S5Ah288gH1x6wB41ps3GVN3NnrX45XtwKeqwEdpbPzEGyPxvVQvxgKeg_TW2GcsbYcvZZTZpTcbsPjJtesQ8b3roMePHjqjYlr8nD1C-1r2AY53fYJW11fL2W02f7i5m13MM5ULFjPW6pZpUG1JuexawqkiKi8U5aLTRBW8ZVKoSicQTOZKlqpKBLjWUtVFzjSboLPt3XfvPtYQYvPq1t6myCZPUl6LumBJRbcq5V0IHnTz7hMF_9lQ0gyQmwFyM0BudpCTh__xKBNlNMN_0vT_Ok-3TgMAv0lpx1lRsm8N_I5J
CODEN IETTE2
CitedBy_id crossref_primary_10_1016_j_jprocont_2021_10_004
crossref_primary_10_1016_j_jclepro_2024_142544
crossref_primary_10_1016_j_ifacol_2022_07_477
crossref_primary_10_51646_jsesd_v14i1_489
crossref_primary_10_1016_j_atech_2025_101327
crossref_primary_10_1016_j_ifacol_2024_07_477
crossref_primary_10_1016_j_ifacol_2024_07_510
crossref_primary_10_3390_s25051388
crossref_primary_10_1016_j_compag_2025_110603
crossref_primary_10_1016_j_rser_2024_114423
crossref_primary_10_2516_stet_2024002
crossref_primary_10_1016_j_renene_2024_120582
crossref_primary_10_1016_j_apenergy_2024_124006
crossref_primary_10_3390_agriengineering6030165
crossref_primary_10_3390_horticulturae10010049
crossref_primary_10_1016_j_apenergy_2025_126469
crossref_primary_10_1080_19401493_2023_2196971
crossref_primary_10_1016_j_apenergy_2023_122349
crossref_primary_10_3390_pr11123408
crossref_primary_10_1007_s41101_025_00406_8
crossref_primary_10_1007_s44327_025_00096_w
crossref_primary_10_1080_15599612_2023_2222146
crossref_primary_10_1007_s00521_023_08220_w
crossref_primary_10_1016_j_ifacol_2022_07_469
crossref_primary_10_1016_j_egyr_2022_09_018
crossref_primary_10_1109_TASE_2023_3271896
crossref_primary_10_1109_TASE_2024_3514101
crossref_primary_10_1515_revce_2024_0055
crossref_primary_10_1016_j_rineng_2025_105505
crossref_primary_10_1049_pel2_70081
crossref_primary_10_1515_auto_2024_0163
crossref_primary_10_3390_agronomy12122988
crossref_primary_10_1038_s43016_024_01045_3
crossref_primary_10_1016_j_rser_2022_112830
crossref_primary_10_1002_rnc_7010
crossref_primary_10_1016_j_apenergy_2024_123982
crossref_primary_10_1016_j_enbuild_2023_113088
crossref_primary_10_3390_agriculture13051020
crossref_primary_10_3390_agronomy12071643
crossref_primary_10_1016_j_apenergy_2023_122334
crossref_primary_10_1016_j_apenergy_2025_125841
crossref_primary_10_3390_su151813302
crossref_primary_10_1080_02286203_2025_2478997
crossref_primary_10_1016_j_apenergy_2022_119334
crossref_primary_10_1109_TCST_2024_3355012
crossref_primary_10_1016_j_energy_2025_136153
crossref_primary_10_3389_fagro_2025_1536998
Cites_doi 10.3354/cr002183
10.1201/b10321
10.21273/JASHS.104.4.515
10.1007/s004250050087
10.1002/aic.16488
10.1007/978-3-319-11134-6
10.1016/j.apenergy.2015.09.012
10.1016/S1474-6670(17)56642-2
10.1016/j.omega.2014.12.006
10.1109/TAC.2011.2159422
10.1016/j.compag.2018.09.011
10.1515/9781400831050
10.1016/S0967-0661(02)00023-0
10.1016/S0967-0661(99)00042-8
10.1016/j.inpa.2018.08.005
10.1016/j.eng.2019.01.019
10.25165/j.ijabe.20181101.3210
10.1287/opre.1070.0441
10.1016/j.apenergy.2019.113857
10.1016/j.agrformet.2006.12.002
10.1109/MED.2016.7535861
10.1016/S0168-1699(03)00018-8
10.1016/j.automatica.2012.01.002
10.1109/72.914517
10.1002/aic.15717
10.1016/j.compag.2007.09.014
10.1016/j.compchemeng.2017.07.004
10.1016/0005-1098(89)90002-2
10.1016/j.jprocont.2018.12.013
10.1016/j.compchemeng.2017.12.015
10.1016/S0304-4149(99)00012-5
10.1007/bfb0109870
10.4249/scholarpedia.5187
10.1016/j.compag.2006.12.001
10.1515/intag-2017-0005
10.1109/TCST.2019.2916753
10.1016/0038-092X(80)90391-6
10.23919/ECC.2001.7076243
10.1162/089976601750264965
10.1109/ACC.2014.6858967
10.1016/j.apenergy.2014.12.026
10.1016/j.inpa.2018.04.003
10.1109/TCST.2015.2415411
10.1016/j.compchemeng.2018.02.007
10.1016/j.conengprac.2008.05.008
10.3390/en11030631
10.1016/j.apenergy.2009.09.004
10.1080/14620316.1985.11515658
10.1016/j.automatica.2008.12.024
10.1016/j.compag.2016.02.014
10.1186/1471-2164-14-293
10.1016/j.dss.2014.03.001
10.1109/CACSD.2004.1393890
10.1080/00207179.2017.1323351
10.1016/j.conengprac.2010.12.004
10.1109/TAC.2019.2902041
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2021.3094999
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1558-0865
EndPage 1197
ExternalDocumentID 10_1109_TCST_2021_3094999
9497345
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: CBET-1643244
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c293t-3bfb3fecb517adb071c0c24c179df0c47b3a9c6f1103a2ca5c64997ffac8423f3
IEDL.DBID RIE
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732192500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6536
IngestDate Sun Nov 09 08:23:19 EST 2025
Sat Nov 29 03:51:42 EST 2025
Tue Nov 18 21:53:44 EST 2025
Wed Aug 27 02:40:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-3bfb3fecb517adb071c0c24c179df0c47b3a9c6f1103a2ca5c64997ffac8423f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5319-1806
0000-0001-9609-4299
PQID 2649789843
PQPubID 85425
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCST_2021_3094999
ieee_primary_9497345
crossref_citationtrail_10_1109_TCST_2021_3094999
proquest_journals_2649789843
PublicationCentury 2000
PublicationDate 2022-May
2022-5-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Zou (ref19)
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
(ref58) 2019
ref28
ref27
ref29
References_xml – ident: ref41
  doi: 10.3354/cr002183
– volume-title: Gurobi Optimizer Reference Manual
  year: 2019
  ident: ref58
– ident: ref4
  doi: 10.1201/b10321
– ident: ref40
  doi: 10.21273/JASHS.104.4.515
– ident: ref25
  doi: 10.1007/s004250050087
– start-page: 123
  volume-title: Proc. World Automat. Congr.
  ident: ref19
  article-title: Model predictive control based on particle swarm optimization of greenhouse climate for saving energy consumption
– ident: ref30
  doi: 10.1002/aic.16488
– ident: ref46
  doi: 10.1007/978-3-319-11134-6
– ident: ref11
  doi: 10.1016/j.apenergy.2015.09.012
– ident: ref8
  doi: 10.1016/S1474-6670(17)56642-2
– ident: ref47
  doi: 10.1016/j.omega.2014.12.006
– ident: ref53
  doi: 10.1109/TAC.2011.2159422
– ident: ref21
  doi: 10.1016/j.compag.2018.09.011
– ident: ref55
  doi: 10.1515/9781400831050
– ident: ref9
  doi: 10.1016/S0967-0661(02)00023-0
– ident: ref14
  doi: 10.1016/S0967-0661(99)00042-8
– ident: ref1
  doi: 10.1016/j.inpa.2018.08.005
– ident: ref27
  doi: 10.1016/j.eng.2019.01.019
– ident: ref5
  doi: 10.25165/j.ijabe.20181101.3210
– ident: ref50
  doi: 10.1287/opre.1070.0441
– ident: ref28
  doi: 10.1016/j.apenergy.2019.113857
– ident: ref44
  doi: 10.1016/j.agrformet.2006.12.002
– ident: ref18
  doi: 10.1109/MED.2016.7535861
– ident: ref6
  doi: 10.1016/S0168-1699(03)00018-8
– ident: ref45
  doi: 10.1016/j.automatica.2012.01.002
– ident: ref39
  doi: 10.1109/72.914517
– ident: ref48
  doi: 10.1002/aic.15717
– ident: ref51
  doi: 10.1016/j.compag.2007.09.014
– ident: ref37
  doi: 10.1016/j.compchemeng.2017.07.004
– ident: ref20
  doi: 10.1016/0005-1098(89)90002-2
– ident: ref49
  doi: 10.1016/j.jprocont.2018.12.013
– ident: ref32
  doi: 10.1016/j.compchemeng.2017.12.015
– ident: ref54
  doi: 10.1016/S0304-4149(99)00012-5
– ident: ref26
  doi: 10.1007/bfb0109870
– ident: ref36
  doi: 10.4249/scholarpedia.5187
– ident: ref15
  doi: 10.1016/j.compag.2006.12.001
– ident: ref3
  doi: 10.1515/intag-2017-0005
– ident: ref35
  doi: 10.1109/TCST.2019.2916753
– ident: ref56
  doi: 10.1016/0038-092X(80)90391-6
– ident: ref7
  doi: 10.23919/ECC.2001.7076243
– ident: ref38
  doi: 10.1162/089976601750264965
– ident: ref42
  doi: 10.1109/ACC.2014.6858967
– ident: ref13
  doi: 10.1016/j.apenergy.2014.12.026
– ident: ref24
  doi: 10.1016/j.inpa.2018.04.003
– ident: ref43
  doi: 10.1109/TCST.2015.2415411
– ident: ref33
  doi: 10.1016/j.compchemeng.2018.02.007
– ident: ref12
  doi: 10.1016/j.conengprac.2008.05.008
– ident: ref23
  doi: 10.3390/en11030631
– ident: ref34
  doi: 10.1016/j.apenergy.2009.09.004
– ident: ref2
  doi: 10.1080/14620316.1985.11515658
– ident: ref10
  doi: 10.1016/j.automatica.2008.12.024
– ident: ref17
  doi: 10.1016/j.compag.2016.02.014
– ident: ref29
  doi: 10.1186/1471-2164-14-293
– ident: ref31
  doi: 10.1016/j.dss.2014.03.001
– ident: ref57
  doi: 10.1109/CACSD.2004.1393890
– ident: ref52
  doi: 10.1080/00207179.2017.1323351
– ident: ref16
  doi: 10.1016/j.conengprac.2010.12.004
– ident: ref22
  doi: 10.1109/TAC.2019.2902041
SSID ssj0014527
Score 2.6123862
Snippet This work proposes a novel data-driven robust model predictive control (DDRMPC) framework for automatic control of greenhouse in-door climate. The framework...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1186
SubjectTerms Agriculture
Ambient temperature
Automatic control
Carbon dioxide
Carbon dioxide concentration
Climate models
Clustering
Controlled environment agriculture
data-driven robust optimization
Dynamic control
Green products
greenhouse climate control
Greenhouses
Humidity
Machine learning
Optimal control
Optimization models
Predictive control
Robust control
robust model predictive control (RMPC)
Solar radiation
Temperature distribution
Uncertainty
Weather forecasting
Title Semiclosed Greenhouse Climate Control Under Uncertainty via Machine Learning and Data-Driven Robust Model Predictive Control
URI https://ieeexplore.ieee.org/document/9497345
https://www.proquest.com/docview/2649789843
Volume 30
WOSCitedRecordID wos000732192500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 1558-0865
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014527
  issn: 1063-6536
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4kAPpS2t2EIrHzhVBLKxE8dHtIA4tAiVReIW2WObrrTarbJZpEr98R073lURVSUueSjjKPLnx0xm5huAI2P00NUq8Gl7nglTYmaELTJdcVuqSnGTx0Thr_L6ur6_VzcbcLzOhXHOxeAzdxIuoy_fznEZfpWdKqEkF-UmbEop-1yttcdA9OVZycLhWRVdkoPEp3k6Ht2OyRIshic8D1ws6skeFIuqPFuJ4_ZyufuyD3sDr5Mayc563N_Chpu9g1dnD22i0nB09xfV4B78vg1R8NP5wlkWY21-kMnv2Gg6IZWVzn3EOotlkOiIfaRA94s9TjT7FiMuHUtkrA9Mzyw7153OztuwWrLvc7NcdCwUVpuymzY4f8Iyunrte7i7vBiPrrJUeSFD2v67jBtvuHdoyqHU1pAagjkWAmn2Wp-jkIZrhZWn7uW6QF1iRf0qvddYk37m-QfYms1nbh-YCBxjXip6YIVAaWjUeIW51XVN0noA-QqLBhMteaiOMW2ieZKrJsDXBPiaBN8Avqyb_Ow5Of4nvBfwWgsmqAZwuAK8SbN20ZBySEa1qgX_-O9WB7BThPSHGPB4CFtdu3SfYBsfu8mi_RwH5B_YqOCn
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qLagP_bBKT1ubB5_Ebfc22Y88lqul4vUo9oS-LckkqQfHXdnbKwj-8U6yuaOiCL7sBztZlvzyMbMz8xuA91qrvq2k59N2PBE6x0QLkyWq4CaXheQ6DYnCw3I0qm5v5fUGfFznwlhrQ_CZPfGXwZdv5rj0v8pOpZAlF_kTeJoLkfW7bK21z0B0BVrJxuFJEZySvcioeToe3IzJFsz6Jzz1bCzyt10olFX5Yy0OG8zFzv992i5sR0WSnXXI78GGnb2EF2d3TSTTsHT3iGxwH37e-Dj46XxhDQvRNt_J6LdsMJ2Q0krnLmadhUJIdMQuVqD9wR4mil2FmEvLIh3rHVMzw85Vq5Lzxq-X7OtcLxct86XVpuy68e4fv5CuXvsKvl18Gg8uk1h7IUFSANqEa6e5s6jzfqmMJkUEU8wE0vw1LkVRaq4kFo66l6sMVY4F9WvpnMKKNDTHX8PmbD6zB8CEZxlzpaQHRggsNY0bJzE1qqpIWvUgXWFRYyQm9_UxpnUwUFJZe_hqD18d4evBh3WT-46V41_C-x6vtWCEqgeHK8DrOG8XNamHZFbLSvA3f291DM8ux1fDevh59OUtPM98MkQIfzyEzbZZ2iPYwod2smjehcH5C6qh4-4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiclosed+Greenhouse+Climate+Control+Under+Uncertainty+via+Machine+Learning+and+Data-Driven+Robust+Model+Predictive+Control&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Wei-Han%2C+Chen&rft.au=You%2C+Fengqi&rft.date=2022-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=30&rft.issue=3&rft.spage=1186&rft_id=info:doi/10.1109%2FTCST.2021.3094999&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon